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Abstract. Given a matrix A with integer entries, a subset S of an abelian group and r ∈ N, we
say that S is (A, r)-Rado if any r-colouring of S yields a monochromatic solution to the system
of equations Ax = 0. A classical result of Rado characterises all those matrices A such that N is
(A, r)-Rado for all r ∈ N. Rödl and Ruciński [Proceedings of the London Mathematical Society,
1997] and Friedgut, Rödl and Schacht [Random Structures & Algorithms, 2010] proved a random
version of Rado’s theorem where one considers a random subset of [n] := {1, . . . , n} instead of N.

In this paper, we investigate the analogous random Ramsey problem in the more general setting
of abelian groups. Given a sequence (Sn)n∈N of finite subsets of abelian groups, let Sn,p be a random
subset of Sn obtained by including each element of Sn independently with probability p. We are
interested in determining the probability threshold p̂ := p̂(n) such that

lim
n→∞

P[Sn,p is (A, r)-Rado] =

{
0 if p = o(p̂);

1 if p = ω(p̂).

Our main result, which we coin the random Rado lemma, is a general black box to tackle
problems of this type. Using this tool in conjunction with a series of supersaturation results, we
determine the probability threshold for a number of different cases. A consequence of the Green–Tao
theorem [Annals of Mathematics, 2008] is the van der Waerden theorem for the primes: every finite
colouring of the primes contains arbitrarily long monochromatic arithmetic progressions. Using our
machinery, we obtain a random version of this result. We also prove a novel supersaturation result
for Sn := [n]d and use it to prove an integer lattice generalisation of the random version of Rado’s
theorem. Various threshold results for abelian groups are also given.

Furthermore, we prove a 1-statement (the p = ω(p̂) regime) and a 0-statement (the p = o(p̂)
regime) for hypergraphs that imply several of the previously known 1- and 0-statements in various
settings, as well as our random Rado lemma.

1. Introduction

Ramsey theory concerns the study of partitions of mathematical objects, and in particular, what
structures one can guarantee in such partitions. For example, Ramsey’s original theorem asserts
that, given any r, t ∈ N, if n ∈ N is sufficiently large then however one partitions the edge set of the
complete graph Kn into r colour classes, at least one of these colour classes must contain a copy
of Kt. Analogous Ramsey-type behaviour is also exhibited in arithmetic settings and Ramsey-type
results for the integers have been studied since the end of the 19th Century, with early progress
due to Hilbert [34] (1892), Schur [56] (1916) and van der Waerden [61] (1927). In 1933, Rado [45]
characterised all those homogeneous systems of linear equations L for which every finite colouring
of N yields a monochromatic solution to L. In 1975, Deuber [19] resolved the analogous problem
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where now one works in the setting of abelian groups rather than N. See, e.g., [7, 12, 52, 57, 59]
for further Ramsey-type results for groups and other arithmetic structures.

Similarly, it is natural to investigate how many copies of a given structure one can guarantee
within a partition of a mathematical object. This is the topic of a branch of Ramsey theory known
as Ramsey multiplicity, in which researchers initially focused on graphs. For example, a seminal
result of Goodman [27] from 1959 determines the minimum number of monochromatic triangles in a
2-edge-colouring of the complete graph Kn; see, e.g., the survey [10] for further results on the topic.
More recently, there has been interest in studying Ramsey multiplicity in arithmetic structures, such
as the integers (see, e.g., [17, 18, 28, 46, 55]) and abelian groups. In particular, after earlier work
of Cameron, Cilleruelo and Serra [12], a 2017 paper of Saad and Wolf [52] initiated the systematic
study of Ramsey multiplicity for systems of linear equations in abelian groups. A number of
subsequent papers have made significant progress on the topic (see, e.g., [2, 20, 21, 37, 51, 63]).

In this paper, we consider yet another Ramsey-type question, this time concerning the typical
Ramsey properties of mathematical objects. Broadly speaking, once it is established that any finite
partition of a set S yields a copy of a given structure, we are interested in whether we typically
expect to witness the same Ramsey-type behaviour in subsets of S of a given size. As we will see
in the following sections, this problem is formalised by considering a random subset within S, and
so we shall refer to it as the random Ramsey problem. This direction of research is part of the
wider study of transferring (combinatorial) theorems into the random setting; see, e.g., the ICM
survey of Conlon [14]. In particular, the random Ramsey problem for graphs and the integers has
been well-studied, through the random Ramsey theorem [47, 48, 49] (see Theorem 4.1) and the
random Rado theorem [26, 50] (see Theorems 4.2 and 4.3), respectively. The statements of both
theorems, and of random Ramsey-type results in general, break down into two parts: the so-called
1-statement, asserting that random subsets of size above a certain threshold exhibit a Ramsey-type
behaviour with high probability, and the 0-statement, asserting that random subsets of size below
the threshold do not exhibit a Ramsey-type behaviour with high probability.

