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Abstract. Based on the concept of the regularized central path, a new non-interior-point
path-following algorithm is proposed for solving the P0 linear complementarity problem (P0 LCP).
The condition ensuring the global convergence of the algorithm for P0 LCPs is weaker than most
previously used ones in the literature. This condition can be satisfied even when the strict feasibility
condition, which has often been assumed in most existing non-interior-point algorithms, fails to hold.
When the algorithm is applied to P∗ and monotone LCPs, the global convergence of this method
requires no assumption other than the solvability of the problem. The local superlinear convergence of
the algorithm can be achieved under a nondegeneracy assumption. The effectiveness of the algorithm
is demonstrated by our numerical experiments.
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1. Introduction. We consider a new path-following algorithm for the linear
complementarity problem (LCP):

x ≥ 0, Mx + d ≥ 0, xT (Mx + d) = 0,

where M is an n by n matrix and d a vector in Rn. This problem is said to be a P0

LCP if M is a P0 matrix, and a P∗ LCP if M is a P∗ matrix. We recall that M is
said to be a P0 matrix (see [13]) if

max
1≤i≤n

xi(Mx)i ≥ 0 for any 0 6= x ∈ Rn.

M is said to be a P∗ matrix (see [26]) if there exists a nonnegative constant τ ≥ 0
such that

(1 + τ)
∑

i∈I+

xi(Mx)i +
∑

i∈I−

xi(Mx)i ≥ 0 for any 0 6= x ∈ Rn,

where I+ = {i : xi(Mx)i > 0} and I− = {i : xi(Mx)i < 0}.
We first give a synopsis of non-interior-point methods and related results for

complementarity problems. The first non-interior-point path-following method for
LCPs was proposed by Chen and Harker [6]. This method was improved by Kanzow
[24] who also studied other closely related methods, later called the Chen-Harker-
Kanzow-Smale (CHKS) smoothing function method (see [20]). The CHKS function
φ : R3 → R is defined by

φ(t1, t2, µ) = t1 + t2 −
√

(t1 − t2)2 + 4µ.
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Based on such a function, Hotta and Yoshise [20] studied the structural properties
of a non-interior-point trajectory and proposed a globally convergent path-following
algorithm for a class of P0 LCPs. However, no rate of convergence was reported in
these papers. The first global linear convergence result for the LCP with a P0 and R0

matrix was obtained by Burke and Xu [3], who also proposed in [4] a non-interior-point
predictor-corrector algorithm for monotone LCPs which was both globally linearly
and locally quadratically convergent under certain assumption. Further development
of non-interior-point methods can be found in [35, 5, 40, 33, 8, 7, 21]. It is worth
mentioning that Chen and Xiu [8] and Chen and Chen [7] proposed a class of non-
interior-point methods using the Chen-Mangasarian smoothing function family [9]
that includes the CHKS smoothing function as a special case.

Since most existing non-interior-point path-following algorithms are based on the
CHKS function, these methods actually follow the central path to locate a solution
of the LCP. The central path is the set of solutions of the following system as the
parameter µ > 0 varies:

x > 0, Mx + d > 0, X(Mx + d) = µe,

where X = diag(x) and e = (1, ..., 1)T . For P0 LCPs, it is shown (see [42, 43]) that
most assumptions used for non-interior-point algorithms, for instance, the Condition
1.5 in [25], Condition 1.2 in Hotta and Yoshise [20], and the P0 + R0 assumption in
Burke and Xu [3] and Chen and Chen [7], imply that the solution set of the problem
is bounded. As showed by Ravindran and Gowda in [34] the P0 complementarity
problem with a bounded solution set must have a strictly feasible point, i.e., there
exists an x0 such that Mx0 + d > 0. (This implies that a P0 LCP with no strictly
feasible point either has no solution or has an unbounded solution set.) We conclude
that the above-mentioned conditions all imply that the problem has a strictly feasible
point. Thus, for a solvable P0 LCP without strictly feasible point (in this case, the
central path does not exists), it is unknown whether most existing non-interior-point
algorithms are globally convergent or not. An interesting problem is how to improve
these algorithms so that they are able to handle those P0 problems with unbounded
solution sets or without strictly feasible points.

Recently, Zhao and Li [42] proposed a new continuation trajectory for comple-
mentarity problems, which is defined as follows:

x > 0, Mx + d + θpx > 0, xi[(Mx + d)i + θpxi] = θqai, i = 1, ..., n,

where θ is a parameter in (0,1], p ∈ (0,∞) and q ∈ [1,∞) are two fixed scalars, and
a = (a1, ..., an)T ∈ Rn

++ is a fixed vector, for example, a = e. For a P0 matrix M,
it turns out (see [42]) that the above system has a unique solution for each given
parameter θ, and this solution, denoted by x(θ), is continuously differentiable on
(0,1). Thus, the set {x(θ) : θ ∈ (0, 1]} forms a smooth path approaching to the
solution set of the P0 LCP as θ tends to zero. Notice that for a given θ, the term
Mx + d + θpx is the Tikhonov regularization of Mx + d, which has been used to
study complementarity problems by several authors such as Isac [22], Venkateswaran
[36], Facchinei and Kanzow [14], Ravindran and Gowda [34], and Zhao and Li [42].
We may refer the above smooth path to regularized central path. A good feature of
the regularized central path is that its existence and boundedness can be guaranteed
under a very weak assumption. In particular, the boundedness of the solution set and
the strict feasibility condition are not needed for the existence of this path. Combining
the CHKS function and Tikhonov regularization method, Zhao and Li [43] extended
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the results in [42] to non-interior-point methods, and studied the existence as well as
the limiting behavior of a new non-interior-point smooth path.

The theoretical results established in [43] motivate us to construct a new non-
interior-point path-following algorithm for P0 LCPs. The purpose of this paper is
to provide such a practical numerical algorithm. It is worth stressing the differences
between the proposed method in this paper and previous algorithms in the literature.
i) The proposed algorithm follows the regularized central path instead of the central
path. ii) The condition ensuring the global convergence of the algorithm for P0 LCPs
is strictly weaker than those ones used in most existing non-interior-point methods.
The local superlinear convergence of the algorithm can be achieved under a standard
nondegeneracy assumption that was used in many works such as [38, 39, 33]. In
particular, we also study the important special case of P∗ LCPs, and derive some
stronger results than that of the P0 case.

The paper is organized as follows. In section 2, we introduce some basic results
and describe the algorithm. In section 3, we prove the global convergence of the
algorithm for a class of P0 LCPs. The local convergence analysis of the algorithm is
given in section 4. The special case of P∗ LCPs is discussed in section 5, and some
numerical results are reported in section 6.

Notation: Rn denotes the n-dimensional Euclidean space. Rn
+ and Rn

++ denote
the nonnegative orthant and positive orthant, respectively. A vector x ≥ 0 (x > 0)
means x ∈ Rn

+ (x ∈ Rn
++). All the vectors, unless otherwise stated, are column vectors.

T denotes the transpose of a vector. For any vector x, the capital X denotes the
diagonal matrix diag(x), and for any index set I ⊆ {1, ..., n}, xI denotes the sub-vector
made up of the components xi for i ∈ I. The symbol e denotes the vector in Rn with all
of its components equal to one. For given vectors u,w, v in Rn, the triplet (u,w, v) (the
pair (x, y)) denotes the column vector (uT , wT , vT )T ( (xT , yT )T ). For any u ∈ Rn,
the symbol up denotes the pth power of the vector u, i.e., the vector (up

1, ..., u
p
n)T

where p > 0 is a positive scalar, and Up denotes the diagonal matrix diag(up). For
any vector x ≤ y, we denote by [x, y] the rectangular box [x1, y1]× ...× [xn, yn].

2. A non-interior-point path-following algorithm. Let p and q be two given
positive scalars. Define the map H : Rn

+ ×R2n → R3n as follows:

H(u, x, y) =




u

x + y −
√

(x− y)2 + 4uq

y − (Mx + d + Upx)


 , (u, x, y) ∈ Rn

+ ×R2n,(2.1)

where Up = diag(up) and all the algebraic operations are performed componentwise.
The above homotopy map first appeared in [43]. Clearly, if H(u, x, y) = 0 then (x, y)
is a solution to the LCP; conversely, if (x, y) is a solution to the LCP, then (0, x, y)
is a solution to the equation H(u, x, y) = 0. Thus, an LCP can be solved via locating
a solution of the nonlinear equation H(u, x, y) = 0. From the discussion in [43], we
can conclude that it is a judicious choice to use the above version of the homotopy
formulation in order to deal with the LCP with an unbounded solution set.

Before embarking on stating the algorithm, we first introduce some results estab-
lished in [43]. Let (a, b, c) ∈ Rn

++×R2n be given. Consider the following system with
the parameter θ :

H(u, x, y) = θ(a, b, c),(2.2)

where θ ∈ (0, 1]. For P0 LCPs, it is shown in [43] that for each given θ ∈ (0, 1]
the above system has a unique solution denoted by (u(θ), x(θ), y(θ)), which is also
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continuously differentiable with respect to θ. Therefore, the following set

{(u(θ), x(θ), y(θ)) : H(u, x, y) = θ(a, b, c), θ ∈ (0, 1]}(2.3)

forms a smooth path. Also, in this paper, we refer this path to as the regularized
central path. The existence of such a smooth path for P0 LCPs needs no assump-
tion (see Theorem 2.1 below). An additional condition is assumed to guarantee the
boundedness of this path. We now introduce such a condition proposed in [43].

