Alexandra Tzella's web page

home

research

publications

teaching

contact



Peer-reviewed

  1. A. Tzella and P. H. Haynes, Small-scale Spatial Structure in Plankton Distributions, Biogeosciences, 4, 173-179, 2007 (PDF,link).
  2. A. Tzella and P. H. Haynes, The role of a delay time on the spatial structure of chaotically advected reactive scalars, Physics of Fluids, 21, 087101, 2009 (arXiv,doi).
  3. A. Tzella and P. H. Haynes, Smooth and filamental structures in chaotically advected chemical fields, Physical Review E, 81, 016322, 2010 (PDF,doi,PRE Kaleidoscope). In Eq. (1) "min" should replace "max".
  4. A. Alexakis and A. Tzella, Bounding the scalar dissipation scale for mixing flows in the presence of sources, Journal of Fluid Mechanics, 688, 443-460, 2011 (arxiv,doi).
  5. A. Tzella and B. Legras, A Lagrangian view of convective sources for transport of air across the Tropical Tropopause Layer: distribution, times and the radiative influence of clouds, Atmospheric Chemistry and Physics, 11, 12517-12534, 2011 (pdf,link).
  6. P. Gentine, A. K. Betts, B. R. Lintner, K. L. Findell, C. C. van Heerwaarden, A. Tzella and F. Andrea, A Probabilistic Bulk Model of Coupled Mixed Layer and Convection. Part I: Clear-Sky Case, J. Atmos. Sci. ,70, 1543-1556, 2013 (doi).
  7. A. Tzella and J. Vanneste, Front propagation in cellular flows for fast reaction and small diffusivity, Phys. Rev. E, 90, 011001(R), 2014 (arXiv,doi).
  8. A. Tzella and J. Vanneste, FKPP fronts in cellular flows: the large-Péclet regime, SIAM J. Appl. Math. , 75(4), 1789-1816, 2015 (arXiv,doi).
  9. A. Tzella and J. Vanneste, Dispersion in rectangular networks: effective diffusivity and large-deviation rate function, Phys. Rev. Lett., 117, 114501, 2016 (arXiv,doi). Featured as a Physics Buzz news item.
  10. A. Tzella and J. Vanneste, Chemical front propagation in periodic flows: FKPP vs G, SIAM J. Appl. Math., 79 , 131-152 (arXiv, doi).

Submitted

  1. Alex D. O. Tisbury, David J. Needham and Alexandra Tzella, The Evolution of Travelling Waves in a KPP Reaction-Diffusion Model with cut-off Reaction Rate. I. Permanent Form Travelling Waves (arXiv).

In preparation

  1. Alex D. O. Tisbury, David J. Needham and Alexandra Tzella, The Evolution of Travelling Waves in a KPP Reaction-Diffusion Model with cut-off Reaction Rate. II.
  2. Yahya Farah and Alexandra Tzella, Dispersion in Regular Networks: Effective Diffusivity and Large-Deviation Rate Function
  3. Yahya Farah, Daniel Loghin, Alexandra Tzella and Jacques Vanneste, Dispersion in Porous Media: the Large deviation Regime