Publication  (1995-2019)

1.  Newton-Step-Based Hard Thresholding Algorithms for Sparse Signal Recovery, Technical report, University of Birmingham, 20 January 2020.

2.  Analysis of optimal thresholding algorithms for compressed sensing, Technical Report, University of Birmingham, September 2019/2020.

3.  J. Xu and Y.B. Zhao, Dual-density-based reweighted l1-algorihtms for class of l0-minimization problems, Tech Report, 2019/2020.

4.  J. Xu and Y.B. Zhao, Stability analysis for a class of sparse optimization problems,  arXiv:1904.09637, 2019

to appear in  Optimization Method and Software.

5.  Z. Li and Y. Zhao, On norm compression inequalities for partitioned block tensors, to appear in Calcolo

6.  Y.B. Zhao, Optimal k-thresholding algorithms for sparse optimization problems,

 SIAM Journal on Optimization, 30 (2020), no. 1, pp. 31-55.  https://doi.org/10.1137/18M1219187.

7.  Y.B. Zhao, H. Jiang and Z.-Q. Luo, Weak stability of ℓ1-minimization methods in sparse data reconstruction,

Mathematics of Operations Research,  44 (2019),  no.1,  pp. 173每195.  https://doi.org/10.1287/moor.2017.0919

8.  Y.B. Zhao,  Sparse Optimization Theory and Methods,  CRC Press,   Boca Raton, FL,  2018.  (Book)

9.  Y.B. Zhao and D. Li,  A Theoretical Analysis of Sparse Recovery Stability of Dantzig Selector and LASSO, axXiv:1711.03783.  2017

10. Y. Zhao, Z. Peng, Y.B. Zhao, Robust weighted expected residual minimization formulation for stochastic vector variational inequalities, 

J. Nonlinear Sci. Appl.,  10 (2017),  pp.5825--5833.

11. Y.B. Zhao and Z.Q. Luo, Constructing new weighted ℓ1-algorithms for the sparsest points of polyhedral sets, 

Mathematics of Operations Research,  42 (2017),  no.1, pp. 57--76.  https://doi.org/10.1287/moor.2016.0791

12. Z. Y. Peng, X. Long, X. Wang and  Y.B. Zhao,  Generalized Hadamard well-posedness for infinite vector optimization problems, 

Optimization,   66 (2017),  no.10, pp. 1563--1575.

13. Y.B. Zhao and C. Xu,  1-Bit Compressive Sensing: Reformulation and RRSP-Based Sign Recovery Theory,

Science China Mathematics,  59 (2016),  No. 10,  pp. 2049每2074.

14. Y.B. Zhao and M. Kocvara, A new computational method for the sparsest solutions to systems of linear equations

SIAM Journal on Optimization,  25 (2015), No. 2, pp. 1110每1134.  https://doi.org/10.1137/140968240

15. F. Hegarty, P. Ó Cath芍in, Y.B. Zhao,  Sparsification of Matrices and Compressed Sensing, Technical report, 2014.

16. H.B. Zhang, J.J. Jiang and Y.B. Zhao,  On the proximal Landweber Newton method for a class of nonsmooth convex problems, 

Computational Optimization and Applications,  61 (2015),  pp. 79-99.

17. C. Xu and Y.B. Zhao, Uniqueness conditions for a class of  l0 -minimization problems, 

 Asia-Pacific Journal of Operational Research,  32 (01), 1540002, 2015.

18. Y.B. Zhao, Equivalence and strong equivalence between the sparsest and least $ \ell_1$-norm nonnegative solutions of linear systems and their applications.  

J. Oper. Res. Soc. China, 2 (2014),  no. 2,  pp. 171每193.

19. Y.B. Zhao, RSP-Based analysis for sparest and least $\ell_1$-norm solutions to underdetermined linear systems,    

IEEE Transactions on Signal Processing, 61 (2013), no. 22,  pp. 5777-5788.   (10.1109/TSP.2013.2281030)

20. Y.B. Zhao, New and improved conditions for uniqueness of sparsest solutions of underdetermined linear systems,

Applied Mathematics and Computation, 224 (2013), pp. 58-73.