For given (a, b, c) ∈ Rn
++ × R2n and θ ∈ (0, 1], we define a mapping F(a,b,c,θ) :

R2n → R2n as follows:

F(a,b,c,θ)(x, y) =
(

Xy
y −M(x + 1

2θb)− d− θpApx− θc

)
,

where X = diag(x) and Ap = diag(ap).
Condition 2.1. For any given (a, b, c) ∈ Rn

++ ×R2n and scalar t̂, there exists a
scalar θ∗ ∈ (0, 1] such that

⋃

θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ)

is bounded, where

F−1
(a,b,c,θ)(Dθ) := {(x, y) ∈ R2n

++ : F(a,b,c,θ)(x, y) ∈ Dθ}

and Dθ := [0, θaq]× [−θt̂e, θt̂e] ⊆ Rn
+ ×Rn.

The following result states that Condition 2.1 is weaker than most known assump-
tions used for non-interior-point methods. An example was given in [43] to show that
Condition 2.1 can be satisfied even when the strict feasibility condition fails to hold.

Proposition 2.1. [43] Let f = Mx + d where M is a P0-matrix. If one of the
following conditions holds, then Condition 2.1 is satisfied.

a) Condition 1.5 of Kojima et al [25].
b) Condition 2.2 of Hotta and Yoshise [20].
c) Assumption 2.2 of Chen and Chen [7].
d) f is a P0 and R0 function [3, 7].
e) f is a P∗-function (i.e., M is a P∗ matrix) and there is a strictly feasible point

[26].
f) f is a uniform P-function, i.e., M is a P-matrix [27].
g) The solution set of the LCP is nonempty and bounded.
The converse, however, is not true, i.e., Condition 2.1 cannot imply any one of

the above conditions.
Restricted to LCPs, the main result established in [43] are summarized as follows.
Theorem 2.1. [43] Let M be a P0-matrix.
(i) For each θ ∈ (0, 1], the system (2.2) has a unique solution denoted by (u(θ),

x(θ), y(θ)), which is also continuously differentiable in θ.
(ii) If Condition 2.1 is satisfied, then the regularized central path (2.3) is bounded.

Hence, there exists a subsequence (u(θk), x(θk), y(θk)) that converges, as θk → 0, to
(0, x∗, y∗) where x∗ is a solution to the LCP.

For P∗ LCPs, the only condition for the result (ii) above is the solvability of the
problem.

Theorem 2.2. [43] Let M be P∗-matrix. Assume that the solution set of the
LCP is nonempty.
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(i) If p ≤ 1 and q ∈ [1,∞), then the regularized central path (2.3) is bounded.
(ii) If p > 1, q ∈ [1,∞) and c ∈ Rn

++, then the regularized central path (2.3) is
bounded.

The boundedness of the path (2.3) implies that the problem has a solution. Com-
bining this fact and the above result, we may conclude that the solvability of a P∗
LCP, roughly speaking, is a necessary and sufficient condition for the boundedness
of the regularized central path. For monotone LCPs, we have a much stronger result
than the above, i.e., the entire path (2.3) is convergent as θ → 0. The property of the
limiting point of this path, as θ → 0, depends on the choice of the scalars p and q.

Theorem 2.3. [43] Let M be a positive semi-definite matrix. Assume that the
solution set of the LCP is nonempty.

(i) If p ≤ 1 and q ∈ [1,∞), then the regularized central path (2.3) converges, as
θ → 0, to the unique least N-norm solution of the LCP, where N = Ap/2.

(ii) If p > 1, q ∈ [1,∞) and c ∈ Rn
++, then the regularized central path (2.3)

converges, as θ → 0, to a maximally complementary solution of the LCP.
We now introduce the algorithm. We choose the following neighborhood around

the regularized central path {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]} :

N (β) = {(u, x, y) : ‖u− θa‖ = 0, ‖H(u, x, y)− θ(a, b, c)‖ ≤ βθ, θ ∈ (0, 1]}.
Denote

Gθ(x, y) =
(

x + y −
√

(x− y)2 + 4(θa)q

y − (Mx + d + θpApx)

)
.(2.4)

Then, the above neighborhood reduces to

N (β) = {(x, y) : ‖Gθ(x, y)− θ(b, c)‖ ≤ βθ, θ ∈ (0, 1]},
where Gθ is given by (2.4). For a given θ ∈ (0, 1], we denote

N (β, θ) = {(x, y) : ‖Gθ(x, y)− θ(b, c)‖ ≤ βθ}.
Throughout the paper, ∇Gθ(x, y) denotes the Jacobian of Gθ(x, y) with respect to
(x, y). Let ε > 0 be a given tolerance. We now describe the algorithm as follows.

Algorithm 2.1: Let p ∈ (0,∞), q ∈ [1,∞), σ ∈ (0, 1) and α ∈ (0, 1) be given.
Step 1. Select (a, b, c) ∈ Rn

++ × R2n, (x0, y0) ∈ R2n, θ0 ∈ (0, 1), and β > 0 such
that (x0, y0) ∈ N (β, θ0).

Step 2 (Approximate Newton Step). If ‖G0(xk, yk)‖ ≤ ε, stop; otherwise, let
(dx̂k, dŷk) solve the equation

G0(xk, yk) +∇Gθk(xk, yk)(dx, dy) = 0.(2.5)

Let

(x̂k+1, ŷk+1) = (xk, yk) + (dx̂k, dŷk).

If ‖G0(x̂k+1, ŷk+1)‖ ≤ ε, stop; otherwise, if

(x̂k+1, ŷk+1) ∈ N (β, (θk)2),

then set

θk+1 = (θk)2, (xk+1, yk+1) = (x̂k+1, ŷk+1).
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Set k := k + 1, and repeat step 2. Otherwise, go to step 3.
Step 3 (Centering Step). If Gθk(xk, yk) = θk(b, c), set (xk+1, yk+1) = (xk, yk),

and go to step 4. Otherwise, let (dxk, dyk) be the solution to the equation

Gθk(xk, yk)− θk(b, c) +∇Gθk(xk, yk)(dx, dy) = 0.(2.6)

Let λk be the maximum among the values of 1, α, α2, ... such that

‖Gθk(xk + λkdxk, yk + λkdyk)− θk(b, c)‖ ≤ (1− σλk)‖Gθk(xk, yk)− θk(b, c)‖.

Set

(xk+1, yk+1) = (xk, yk) + λk(dxk, dyk).

Step 4 (Reduce θk). Let γk be the maximum among the values 1, α, α2, ... such
that

(xk+1, yk+1) ∈ N (β, (1− γk)θk),

i.e.,

‖G(1−γk)θk(xk+1, yk+1)− (1− γk)θk(b, c)‖ ≤ β(1− γk)θk.

Set θk+1 = (1− γk)θk. Set k := k + 1 and go to step 2.
Remark 2.1. (i) To start the algorithm, we need an initial point within the

neighborhood of the regularized central path. Such an initial point can be found at
no cost for the above algorithm. For example, let (a, b, c) be an arbitrary triplet in
Rn

++ × R2n, (x0, y0) be an arbitrary vector in R2n, and θ0 be an arbitrary scalar in
(0,1). Then, choose β such that

β ≥ ‖Gθ0(x0, y0)− θ0(b, c)‖
θ0

.

Clearly, this initial point satisfies (x0, y0) ∈ N (β, θ0).
(ii) The step 3 of the algorithm is a centering step in the sense that it forces the

iterate close to the regularized central path such that the iterate is always confined in
the neighborhood of the path. In the next section, we show that step 3 together with
step 4 guarantees the global convergence of the algorithm. Step 2 is an approximate
Newton step which was shown to have good local convergence properties (see, for
example, [10, 11]). This step is used to accelerate the iteration such that a local rapid
convergence can be achieved. Similar strategies were used in several works such as
[38, 39, 28, 7, 8]. We also note that linear systems (2.5) and (2.6) have the same
coefficient matrix, and thus only one matrix factorization is needed at each iteration.

We now show that the algorithm is well-defined.
Proposition 2.2. Algorithm 2.1 is well-defined and satisfies the following prop-

erties: (i) θk is monotonically decreasing, and (ii) ‖Gθk(xk, yk)− θk(b, c)‖ ≤ βθk for
all k ≥ 0, i.e., (xk, yk) ∈ N (β, θk) for all k ≥ 0.

Proof. We verify that each step of the algorithm is well-defined. As we pointed
out in Remark 2.1, step 1 of the algorithm is well-defined. Consider the following
2n× 2n matrix

∇Gθk(xk, yk) =
(

I − (Xk − Y k)Dk I + (Xk − Y k)Dk

−(M + (θk)pAp) I

)
,(2.7)
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where Xk = diag(xk), Y k = diag(yk), and Dk = diag(dk) with dk = (dk
1 , ..., dk

n)T

where

dk
i =

1√
(xk

i − yk
i )2 + 4(θk)qaq

i

, i = 1, 2, ..., n.

Since a ∈ Rn
++, for each given θk ∈ (0, 1) it is easy to see that I − (Xk − Y k)Dk and

I + (Xk − Y k)Dk are positive diagonal matrices for every (xk, yk) ∈ R2n. Thus, by
Lemma 5.4 in Kojima et al. [25], the matrix ∇Gθk(xk, yk) is nonsingular when M is
a P0-matrix. Thus, step 2 is well-defined.