21. Y.B. Zhao and M. Fukushima, Rank-one solutions for homogeneous linear matrix equations over the positive semidefinite cone, (pdf)

Applied Mathematics and Computation, 219 (2013), pp. 5569-5583.

22. Y.B. Zhao and D. Li,  Reweighted $\ell_1$-Minimization for Sparse Solutions to Underdetermined Linear Systems,

SIAM Journal on Optimization, 22 (2012),  No. 3,   pp. 1065-1088.

23.Y.B. Zhao, An approximation theory of matrix rank minimization and its applications to quadratic equations,  

Linear Algebra and its Applications, 437 (2012), pp. 77-93.

24. Y.B. Zhao, Convexity conditions of Kantorovich function and related semi-infinite linear matrix inequalities,

Journal of Computational and Applied Mathematics,  235 (2011) ,  pp. 4389每4403.

25. I. Averbakh and Y.B. Zhao, Robust univariate spline models for interpolating interval data,

Operations Research Letters, 39 (2011),  pp. 62-66

26. Y.B. Zhao,  Convexity conditions and the Legendre-Fenchel transform of the product of finitely many quadratic forms,

Applied Mathematics and Optimization, 62 (2010), pp. 411-434.

27. Y.B. Zhao,  The Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms, 

SIAM Journal on Matrix Analysis and Applications, 31(2010), no.4, pp.1792-1811.

28. I. Averbakh, S.C. Fang  and Y.B. Zhao,   Robust univariate cubic L2 spine: interpolating data with uncertain position measurement,

Journal of Industrial Management and Optimization, 5 (2009), no.2, pp. 351-361.

29. I. Averbakh and Y.B.Zhao,  Robust second-order-cone programming,

Applied Mathematics and Computation, 210 (2009),  387-397.

30. Y.B. Zhao, S.C. Fang and J.E. LaveryGeometric dual formulation of the first derivative based C1-smooth univariate cubic L1 spline functions,

Journal of Global Optimization,  40(2008), 589-621.

31.  I. Averbakh and Y.B. Zhao, Explicit reformulations for robust optimization problems with general uncertainty sets

SIAM Journal on Optimization, 18 (2008), pp. 1436-1466 

32. Y.B. Zhao,  Enlarging neighborhood of interior-point algorithms for linear programming via the least value of proximity functions,

Applied  Numerical  Mathematics57( 2007),  1033-1049. 

33. Y.B. Zhao and J. Hu,  Global bounds for the distance to solutions of co-coercive variational inequalities

Operations Research Letters,    35(2007) ,  pp. 409-415. 

34. Y.B. Zhao and D. Li,  On KKT points of homogeneous programming ,

Journal of Optimization Theory and Applications ,  130 (2006), 367-374.

35. Y.B. Zhao,  S.C. Fang and  D. Li, Constructing generalized mean functions via convex functions with   regularity  conditions,  

SIAM Journal on Optimization , 17  (2006) ,  37-51. 

36. Y.B. Zhao and D. Li, A new path-following algorithm for nonlinear P_* complementarity problems

Computational Optimization and Applications34 (2006), 183-214. 

37. J. Peng,   T. Terlaky and Y.B. Zhao, An interior point algorithm for linear optimization based on a proximity function,

SIAM Journal on Optimization,   15(2005), no.4, pp. 1105-1127.

38. Y.B. Zhao and  D. Li,   A  globally  and  locally  convergent  non- interior- point algorithm for   P_0 LCPs,    

SIAM Journal on Optimization,   13 (2003), no.4, 1195〞1221.

39. Y.B. Zhao and  D. Li,   Locating the least 2-norm solution of linear programming  via the  path- following methods,  

SIAM Journal on Optimization.  12 (2002), no. 4, 893--912. 

40. Y.B. Zhao and D. Li,    Exitstence and limiting behavior of a non-interior-point trajectory for CPs without strict feasibility condition,

SIAM Journal on Control and Optimization.  40 (2001), no. 3, pp. 898-924. 