Since (dxk, dyk) is a descent direction for the following function at (xk, yk),

f̃(x, y) =
1
2
‖Gθk(x, y)− θk(b, c)‖22,

the line search in step 3 is well-defined, and thus the whole step 3 is well-defined.
We finally prove that the step 4 is well-defined. For any scalar µ1 > µ2 ≥ 0, we

have

‖Gµ1(x, y)−Gµ2(x, y)‖

=
∥∥∥∥
(

x + y −
√

(x− y)2 + 4µq
1a

q

y − (Mx + d + µp
1A

px)

)
−

(
x + y −

√
(x− y)2 + 4µq

2a
q

y − (Mx + d + µp
2A

px)

)∥∥∥∥

=
∥∥∥∥
( √

(x− y)2 + 4µq
1a

q −
√

(x− y)2 + 4µq
2a

q

(µp
1 − µp

2)A
px

)∥∥∥∥

=

∥∥∥∥∥

(
4(µq

1−µq
2)aq√

(x−y)2+4µq
1aq+

√
(x−y)2+4µq

2aq

(µp
1 − µp

2)A
px

)∥∥∥∥∥

≤
∥∥∥∥∥

(
4(µq

1−µq
2)aq√

4µq
1aq

(µp
1 − µp

2)A
px

)∥∥∥∥∥
≤ max{µq/2

1 (1− (µ2/µ1)q), µp
1(1− (µ2/µ1)p)}‖(2aq/2, Apx)‖.(2.8)

In particular, setting (x, y) = (xk, yk), µ1 = θk > 0, and µ2 = (1 − γ)θk with
γ ∈ (0, 1), we then have

‖Gθk(xk, yk)−G(1−γ)θk(xk, yk)‖
≤ max{(θk)q/2(1− (1− γ)q), (θk)p(1− (1− γ)p)}‖(2aq/2, Apxk)‖.(2.9)

There are two cases to be considered.
Case (i): Gθk(xk, yk) = θk(b, c) in step 3. Then, (xk+1, yk+1) = (xk, yk). By (2.9),

for all sufficiently small γ we have

‖G(1−γ)θk(xk+1, yk+1)− (1− γ)θk(b, c)‖
= ‖G(1−γ)θk(xk, yk)−Gθk(xk, yk) + θk(b, c)− (1− γ)θk(b, c)‖
≤ ‖G(1−γ)θk(xk, yk)−Gθk(xk, yk)‖+ γθk‖(b, c)‖
≤ max{(θk)q/2(1− (1− γ)q), (θk)p(1− (1− γ)p)}‖(2aq/2, Apxk)‖+ γθk‖(b, c)‖
≤ β(1− γ)θk.

Case (ii): Gθk(xk, yk) 6= θk(b, c) in step 3. For this case, according to step 3 we have

‖Gθk(xk+1, yk+1)− θk(b, c)‖ ≤ (1− σλk)‖Gθk(xk, yk)− θk(b, c)‖
≤ (1− σλk)βθk.
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The second inequality follows from the fact that ‖Gθk(xk, yk)−θk(b, c)‖ ≤ βθk, which
is evident from the construction of the algorithm. Notice that 1− σλk < 1. By (2.9)
and the above inequality, for all sufficiently small γ we have

‖G(1−γ)θk(xk+1, yk+1)− (1− γ)θk(b, c)‖
≤ ‖G(1−γ)θk(xk+1, yk+1)−Gθk

(xk+1, yk+1)‖+ ‖Gθk(xk+1, yk+1)− θk(b, c)‖
+γθk‖(b, c)‖
≤ max{(θk)q/2(1− (1− γ)q), (θk)p(1− (1− γ)p)}‖(2aq/2, Apxk+1)‖
+(1− σλk)βθk + γθk‖(b, c)‖
≤ (1− γ)βθk.

Thus, the step 4 is well-defined.
We now show that all the iterates are in the neighborhood defined by the algo-

rithm. By the construction of the algorithm, it is evident that either θk+1 = (θk)2

or θk+1 = (1 − γk)θk. So, θk is monotonically decreasing. When k = 0, it follows
from step 1 that (x0, y0) ∈ N (β, θ0). Assume that this property holds for k, i.e.,
(xk, yk) ∈ N (β, θk). We show that it holds for k + 1. Indeed, if step 2 is accepted,
then the criterion (xk+1, yk+1) ∈ N (β, θk+1) is satisfied, where θk+1 = (θk)2. If step
2 is rejected, then (xk+1, yk+1) is created by step 3 together with step 4. It follows
from step 4 that (xk+1, yk+1) ∈ N (β, θk+1) where θk+1 = (1 − γk)θk. Thus, for all
k ≥ 0, we have that (xk, yk) ∈ N (β, θk), i.e., ‖Gθk(xk, yk)− θk(b, c)‖ ≤ βθk.

3. Global convergence for P0 LCPs. We now show that the proposed algo-
rithm is globally convergent for P0 LCPs provided that Condition 2.1 is satisfied. By
Proposition 2.2, for every k ≥ 1, the iterate (xk, yk) satisfies the following:

‖Gθk(xk, yk)− θk(b, c)‖ ≤ βθk, θk = (1− γk−1)θk−1 or θk = (θk−1)2.(3.1)

Let (bk, ck) ∈ R2n be two auxiliary vectors determined by

(bk, ck) =
Gθk(xk, yk)− θk(b, c)

θk
for all k.(3.2)

Then, {(bk, ck)} is uniformly bounded. In fact, by (3.1), we have that ‖(bk, ck)‖ ≤ β,
and hence

−βe ≤ bk ≤ βe, −βe ≤ ck ≤ βe.(3.3)

By the definition of (2.4), we can write (3.2) as

xk + yk −
√

(xk − yk)2 + 4(θk)qaq = θk(b + bk),

yk − (Mxk + d + (θk)pApxk) = θk(c + ck).

By the property of CHKS-function (see Lemma 1 in [20]), the system above is equiv-
alent to

xk − 1
2
θk(b + bk) > 0, yk − 1

2
θk(b + bk) > 0,(3.4)

[
Xk − 1

2
θk(B + Bk)

](
yk − 1

2
θk(b + bk)

)
= (θk)qaq,(3.5)

yk = Mxk + d + (θk)pApxk + θk(c + ck),(3.6)
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where Xk, B and Bk are diagonal matrices corresponding to xk, b and bk, respectively.
Remark 3.1. The fact that all iterates generated by Algorithm 2.1 satisfy the

system (3.4)-(3.6) plays a key role in the analysis throughout the paper. By continuity,
from (3.6) it follows that {yk} is bounded if {xk} is. Thus, if the sequence (xk, yk) is
unbounded, then {xk} must be unbounded.

The following result is a minor revision of Lemma 1 in [34].
Lemma 3.1. [42, 44] Let M be a P0 matrix. Let {zk} be an arbitrary sequence

with ‖zk‖ → ∞ and zk ≥ z̄ for all k, where z̄ ∈ Rn is a fixed vector. Then there exist
a subsequence of {zk}, denoted by {zkj}, and a fixed index i0 such that z

kj

i0
→∞ and

(Mzkj + d)i0 is bounded from below.
The next result shows that the iterative sequence {(xk, yk)} generated by Algo-

rithm 2.1 is bounded under Condition 2.1.
Theorem 3.1. Let M be a P0 matrix. If Condition 2.1 is satisfied, then the

iterative sequence {(xk, yk)} generated by Algorithm 2.1 is bounded.
Proof. We prove this result by contradiction. Assume that {(xk, yk)} is un-

bounded. Then {xk} is unbounded (see Remark 3.1). Without loss of generality, we
may assume that ‖xk‖ → ∞. Notice that θk < 1 and ‖bk‖ ≤ β. It follows from (3.4)
that

xk ≥ 1
2
θk(b + bk) ≥ −1

2
(‖b‖+ β)e for all k.

Thus, by Lemma 3.1, there exist a subsequence of {xk}, denoted also by {xk}, and
an index m such that xk

m → ∞ and (Mxk + d)m is bounded from below. By (3.5),
for each i we have

(
xk

i −
1
2
θk(bi + bk

i )
)(

yk
i −

1
2
θk(bi + bk

i )
)

= (θk)qaq
i ,

and thus,

yk
m − 1

2
θk(bm + bk

m) =
(θk)qaq

m

xk
m − θk(bm + bk

m)/2
.

By using (3.6), the above equation can be further written as

(Mxk + d)m + θk(cm + ck
m)− 1

2
θk(bm + bk

m)− (θk)qaq
m

xk
m − θk(bm + bk

m)/2

= −(θk)pap
mxk

m.

Since bk and ck are bounded, xk
m →∞, and (Mxk + d)m is bounded from below, we

conclude that the left-hand side of the above equation is bounded from below. This
implies that θk → 0 (since otherwise the right-hand side tends to −∞).

In what follows, we denote by

x̄k = xk − 1
2
θk(b + bk), ȳk = yk − 1

2
θk(b + bk).(3.7)

¿From (3.4) and (3.5), we see that (x̄k, ȳk) > 0 for all k, and

X̄kȳk = (θk)qaq.(3.8)
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Since ‖bk‖ ≤ β, it follows that
∥∥∥∥

M(xk − x̄k − θkb/2)
θk

∥∥∥∥ ≤
1
2
β‖M‖.(3.9)

By using (3.6) and (3.7), we have

ȳk − M(x̄k +
1
2
θkb)− d− (θk)pApx̄k − θkc

= Mxk + d + (θk)pApxk + θk(c + ck)− 1
2
θk(b + bk)

−M(x̄k +
1
2
θkb)− d− (θk)pApx̄k − θkc

= θk

(
M(xk − x̄k − θkb/2)

θk
− 1

2
(b + bk) + ck +

1
2
(θk)pAp(b + bk)

)
.

By (3.9) and the boundedness of θk, bk and ck, there exists a scalar t̂ > 0 such that

−t̂e ≤ M(xk − x̄k − θkb/2)
θk

− 1
2
(b + bk)− ck +

1
2
(θk)pAp(b + bk) ≤ t̂e

for all k. Therefore,

ȳk −M(x̄k +
1
2
θkb)− d− (θk)pApx̄k − θkc ∈ θk[−t̂e, t̂e]

for all k. Notice that q ∈ [1,∞). Combination of (3.8) and the above leads to

F(a,b,c,θk)(x̄
k, ȳk) =

(
X̄kȳk

ȳk −M(x̄k + 1
2θkb)− d− (θk)pApx̄k − θkc

)

∈ θk[0, aq]× θk[−t̂e, t̂e]
=: Dθk

for all k. Thus,

(x̄k, ȳk) ∈ F−1
(a,b,c,θk)

(Dθk) for all k.

By Condition 2.1, there exists a θ∗ such that
⋃

θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ)

is bounded. Since θk → 0, there exists some k0 such that for all k ≥ k0 we have
θk ≤ θ∗. Thus,

{(x̄k, ȳk)}k≥k0 ⊆
⋃

θk≤θ∗

F−1
(a,b,c,θk)

(Dθk) ⊆
⋃

θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ).

The right-hand side of the above is bounded. This contradicts the left-hand side which
(by assumption) is an unbounded sequence.

We are ready to prove the global convergence of Algorithm 2.1 for P0 LCPs.
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Theorem 3.2. Let M be a P0-matrix. Assume that Condition 2.1 is satisfied. If
(xk, yk, θk) is generated by Algorithm 2.1, then {(xk, yk)} has at least one accumula-
tion point, and

lim
k→∞

θk → 0, lim
k→∞

‖Gθk(xk, yk)‖ → 0.(3.10)

Thus, every accumulation point of (xk, yk) is a solution to the LCP.
Proof. By Theorem 3.1, the iterative sequence {(xk, yk)} generated by the algo-

rithm is bounded, and hence it has at least one accumulation point. By Proposition
2.2, we have

‖Gθk(xk, yk)‖ ≤ ‖Gθk(xk, yk)− θk(b, c)‖+ θk‖(b, c)‖
≤ θk[β + ‖(b, c)‖].

Thus, to show the second limiting property in (3.10) it is sufficient to show that
θk → 0. By the construction of the algorithm, we have either θk+1 = (1 − γk)θk or
θk+1 = (θk)2. Thus θk is monotonically decreasing, and thus there exists a scalar
1 > θ̄ ≥ 0 such that θk → θ̄. If θ̄ = 0, the desired result follows.

Assume the contrary that θ̄ > 0. We now derive a contradiction. Since θ̄ > 0,
the algorithm eventually phases out the approximate Newton step, and takes only
step 3 and step 4. In fact, if step 2 is accepted infinite many times, then there exists
a subsequence {kj} such that θkj+1 = (θkj )2 which implies that θ̄ = θ̄2. This is
impossible since 0 < θ̄ < 1. Thus, there exists a k0 such that for all k ≥ k0, the
iterates {(xk, yk)}k≥k0 are generated only by step 3, and hence θk+1 = (1− γk)θk for
all k ≥ k0. Since θk → θ̄ > 0, it follows that γk → 0. Thus, for all sufficiently large k,
we have (xk+1, yk+1) /∈ N (β, (1− 1

αγk)θk, that is
∥∥∥∥G(1− 1

α γk)θk(xk+1, yk+1)−
(

1− 1
α

γk

)
θk(b, c)

∥∥∥∥ > β

(
1− 1

α
γk

)
θk.

Since the iterate (xk+1, yk+1) is bounded, taking a subsequence if necessary we may
assume that this sequence converges to some (x̂, ŷ). Notice that γk → 0. Taking the
limit in the above inequality, we have

‖Gθ̄(x̂, ŷ)− θ̄(b, c)‖ ≥ βθ̄ > 0.

Since θ̄ > 0, the matrix ∇Gθ̄(x̂, ŷ) is nonsingular. Let (dx̂, dŷ) be the solution to

Gθ̄(x̂, ŷ)− θ̄(b, c) +∇Gθ̄(x̂, ŷ)(dx, dy) = 0.

Then, (dx̂, dŷ) is a strictly descent direction for ‖Gθ̄(x, y) − θ̄(b, c)‖ at (x̂, ŷ). As a
result, the line search steplengths, λ̂ (in step 3) and γ̂ (in step 4), are both positive
constants. Since G and∇G are continuous in the neighborhood of (x̂, ŷ), it follows that
(dxk, dyk, λk, γk) → (dx̂, dŷ, λ̂, γ̂), and therefore λk, γk must be uniformly bounded
from below by some positive constant for all sufficiently large k. This contradicts
the fact γk → 0. Therefore, θk → 0 must hold. Assume that (x̂, ŷ) is an arbitrary
accumulation point of (xk, yk), then by (3.10),

0 = lim
k→∞

‖Gθk(xk, yk)‖ = ‖G0(x̂, ŷ)‖,

which implies that (x̂, ŷ) is a solution to the LCP.
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Remark 3.2. We have pointed out that the global convergence of most existing
non-interior-point methods for P0 LCPs actually requires the boundedness assumption
of the solution set, in which case the P0 problem must have a strictly feasible point. In
order to relax this requirement, Chen and Ye [12] designed a big-M smoothing method
for P0 LCPs. They proved that if the P0 LCP has a solution and if certain condition
such as “x̄n+2 − ȳn+2 6= −2ε̄” is satisfied at the accumulation point of their iterative
sequence, then their algorithm is globally convergent. We note that Condition 2.1 in
this paper is quite different from the Chen and Ye’s. However, it is not clear what
relation is between the two conditions.

While the global convergence for P0 LCPs is proved under Condition 2.1, it should
be pointed out that this condition is not necessary for the global convergence of P∗
problems. We can prove that Algorithm 2.1 is globally convergent provided that the
P∗ LCP has a solution. Since this result cannot follow from Theorem 3.2, and since
its proof is not straightforward, we postpone the discussion for this special case till
the local convergence analysis for P0 LCPs is complete.

4. Local behavior of the algorithm. Under a nondegeneracy assumption, we
show in this section the local superlinear convergence of the algorithm when p = 2 ≤ q.
Let (x∗, y∗) be an accumulation point of the iterative sequence (xk, yk) generated by
Algorithm 2.1. We make use of the following assumption that can be found also in
[38, 39, 33].

Condition 4.1. Assume that (x∗, y∗) is strictly complementary, i.e., x∗+y∗ > 0,
where y∗ = Mx∗ + d, and the matrix MII is nonsingular, where I = {i : x∗i > 0}.

While this condition for local convergence has been used by several authors, it
is stronger than some existing non-interior-point algorithms. Let M be a P0 matrix.
Under the above condition, it is easy to verify the nonsingularity of the matrix:

∇G0(x∗, y∗) =
(

I −W I + W
−M I

)
,(4.1)

where W = diag(w) is a diagonal matrix with wi = 1 if x∗i > 0, and wi = −1
otherwise. If Condition 4.1 is satisfied, it follows easily from Proposition 2.5 of Qi
[32] that the solution (x∗, y∗) is a locally isolated solution. On the other hand, it is
well-known that that a P0 complementarity problem has a unique solution when it
has a locally isolated solution (Jones and Gowda [23] and Gowda and Sznajder [17]).
Thus, Condition 4.1 implies the uniqueness of the solution for a P0 LCP, and hence
it implies Condition 2.1. By Theorem 3.2, we conclude that under Conditions 4.1 the
entire sequence (xk, yk), generated by Algorithm 2.1, converges to the unique solution
of the P0 LCP, i.e., (xk, yk) → (x∗, y∗). By continuity of ∇Gθ and nonsingularity
of ∇G0(x∗, y∗), there exists a local neighborhood of (x∗, y∗), denoted by N(x∗, y∗),
such that for all (x, y) ∈ N(x∗, y∗) and all sufficiently small θ the matrix ∇Gθ(x, y)
is nonsingular, and there exists a constant C and θ̂ ∈ (0, 1) such that

‖∇Gθ(x, y)−1‖ ≤ C for all (x, y) ∈ N(x∗, y∗) and θ ∈ (0, θ̂].

The following result is very useful for our local convergence analysis.
Lemma 4.1. Let M be a P0 matrix. Under Condition 4.1, there exists a neigh-

borhood N(x∗, y∗) of (x∗, y∗) such that for all (xk, yk) ∈ N(x∗, y∗) we have
(i) ‖∇Gθk(xk, yk)−∇G0(xk, yk)‖ ≤ κ max{(θk)q, (θk)p}, where κ is a constant.
(ii) G0(xk, yk)−G0(x∗, y∗)−∇G0(xk, yk)[(xk, yk)− (x∗, y∗)] = 0.
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Proof. Let

I = {i : x∗i > 0}, J = {j : y∗j > 0}.
Then, by strict complementarity, I ∩ J is empty and I ∪ J = {1, 2, ..., n}. Denote

η =
1
2

min{‖x∗I‖∞, ‖y∗J‖∞}.

We show first the following inequality:

‖W − (Xk − Y k)Dk‖ ≤ 2
η2

(θk)q‖aq‖∞ for all (xk, yk) ∈ N(x∗, y∗),(4.2)

where W is given as in (4.1) and Dk is defined as in (2.7). As we have pointed out,
under Conditions 4.1 the sequence {(xk, yk)} converges to (x∗, y∗). For all (xk, yk) ∈
N(x∗, y∗), without loss of generality, we may assume that

xk
i − yk

i ≥ η > 0 for i ∈ I; − (xk
i − yk

i ) ≥ η > 0 for i ∈ J.