41. Y.B. Zhao and D. Li,   Monotonicity of fixed point and normal mappings associated with variational inequality and its application.

SIAM Journal on Optimization,   11 (2001),  no 4,  pp. 962-973.

42. Y.B. Zhao and D. Li,  On a new  homotopy  continuation  trajectory  for  nonlinear  complementarity  problems,  

Mathematics of Operations Research,  26 (2001),  no. 1  pp. 119-146.

43. Y.B.  Zhao and   D. Sun  Alternative theorems for nonlinear projection equations and applications to generalized complementarity problems,  

Nonlinear Analysis, Ser. A. Theory Methods  46 (2001), no. 6, pp. 853-868.

44. Y.B. Zhao and  G. IsacProperties of a multi-valued mapping associated with some non-monotone complementarity problems,

SIAM Journal on Control and Optimization. 39 (2000), pp. 571-593. 

45. Y.B. Zhao and D. Li,   Strict feasibility conditions in nonlinear complementarity problems,

Journal of Optimization Theory and Applications , 107 (2000), pp.641-664.

46.  G. Isac and Y.B. Zhao,  Exceptional family of elements and the solvability of variational inequality for unbounded sets in infinite dimensional Hilbert Spaces,

Journal of Mathematical Analysis and Applications, 246 (2000), pp. 544-556.

47. Y.B. Zhao and  G. Isac,   Quasi-P^*-maps, P(\tau, \alpha, \beta)-maps, exceptional family of elements and complementarity problems,

Journal of Optimization Theory and Applications,   105 (2000), pp. 213-231. 

48.Y.B. Zhao and J.Yuan,   An alternative theorem for generalized variational inequalities and solvability of nonlinear quasi-P^M_*-complementarity problems,

Applied Mathematics and Computaiton,  109 (2000), 167--182.

49. Y.B. Zhao and   J. Han,  Exceptional family of elements for a variational inequality and its applications,  

 Journal of Global Optimization,   14 (1999), pp.313-330. 

50. Y.B. Zhao, J. Han and H.D. Qi  Exceptional families and existence theorems for variational inequality problems,

Journal of Optimization Theory and Applications , 101 (1999), pp. 475-495.  

51. Y.B. Zhao and  J. Han, Two interior-point methods for nonlinear P_*(\tau)-complementarity problems,

Journal of Optimization Theory and Applications,  102 (1999), pp. 659-679. 

52. Y.B. Zhao,    Existence of a solution to nonlinear variational inequality under generalized positive homogeneity,  

Operations Research Letters, 25 (1999), pp.  231-239.  

53. Y.B. Zhao,  D-orientation sequence for continuous functions and nonlinear complementarity problems,  

Applied Mathematics and Computation, 106 (1999), pp. 221-235.  

54. Y.B. Zhao,   Extended projection methods for monotone variational inequalities,   

Journal of Optimization Theory and Applications, 100 (1999),  219-231.

55. Y.B. Zhao,   Exceptional family and finite-dimensional variational inequalities over polyhedral convex sets,

Applied Mathematics and Computation  87 (1997),  pp. 111-126. 

56. D. Sun, J.Y.Han, Y.B. Zhao, The finite termination of the damped Newton algorithm for linear complementarity problems.

Acta. Math. Appl. Sinica , 21 (1998), 148--154.

57. Y.B. Zhao and Y.R. Duan,  Convergence of the pseudo-Newton-$\delta$ class methods for general objective functions.

Chinese  J. Numer. Math. Appl, 18 (1996), no.3. 13〞24

58.Y.B. Zhao and J. Li , A globally convergent general algorithm scheme for nonlinear programming and its applications, 

Acta. Math. Appl. Sinica, 19 (1996) no.2,  313--315.

59. Y.B. Zhao and Z.Yi,  and global convergence for the pseudo-Newton-\delta class, 

J. Numer. Methods Comput. Appl.,  16 (1995), no. 1, 53--62.

Back