Hence, when k is sufficiently large, for each i ∈ I we have

|Wi − (xk
i − yk

i )dk
i |

= |1− (xk
i − yk

i )dk
i |

=
|
√

(xk
i − yk

i )2 + 4(θk)qaq
i − (xk

i − yk
i )|√

(xk
i − yk

i )2 + 4(θk)qaq
i

=
4(θk)qaq

i√
(xk

i − yk
i )2 + 4(θk)qaq

i

(√
(xk

i − yk
i )2 + 4(θk)qaq

i + xk
i − yk

i

)

≤ 4(θk)qaq
i√

η2 + 4(θk)qaq
i

(√
η2 + 4(θk)qaq

i + η
)

≤ 2
η2

(θk)qaq
i .(4.3)

Similarly, for j ∈ J we have

|Wj − (xk
j − yk

j )dk
j | ≤

2
η2

(θk)qaq
j ,

which together with (4.3) yields the desired inequality (4.2). On the other hand, by
strict complementarity, for every sufficiently large k it is evident that (Xk−Y k)D

k
=

W where D
k

= diag(d̄k) where (d̄k)i = 1/
√

(xk
i − yk

i )2(i = 1, ..., n). Thus, for every
sufficiently large k we have

∇G0(xk, yk)−∇G0(x∗, y∗)

=

(
I − (Xk − Y k)D

k
I + (Xk − Y k)D

k

−M I

)
−

(
I −W I + W
−M I

)

=

(
W − (Xk − Y k)D

k
(Xk − Y k)D

k −W
0 0

)

= 0.(4.4)
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By using (2.7), (4.2) and (4.4), for every sufficiently large k we have

‖∇Gθk(xk, yk)−∇G0(xk, yk)‖ = ‖∇Gθk(xk, yk)−∇G0(x∗, y∗)‖
=

∥∥∥∥
(

W − (Xk − Y k)Dk (Xk − Y k)Dk −W
−(θk)pAp O

)∥∥∥∥
≤ 2‖W − (Xk − Y k)Dk‖+ ‖(θk)pAp‖
≤ 4

η2
(θk)q‖aq‖∞ + (θk)p‖ap‖∞

≤ κ max{(θk)q, (θk)p},
where κ = (4‖aq‖∞)/η2 + ‖ap‖∞ is a constant independent of k. Result (i) is proved.

We now prove the result (ii). By the strict complementarity and the definition of
W , it is easy to see that for every sufficiently large k the following holds:

xk + yk −
√

(xk − yk)2 = (I −W )(xk − x∗) + (I + W )(yk − y∗),

yk −Mxk − d = −M(xk − x∗) + yk − y∗.

Therefore, by using (4.4) and the above two equations, we have

G0(xk, yk)−G0(x∗, y∗)−∇G0(xk, yk)((xk, yk)− (x∗, y∗))

=
(

xk + yk −
√

(xk − yk)2
yk −Mxk − d

)
−

(
I −W I + W
−M I

)(
xk − x∗

yk − y∗

)

= 0,

as desired.
In the next result, we show that under Condition 4.1 the algorithm is at least

locally superlinear. The key of the proof is to show that the algorithm eventually
rejects the centering step and finally switches to step 2 when the iterate approaches
the solution set.

Theorem 4.1. Let M be a P0-matrix. Let p = 2 ≤ q and β > 2‖aq/2‖+ ‖(b, c)‖.
Assume that Condition 4.1 is satisfied. Then there exists a k0 such that θk+1 =
(θk)2 for all k ≥ k0, and

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

which implies that the algorithm is locally superlinearly convergent.
Proof. Let N(x∗, y∗) be a neighborhood of (x∗, y∗) defined as in Lemma 4.1. We

first show that for all (xk, yk) ∈ N(x∗, y∗), there exists a constant δ > 0 such that

‖(x̂k+1, ŷk+1)− (x∗, y∗)‖ ≤ δ max{(θk)q, (θk)p}‖(xk, yk)− (x∗, y∗)‖.
As we have pointed out, Condition 4.1 implies that (xk, yk) → (x∗, y∗), and there
exist constants C and θ̂ such that

‖∇Gθk(xk, yk)−1‖ ≤ C

for all (xk, yk) ∈ N(x∗, y∗) and θk ∈ (0, θ̂]. Therefore, for all sufficiently large k, by
Lemma 4.1 we have

‖(x̂k+1, ŷk+1)− (x∗, y∗)‖
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= ‖(xk, yk)− (x∗, y∗)−∇Gθk(xk, yk)−1G0(xk, yk)‖
= ‖∇Gθk(xk, yk)−1{[∇Gθk(xk, yk) +∇G0(xk, yk)]((xk, yk)− (x∗, y∗))
−G0(xk, yk) + G0(x∗, y∗)−∇G0(xk, yk)((xk, yk)− (x∗, y∗))}‖

≤ ‖∇Gθk(xk, yk)−1[∇Gθk(xk, yk)−∇G0(xk, yk)]((xk, yk)− (x∗, y∗))‖
+‖∇Gθk(xk, yk)−1[G0(xk, yk)−G0(x∗, y∗)−∇G0(xk, yk)((xk, yk)− (x∗, y∗))]‖

≤ C‖∇Gθk(xk, yk)−∇G0(xk, yk)‖‖(xk, yk)− (x∗, y∗)‖
≤ Cκ max{(θk)q, (θk)p}‖(xk, yk)− (x∗, y∗)‖.

Set δ = Cκ. The desired inequality follows. The above inequality implies that the
sequence (x̂k+1, ŷk+1) also converges to (x∗, y∗). Notice that θk → 0 (by Theorem
3.2). To show the local superlinear convergence of Algorithm 2.1, the above inequality
implies that it is sufficient to show that the algorithm eventually takes the approximate
Newton step alone.

Since (x∗, y∗) is a strictly complementary solution, G0(x, y) is continuously dif-
ferentiable in the neighborhood of (x∗, y∗), and thus it must be Lipschitzian in the
neighborhood of (x∗, y∗). Hence, there exists a constant L > 0 such that for all suffi-
ciently large k

‖G0(x̂k+1, ŷk+1)−G0(x∗, y∗)‖ ≤ L‖(x̂k+1, ŷk+1)− (x∗, y∗)‖
≤ Lδ max{(θk)q, (θk)p}‖(xk, yk)− (x∗, y∗)‖
= τk max{(θk)q, (θk)p}.

where τk = Lδ‖(xk, yk)− (x∗, y∗)‖ → 0 as k →∞. That is,

‖G0(x̂k+1, ŷk+1)‖ ≤ τk max{(θk)q, (θk)p}(4.5)

for all sufficiently large k. Setting (µ1, µ2) = (µ, 0) in (2.8), where µ ∈ (0, 1), we see
from the first inequality in (2.8) that

‖Gµ(x, y)−G0(x, y)‖ ≤ µ‖(2µq/2−1aq/2, µp−1Apx)‖ for all (x, y) ∈ R2n.(4.6)

Thus, by using (4.5) and (4.6), for all sufficiently large k we have

‖G(θk)2(x̂
k+1, ŷk+1)− (θk)2(b, c)‖

≤ ‖G(θk)2(x̂
k+1, ŷk+1)−G0(x̂k+1, ŷk+1)‖+ ‖G0(x̂k+1, ŷk+1)‖

+(θk)2‖(b, c)‖
≤ (θk)2‖(2[(θk)2]q/2−1aq/2, [(θk)2]p−1Apx̂k+1‖) + τk max{(θk)q, (θk)p}

+(θk)2‖(b, c)‖
≤ (θk)2(2‖aq/2‖+ ‖(b, c)‖+ [(θk)2]p−1‖Apx̂k+1‖) + τk max{(θk)q, (θk)p}

= β(θk)2
[2‖aq/2‖+ ‖(b, c)‖

β
+

[(θk)2]p−1‖Apx̂k+1‖
β

+
τk max{(θk)q−2, (θk)p−2}

β

]

≤ β(θk)2.(4.7)

The third inequality follows from that q ≥ 2 and [(θk)2]q/2−1 ≤ 1. The last inequality
follows from the fact that p = 2 ≤ q, β > 2‖aq/2‖+ ‖(b, c)‖, τk → 0 and

lim
k→0

[(θk)2]p−1‖Apx̂k+1‖
β

= 0.
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Thus, from (4.7), the approximate Newton step is accepted at kth step provided that k
is a large number. Therefore, the next iterate (xk+1, yk+1) = (x̂k+1, ŷk+1). Repeating
the above proof, we can see that at the (k + 1)th step (xk+2, yk+2) = (x̂k+2, ŷk+2),
i.e., the approximate Newton step is still accepted at (k + 1)th step. By induction,
we conclude that the algorithm eventually takes only the approximate Newton step.
Hence, for some k0, we have θk+1 = (θk)2 for all k ≥ k0, and limk→0 ‖xk+1−x∗‖/‖xk−
x∗‖ = 0.

The proof above shows that if an iterate (xk, yk) lies in a sufficiently small neigh-
borhood of (x∗, y∗), then the next iterate still falls in this neighborhood, and much
closer to the solution (x∗, y∗) than (xk, yk). Since the centering step is gradually
phased out and only approximate Newton steps are executed at the end of iteration,
the superlinear convergence of the algorithm can be achieved.

5. Special cases. In this section, we show some much deeper global convergence
results than Theorem 3.2 when the algorithm is applied to P∗ LCPs. For the special
case, the only assumption to assure the global convergence is the nonemptyness of
the solution set. In other words, this algorithm is able to solve any P∗ LCP provided
that a solution exists. For a given LCP, we denote by

I = {i : x∗i > 0 for some solution x∗},(5.1)
J = {j : (Mx∗ + d)j > 0 for some solution x∗},(5.2)
K = {k : x∗k = (Mx∗ + d)k = 0 for all solution x∗}.(5.3)

The above partition of the set {1, 2, ..., n} is unique for a given P∗ LCP. Consider the
affine set:

S = {(x, y) ∈ R2n : xJ∪K = 0, yI∪K = 0, y = Mx + d}.
In fact, S is the affine hull of the solution set of the LCP, i.e., the smallest affine set
containing the solution set. For any (x̃, ỹ) ∈ S, it is easy to see that x̃iỹi = 0 for all
i = 1, ..., n. We now prove a very useful result.

Lemma 5.1. Let (x̃, ỹ) be an arbitrary vector in S. Let M be a P∗-matrix. Let
{(xk, yk, θk)} be generated by Algorithm 2.1 and (x̄k, ȳk) be defined by (3.7). Then

x̃T ȳk + ỹT x̄k ≤ (θk)q(1 + τn)eT aq − τn

(
min

1≤i≤n
ρk

i

)
− (x̄k − x̃)T [(θk)pApx̄k

+θk(c + ck) +
1
2
θk(M − I + (θk)pAp)(b + bk)],(5.4)

where

ρk
i = x̄k

i ỹi + x̃iȳ
k
i + (x̄k

i − x̃i){(θk)pap
i x̄

k
i + θk(ci + ck

i )

+
1
2
θk[(M − I + (θk)pAp)(b + bk)]i}.

Proof. Since (x̄k, ȳk) > 0 and x̃iỹi = 0 for all i = 1, ..., n, by (3.8) we have

(x̄k
i − x̃i)(ȳk

i − ỹi) = x̄k
i ȳk

i − x̄k
i ỹi − x̃iȳ

k
i + x̃iỹi

= (θk)qaq
i − x̄k

i ỹi − x̃iȳ
k
i .

It is easy to verify that

ȳk = Mx̄k + d + (θk)pApx̄k + θk(c + ck) +
1
2
θk(M − I + (θk)pAp)(b + bk).
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Thus, we have

(x̄k
i − x̃i)[M(x̄k − x̃)]i = (x̄k

i − x̃i)[(Mx̄k + d)i − ỹi]
= (x̄k

i − x̃i){ȳk
i − (θk)pap

i x̄
k
i − θk(ci + ck

i )

−1
2
θk[(M − I + (θk)pAp)(b + bk)]i − ỹi}

= (x̄k
i − x̃i)(ȳk

i − ỹi)− (x̄k
i − x̃i){(θk)pap

i x̄
k
i

+θk(ci + ck
i ) +

1
2
θk[(M − I + (θk)pAp)(b + bk)]i}

≤ (θk)qaq
i − x̄k

i ỹi − x̃iȳ
k
i − (x̄k

i − x̃i){(θk)pap
i x̄

k
i

+θk(ci + ck
i ) +

1
2
θk[(M − I + (θk)pAp)(b + bk)]i}

≤ (θk)qeT aq − min
1≤i≤n

ρk
i ,(5.5)

where,

ρk
i = x̄k

i ỹi + x̃iȳ
k
i + (x̄k

i − x̃i){(θk)pap
i x̄

k
i + θk(ci + ck

i )

+
1
2
θk[(M − I + (θk)pAp)(b + bk)]i}.

Therefore, by (3.8), (5.5) and the definition of the P∗ matrix, we have

x̃T ȳk + ỹT x̄k = −(x̄k − x̃)T (ȳk − ỹ) + (x̄k)T ȳk

= −(x̄k − x̃)T [Mx̄k + d + (θk)pApx̄k + θk(c + ck)

+
1
2
θk(M − I + (θk)pAp)(b + bk)− ỹ] + (θk)qeT aq

= −(x̄k − x̃)T (Mx̄k + d− ỹ)− (x̄k − x̃)T [(θk)pApx̄k + θk(c + ck)

+
1
2
θk(M − I + (θk)pAp)(b + bk)] + (θk)qeT aq

= −(x̄k − x̃)T M(x̄k − x̃)− (x̄k − x̃)T [(θk)pApx̄k + θk(c + ck)

+
1
2
θk(M − I + (θk)pAp)(b + bk)] + (θk)qeT aq

≤ τ
∑

i∈I+

(x̄k
i − x̃i)[M(x̄k − x̃)]i − (x̄k − x̃)T [(θk)pApx̄k

+θk(c + ck) +
1
2
θk(M − I + (θk)pAp)(b + bk)] + (θk)qeT aq

≤ τn

(
(θk)qeT aq − min

1≤i≤n
ρk

i

)
− (x̄k − x̃)T [(θk)pApx̄k

+θk(c + ck) +
1
2
θk(M − I + (θk)pAp)(b + bk)] + (θk)qeT aq

= (θk)q(1 + τn)eT aq − τn

(
min

1≤i≤n
ρk

i

)
− (x̄k − x̃)T [(θk)pApx̄k

+θk(c + ck) +
1
2
θk(M − I + (θk)pAp)(b + bk)].

The proof is complete.
The following result shows that under a suitable choice of parameters our algo-

rithm can locate a solution of the P∗ LCP as long as a solution exists.
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Theorem 5.1 Let M be a P∗-matrix. Assume that the solution set of the P∗
LCP is nonempty. If one of the following holds,

(i) p ≤ 1,

(ii) p > 1, c > 1
2‖(M − I)b‖e, and 0 < β < min1≤i≤n

ci−(1/2)‖(M−I)b‖
1+‖M−I‖/2 ,

then the sequence {(xk, yk, θk)}, generated by Algorithm 2.1, is bounded, and

lim
k→∞

θk → 0, lim
k→∞

‖Gθk(xk, yk)‖ = 0.

Therefore, any accumulation point of (xk, yk) is a solution to the LCP.
Proof. We focus on the proof of the boundedness of {(xk, yk)}. Let (x∗, y∗) be

an arbitrary solution to the LCP. Set (x̃, ỹ) = (x∗, y∗) in Lemma 5.1. Since for this
case ȳk

i x∗i + x̄k
i y∗i ≥ 0, we have that

ρk
i ≥ ηk

i := (x̄k
i − x∗i )

{
(θk)pap

i x̄
k
i + θk(ci + ck

i ) +
1
2
θk[(M − I + (θk)pAp)(b + bk)]i

}
.

This, together with (5.4), implies that

(x∗)T ȳk + (y∗)T x̄k ≤ (θk)q(1 + τn)eT aq − τn

(
min

1≤i≤n
ηk

i

)
− (x̄k − x∗)T {(θk)pApx̄k

+θk(c + ck) +
1
2
θk(M − I + (θk)pAp)(b + bk)}.(5.6)

Dividing both sides of the above by (θk)p and noting that the left-hand side is non-
negative, we have

(x̄k − x∗)T Apx̄k + τn

(
min

1≤i≤n

ηk
i

(θk)p

)

+(θk)1−p(x̄k − x∗)T

[
c + ck +

1
2
(M − I + (θk)pAp)(b + bk)

]

≤ (θk)q−p(1 + τn)eT aq.(5.7)

If p ≤ 1, the right-hand side of the above inequality is bounded since q ≥ 1 and
θk < 1. This implies that the sequence {x̄k} is bounded (otherwise the left-hand side
is unbounded from above), and thus {xk} is bounded. So is {yk} by (3.6). The
boundedness of {(xk, yk)} under (i) is proved.

We now prove the boundedness of (xk, yk) in the case (ii). Consider two subcases.
Subcase 1: θk 6→ 0. In this case, there exists a constant θ̂ > 0 such that 1 > θk ≥ θ̂.

It is easy to see from (5.7) that the sequence {x̄k} is bounded, and thus (xk, yk) is
bounded.

Subcase 2: θk → 0. In this case, by the choice of p, β and c, it is easy to see that

ci + ck
i +

1
2
[(M − I)(b + bk)]i > ci − β − 1

2
‖(M − I)(b + bk)‖

≥ ci − β − 1
2
‖(M − I)b‖ − 1

2
‖(M − I)bk‖

≥ ci − 1
2
‖(M − I)b‖ − β

(
1 +

1
2
‖M − I‖

)

> 0.(5.8)
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Since θk → 0, for all sufficiently large k it follows that

ci + ck
i +

1
2
[(M − I + (θk)pAp)(b + bk)]i > 0.

Thus, for all sufficiently large k we have

ηk
i

θk
≥ −x∗i

{
(θk)p−1ap

i x̄
k
i + ci + ck

i +
1
2
[(M − I + (θk)pAp)(b + bk)]i

}

≥ −(θk)p−1(x∗)T Apx̄k

− max
1≤i≤n

x∗i

{
ci + ck

i +
1
2
[(M − I + (θk)pAp)(b + bk)]i

}
.(5.9)

Since the left-hand side of (5.6) is nonnegative, dividing both sides of (5.6) by θk and
using (5.9), we have

0 ≤ (θk)q−1(1 + τn)eT aq − τn

(
min

1≤i≤n

ηk
i

θk

)
+ (θk)p−1(x∗)T Apx̄k

−(x̄k − x∗)T (c + ck)− 1
2
(x̄k − x∗)T (M − I + (θk)pAp)(b + bk)

≤ (θk)q−1(1 + τn)eT aq + τn max
1≤i≤n

x∗i

{
ci + ck

i +
1
2
[(M − I + (θk)pAp)(b + bk)]i

}

+(θk)p−1(1 + τn)(x∗)T Apx̄k − (x̄k − x∗)T (c + ck)

−1
2
(x̄k − x∗)T (M − I + (θk)pAp)(b + bk).

It follows that

(x̄k)T

[
c + ck − (θk)p−1(1 + τn)Apx∗ +

1
2
(M − I + (θk)pAp)(b + bk)

]

≤ (θk)q−1(1 + τn)eT aq + τn max
1≤i≤n

x∗i
{

ci + ck
i +

1
2
[(M − I

+(θk)pAp)(b + bk)]i
}

+ (x∗)T

[
c + ck +

1
2
(M − I + (θk)pAp)(b + bk)

]
.(5.10)

Since p > 1 and θk → 0, by a proof similar to (5.8), for all sufficiently large k we have

c + ck − (θk)p−1(1 + τn)Apx∗ +
1
2
(M − I + (θk)pAp)(b + bk)

≥ 1
2

{
c− 1

2
‖(M − I)b‖e− β

(
1 +

1
2
‖M − I‖

)
e

}

> 0.

Since the right-hand side of (5.10) is bounded and x̄k > 0, from the above inequality
and (5.10) it follows that {x̄k} is bounded, and hence (xk, yk) is bounded.

Based on the boundedness of {(xk, yk)}, repeating the proof of Theorem 3.2 we
can prove that θk → 0.

Remark 5.1. It is worth mentioning the difference between (i) and (ii) of the above
theorem. In the case (i), there is no restriction on the parameter β > 0. Thus, β can
be assigned a large number so that the neighborhood is wide enough to ensure a large
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steplength at each iteration. For the case (ii), however, the parameter β is required
to be relatively small. To satisfy this requirement, the initial point of Algorithm 2.1
can be also obtained easily. For example, set x0 = 0, a ∈ Rn

++, θ0 ∈ (0, 1), and choose
y0 ∈ Rn

++ to be large enough such that c > 1
2‖(M − I)b‖e where

b =
x0 + y0 −

√
(x0 − y0)2 + 4(θ0)qaq

θ0
=

4(θ0)qaq

y0 +
√

(y0)2 + 4(θ0)qaq
,

c =
y0 − (f(x0) + (θ0)pApx0)

θ0
=

y0 − f(0)
θ0

.

The above choice implies that ‖Gθ0(x0, y0)‖ = 0. Thus, (x0, y0) ∈ N (β, θ0) for any
β > 0. In particular, β can be taken such that

0 < β < min
1≤i≤n

ci − (1/2)‖(M − I)b‖
1 + ‖M − I‖/2

.

In the rest of this section, we characterize the accumulation point of the sequence
{(xk, yk)}. We first recall some concepts. Let S denote the solution set of the LCP.
An element x∗ of S is said to be the N -norm least solution, where N is a positive,
definite, symmetric matrix, if ‖N1/2x∗‖ ≤ ‖N1/2u‖ for all u ∈ S. In particular, if
N = I, the solution x∗ is called the least 2-norm solution of S. An element x∗ of S is
said to be the least element of S if x∗ ≤ u for all u ∈ S (see, for example, [30, 13]).
The solution x∗ is called a maximally complementary solution if x∗i > 0 for all i ∈ I,
(Mx∗+ d)i > 0 for all i ∈ J and x∗i = (Mx∗+ d)i = 0 for all i ∈ K. Clearly, a strictly
complementary solution is a maximally complementary solution with K = ∅.

Theorem 5.2. Let M be a P∗ matrix. Assume that the solution set of the LCP
is nonempty.

(i) If p < 1, then every accumulation point (x̂, ŷ) of the sequence (xk, yk) satisfies
the following property: For any solution x∗, there exists a corresponding index i0 such
that

(x̂)T Ap(x̂− x∗) + τnap
i0

x̂i0(x̂i0 − x∗i0) ≤ 0.(5.11)

Moreover, if the least element solution exists, then the entire sequence (xk, yk) is
convergent, and its accumulation point coincides with the least element solution.

(ii) If p > 1, c > 1
2‖(M − I)b‖e, 0 < β < lim1≤i≤n

ci−(1/2)‖(M−I)b‖
1+‖M−I‖/2 , and q = 1,

then each accumulation point is a maximally complementary solution of the LCP.
Proof. For p < 1, by the result (i) of Theorem 5.1, {xk} is bounded and θk → 0.

Let (x̂, ŷ) be an arbitrary accumulation point of {(xk, yk)}. Taking the limit in (5.7)
where x∗ is an arbitrary solution of the LCP, we see that there exists an index i0 such
that

(x̂)T Ap(x̂− x∗) + τnap
i0

x̂i0(x̂i0 − x∗i0) ≤ 0.

Moreover, if the least element solution exists, setting x∗ to be the least element, we
conclude from the above inequality that x̂ is equal to the least element. Since such
an element is unique, the sequence {xk} is convergent.

We now consider the case (ii). By result (ii) of Theorem 5.1, the sequence (xk, yk)
is bounded, θk → 0, and each accumulation point of (xk, yk) is a solution to the LCP.
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Let (x∗, y∗) be a maximally complementary solution and I, J,K be defined by (5.1)-
(5.3). Then we have

(x∗)T ȳk + (y∗)T x̄k = (x∗I)
T ȳk

I + (y∗J)T x̄k
J

= (x∗I)
T (X̄k

I )−1X̄k
I ȳk

I + (y∗J)T (Ȳ k
J )−1Ȳ k

J x̄k
J

= (θk)q
[
(x∗I)

T (X̄k
I )−1aq

I + (y∗J)T (Ȳ k
J )−1aq

J

]
.

By (5.6) and the above inequality, we have

(x∗I)
T (X̄k

I )−1aq
I + (y∗J)T (Ȳ k

J )−1aq
J

≤ (1 + τn)eT aq − τn

(
min

1≤i≤n

ηk
i

(θk)q

)
− (x̄k − x∗)T [(θk)p−qApx̄k

+(θk)1−q(c + ck) +
1
2
(θk)1−q(M − I + (θk)pAp)(b + bk)].

Let (x̂, ŷ) be an arbitrary accumulation point of the iterates. Since θk → 0 and
p > 1 = q, we can see that ηk

i /(θk)q is bounded. The right-hand side of the above
inequality is bounded. Since (x∗I , y

∗
J) > 0, we conclude that x̄k

I → x̂I > 0; otherwise,
if x̂i = 0 for some i ∈ I, then x∗i /x̄i → ∞, and hence the left-hand side tends to
infinity, contradicting the boundedness of the right-hand side. By a similar way, we
have that ŷI > 0. Thus, (x̂, ŷ) is a maximally complementary solution.

Since every positive semi-definite matrix is a P∗-matrix with τ = 0, the result
(i) above can be further improved for monotone LCPs. In fact, from Theorem 2.3,
the following result is natural since the algorithm follows the regularized central path
approximately.

Theorem 5.3. Let M be a positive semi-definite matrix. Assume that the solution
set of the LCP is nonempty. For p < 1, the entire sequence (xk, yk), generated by
Algorithm 2.1, converges to (x̂, ŷ) where x̂ is the least N -norm solution with N = Ap/2.
In particular, if a = e is taken, the sequence converges to the (unique) least 2-norm
solution.

Proof. For the case of p < 1, setting τ = 0 in (5.11) we have

(x̂)T Ap(x̂− x∗) ≤ 0,

which implies that ‖Ap/2x̂‖ ≤ ‖Ap/2x∗‖. Since x∗ is an arbitrary solution, it follows
that the solution x̂ is the least N -norm solution where N = Ap/2. It is also easy to see
from the above inequality that the solution x̂ is unique, and thus the entire sequence
is convergent.

Remark 5.2. For P∗ LCPs, the boundedness assumption of the solution set (or the
strict feasibility condition) is not required for the global convergence of our algorithm.
Further, all results in this section can be easily extended to nonlinear P∗ complemen-
tarity problems. We notice that Ye’s homogeneous model [41] for monotone LCPs,
which was later generalized to nonlinear monotone complementarity problems by An-
dersen and Ye [2], also does not require the boundedness of the solution set (or the
strict feasibility) of the original problem. However, it is unknown whether the Ye’s
algorithm can be generalized to the nonlinear P∗ problems.

6. Numerical examples. Algorithm 2.1 were tested on some LCPs, nonlinear
complementarity problems (NCPs), and nonlinear programming problems (NLPs)
which can be written as complementarity problems by KKT optimality conditions. For
all test examples, common parameters and initial points were used in our algorithm.
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From the analysis of section 4 and our experiments, the value of parameters p and q
should be relatively large for the sake of rapid convergence. The constant σ should
be taken relatively small such that a possible large steplength λk can be taken. The
vector (a, b, c) ∈ Rn

++ × R2n and the initial point (x0, y0) ∈ R2n can be chosen
freely. In general cases, the value of β should be taken relatively large to ensure that
the neighborhood is wide enough to permit a large iterative steplength. Thus, the
parameters used in our code were set as p = 2, q = 3, σ = 0.001 and α = 0.9. The
vectors a, b, c were set as a = b = c = e. The initial values of (x0, y0, θ0) were set as
θ0 = 0.9 and x0 = y0 = e. The parameter β was given by

β =
‖Gθ0(x0, y0)− θ0(b, c)‖

θ0
+ 100.

Since G0(x∗, y∗) = 0 if and only if (x∗, y∗) is a solution to the complementarity
problem, we use ‖G0(xk, yk)‖ < ε as the stopping criterion, where ε > 0 is a given
tolerance. In our experiments, ε = 10−14 was taken for all numerical examples.
All results were undertaken on a DEC Alpha V4.0 workstation by Fortran 90, and
all the arithmetic operations were performed in double precision for precaution of
round-off errors. We recorded the following aspects to examine the effectiveness of
the algorithm: The dimension of problems, the total number of iterations, the total
number of functions called, the CPU time used, the final value of θk, and the residual,
i.e, the final value of ‖G0(xk, yk)‖. All CPU times reported here include time for input
and output. We now introduce test examples and give out the numerical results for
them.

Linear complementarity problems:
LCP1. This is the Watson’s first problem [37].
LCP2. This is the Watson’s second problem [37].
LCP3. The matrix M1 is a P∗-matrix given in (6.1), and d = −e. The solution

set is unbounded. There is no strictly feasible point for this LCP. The central path
does not exist for this problem. However, Algorithm 2.1 deals with this problem very
efficiently.

LCP4. This is a P0 LCP given by Chen and Ye [12]. The matrix M2 is given in
(6.1), and d = (0, 0, 1). The solution set is unbounded.

LCP5. This is a P0 LCP with the matrix M3 given in (6.1), and d = (0, 0, 1).
This problem has no strictly feasible point, and its solution set is unbounded.

M1 =




0 0 2 1
0 0 1 2
−2 −1 0 0
4 8 0 0


 , M2 =

(
0 1 0
0 0 1
0 −1 1

)
, M3 =

(
0 1 0
0 0 −2
0 2 1

)
.(6.1)

LCP6. This example was given by Fathi [15]. The matrix M4 is given in (6.2)
and the vector d = −e.

LCP7. This example was given by Ahn [1]. The vector d = −e, and the matrix
M5 is given in (6.2),

M4 =




1 2 2 ... 2
2 5 6 ... 6
2 6 9 ... 10
...

...
...

. . .
...

2 6 9 ... 4n− 3




, M5 =




4 −2 0 ... 0
1 4 −2 ... 0
0 1 4 ... 0
...

...
...

. . .
...

0 0 0 ... 4




.(6.2)
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Table 6.1
LCPs, ε=1e−14.

Problems Dim.
No. of
Iter.

No. of
fun. θk Residual

CPU
(sec.)

LCP1 10 8 9 1.4e−06 2.4e−15 0.00
LCP2 5 9 10 1.9e−12 1.6e−15 0.00
LCP3 4 8 9 1.4e−06 2.1e−16 0.00
LCP4 3 8 9 1.4e−06 5.5e−17 0.00
LCP5 3 8 9 1.4e−06 7.8e−17 0.00
LCP6 300 12 19 1.9e−16 9.9e−16 6.53
LCP6 500 12 19 1.9e−16 8.3e−16 42.75
LCP7 300 8 9 1.4e−06 2.3e−15 4.41
LCP7 500 8 9 1.4e−06 3.0e−15 29.16
LCP8 300 8 9 1.4e−06 2.7e−15 4.54
LCP8 500 8 9 1.4e−06 3.6e−15 28.52
LCP9 300 10 13 1.9e−16 0.0 5.66
LCP9 500 10 13 1.9e−16 0.0 40.12
LCP10 300 10 13 3.3e−13 5.6e−15 5.50
LCP10 500 11 16 2.2e−16 8.1e−15 40.57
LCP11 300 9 10 1.9e−12 4.4e−18 6.08
LCP11 500 9 10 1.9e−12 3.7e−18 35.83
LCP12 300 9 10 2.1e−12 2.4e−16 5.61
LCP12 500 9 10 2.0e−12 5.5e−16 34.08
LCP13 300 10 13 1.9e−16 1.4e−17 6.38
LCP13 500 10 13 1.8e−16 1.3e−17 39.50

LCP8. This example was used by Geiger and Kanzow [16], where d = −e and
the matrix M7 is given as in (6.3).

LCP9. This LCP was given in [29]. The matrix M8 is given in (6.3) and d = −e.

M7 =




4 −1 0 0 0 ... 0
−1 4 −1 0 0 ... 0
0 −1 4 −1 0 ... 0
...

....
....

....
....

....
...

0 ... ... ... 0 −1 4




, M8 =




1 2 2 ... 2
0 1 2 ... 2
0 0 1 ... 2
...

...
...

. . .
...

0 0 0 ... 1




.(6.3)

LCP10. This example can be found in [16], where M = diag(1/n, 2/n, ..., 1)
and d = −e.

LCP11. The matrix is obtained from M5 by replacing the first diagonal entry by
−4, and the vector d = (0, 1, ..., 1). This LCP has no strictly feasible point.

LCP12. The matrix is obtained from M7 by replacing the first diagonal entry by
−4, and the vector d = (0, 0, 1, ..., 1). This LCP has no strictly feasible point.

LCP13. The matrix is obtained from M8 by replacing the last diagonal entry by
−1, and the vector d = (−1, ...,−1, 0). This LCP has no strictly feasible point.

Nonlinear complementarity problems:
NCP1. (Kojima-Shindo [31]) This is an NCP which is difficult to solve by the

conventional Newton-type methods.
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NCP2. (Watson’s Fourth Problem [37]) This is an NCP representing the KKT
conditions for a convex programming problem.

NCP3. (Mathiesen’s Walrasian Equilibrium Model [31]) This is a 4-variable
equilibrium problem depending on three parameters (α, b2, b3). We use two sets of
constants: (α, b2, b3) = (0.75, 1, 0.5) and (0.75, 1, 2). In Table 6.2, NCP3a and NCP3b
denote, respectively, the problems corresponding to the above two cases.

NCP4. (Invariant Capital Stock Model [31]) This is an NCP (see [31]) formulated
from an invariant capital stock model described by Hansen and Koopmans.

NCP5. (Nash-Cournot Production Problem [18]) We solve this NCP problem
with γ = 1.1 and the data αi, Li, βi can be found in [18]. The 5 and 10-variable
problems were solved in our experiments. We use NCP5a and NCP5b in Table 6.2 to
denote the 5 and 10-variable problems, respectively.

For NCPs, the number of evaluations of the Jacobian ∇f(x) should be recorded.
However, by the construction of the algorithm, the total number of evaluations of the
Jacobian ∇f(x) equals to the total number of iterations, and hence it is omitted here.

Table 6.2
NCPs, ε =1e−14.

Problems Dim.
No. of
Iter.

No. of
fun. θk Residual

CPU
(sec.)

NCP1 4 9 12 3.2e−09 1.3e−15 0.00
NCP2 5 16 35 4.0e−15 3.8e−16 0.00
NCP3a 4 8 9 1.4e−06 2.7e−16 0.00
NCP3b 4 8 9 1.4e−06 1.3e−16 0.00
NCP4 14 9 10 1.9e−12 5.6e−16 0.00
NCP5a 5 8 9 1.3e−06 6.9e−15 0.00
NCP5b 10 14 33 1.0e−17 9.7e−15 0.00

Nonlinear programming problems: We also test the algorithm for some nonlinear
programming problems (NLPs). These examples can be found in Hock and Schit-
tkowski [19]. We solve these examples via the KKT conditions for these problems
which can be formulated as complementarity problems.

The computational results for LCPs are summarized in Table 6.1, for NCPs are
reported in Table 6.2, and for NLPs are summarized in Table 6.3 in which the ‘Dim’
stands for the dimension of the corresponding complementarity problems. From the
experiments, we found that the algorithm can solve all these examples effectively. It
should be pointed out that the NCP1 is difficult to solve by conventional Newton-type
methods, and as pointed out in [37] none of the standard algebraic techniques can
solve the LCP2 easily. However, the proposed algorithm deals with the two problems
very easily, and a quick convergence is observed. We also note that the value of β has
a close relation to the convergence speed of the algorithm. The convergence speed will
be slow if β is too small. In fact, a big value of β enables a large iterative steplength
to be taken such that a rapid convergence can be achieved. This is indeed shown from
our experiments.

7. Final remarks. A new non-interior-point algorithm is presented for P0 LCPs.
The global convergence of the algorithm is proved under a new condition which is dif-
ferent from previously used ones in the literature. A good feature of this condition is
that it does not imply the boundedness of the solution set of the problem. Especially,
for P∗ LCPs, the algorithm is globally convergent provided that a solution exists. The
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Table 6.3
NLPs, ε =1e−14.

Problems Dim.
No. of
Iter.

No. of
fun. θk Residual

CPU
(sec.)

HS18 7 17 76 5.2e−11 6.5e−16 0.00
HS24 4 7 8 1.5e−06 2.3e−16 0.00
HS33 6 12 19 2.1e−10 9.6e−16 0.00
HS34 8 10 33 7.3e−11 1.8e−15 0.00
HS35 4 8 9 1.3e−06 1.5e−15 0.00
HS36 7 14 90 1.0e−13 8.9e−16 0.00
HS44 10 8 9 1.4e−06 1.5e−15 0.00
HS63 7 9 82 8.1e−08 6.1e−15 0.00
HS66 8 14 56 3.8e−10 1.0e−15 0.00

superlinear convergence of the algorithm is also proved under a standard nondegen-
eracy assumption and a suitable choice of some parameters. The effectiveness of the
algorithm was verified by our numerical experiments.

The essence of our algorithm is to follow a newly introduced regularized central
path whose existence and theoretical properties were proved in [43]. Although the
discussion in this paper was limited to LCPs, all the analysis of this paper can be
extended to nonlinear P0 complementarity problems as long as the function f is
assumed to be continuously differentiable and Lipschitzian.

8. Acknowledgments. The authors would like to thank anonymous referees for
their helpful comments and suggestions that helped improve the paper.
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