The main goal of this paper is to construct a general framework to study the random Ramsey
problem for abelian groups. Our main result, which we call the random Rado lemma (Lemma 6.8),
provides a machine that, on input of a homogeneous system of linear equations L, a sequence of ‘well-
behaved’ subsets Sn of abelian groups and a Ramsey-type supersaturation result1 for the number
of monochromatic solutions of L in Sn, outputs an appropriate 1-statement and 0-statement. In
order to rigorously state the random Rado lemma, we need to introduce various terminology as
well as recall some fundamental algebraic concepts. As such, we defer the statement of Lemma 6.8
to Section 6. We give several highlight applications of the random Rado lemma. For example, we
prove a random version of the van der Waerden theorem for the primes (Theorem 2.7) as well as
a random Rado theorem for integer lattices (Theorem 5.1).2

Building towards the aforementioned theory for (subsets of) abelian groups, we also survey the
random Ramsey problem for graphs and the integers. As explained in more detail in Sections 4–7,
there is a well-known heuristic for what the threshold in the 1- and 0-statements of a random
Ramsey-type result should be. Indeed, this intuition turns out to be correct in the setting of
graphs and the integers as well as for the various new results we prove. Therefore, it would be
highly desirable to obtain a unifying theory which implies all previously known random Ramsey-
type results. In this direction, we prove a general 1-statement and a general 0-statement for
hypergraphs (Theorem 7.7) which imply several of the previously known 1- and 0-statements for
discrete structures. Furthermore, the random Rado lemma arises as a direct corollary of this

1A Ramsey-type supersaturation result states that in any r-colouring of a given mathematical object, a linear
proportion of a certain class of substructures is monochromatic.

2In fact, we deduce Theorem 5.1 from a simplified version of the random Rado lemma (Lemma 6.33).
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hypergraph result. The proof of Theorem 7.7 makes use of the hypergraph container method as well
as a recent argument of the second and third authors [33].

The general 1-
and 0-statement
for hypergraphs
(Theorem 7.7)

The random Rado
lemma (Lemma 6.8)

The 1-statement
of the random

Ramsey theorem
(Theorem 4.1)

Random van der
Waerden theorem
for the primes
(Theorem 2.7)

Simplified random
Rado lemma
(Lemma 6.33)

Random Rado
theorem for

integer lattices
(Theorem 5.1)

Random Rado
theorem (Theo-
rems 4.2 and 4.3)

A random Ramsey
theorem for certain

abelian groups
(Theorem 5.3)

Random Ramsey
theorems for vector

spaces (Theo-
rems 5.4 and 5.5)

+ supersaturation for graphs

+ supersaturation Theorem 3.6

+ supersaturation
Theorem 3.7

+ supersaturation
Theorem 3.9

+ supersaturation
Theorem 3.8

Key: red = known results
blue = new results

Figure 1. A visualisation of the main new (blue) and previously known (red) results
covered in this paper.

1.1. Organisation of the paper. One of the most significant applications of our theory is to
arithmetic progressions in the primes; we present our main contribution to this topic (Theorem 2.7)
in Section 2. Sections 3 and 4 serve as a gentle introduction to some of the key results in the area.
Namely, in Section 3 we briefly cover some of the classical themes in Ramsey theory, specifically
partition regularity and supersaturation; in Section 4 we discuss the random Ramsey problem
for graphs and the integers. In Section 5, we highlight the power of the random Rado lemma
by presenting various novel results which we obtain from this black box. In Sections 6 and 7,
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we formally state the random Rado lemma and our general 1- and 0-statements for hypergraphs,
respectively. Note that Figure 1 illustrates how these black box results are connected, and some of
their implications.

The rest of the paper is devoted to the technical proofs of our results. In Section 8, we prove the
1- and 0-statements for hypergraphs and in Section 9 we explain how to deduce the random Rado
lemma from them. In Section 11, we give the proofs of all the applications of the random Rado
lemma that appear in Sections 2 and 5. For these proofs, we apply a couple of new results that may
be of independent interest: (i) a Ramsey-type supersaturation result for [n]d (Theorem 3.9) and
(ii) an upper bound on the number of k-term arithmetic progressions in the primes that contain a
given prime number (Lemma 2.3). The former generalises a well-known supersaturation result of
Frankl, Graham and Rödl [22]. We prove these two results in Section 10.

In Section 12, we explain how, with the random Rado lemma at hand, one can attack further
related problems. Indeed, we state further consequences of the method as well as discuss potential
future research directions.

2. Arithmetic progressions in the primes

In this section, we highlight an application of the random Rado lemma to arithmetic progressions
in the primes. We defer stating our other applications of the random Rado lemma until Section 5
as they require the introduction of a little more notation and a few definitions.

2.1. The Green–Tao theorem. One of the most celebrated results of the 21st Century is the
following theorem of Green and Tao [30]. Here we write P for the set of prime numbers and, given
n ∈ N, we write Pn for the set of all prime numbers less than or equal to n. Recall the prime
number theorem asserts that |Pn| ∼ n/ log n, where throughout this paper we write log for the
natural logarithm. We abbreviate k-term arithmetic progressions by k-APs.

Theorem 2.1 (Green and Tao [30]). Let k ≥ 2. The set of primes P contains arithmetic progres-
sions of arbitrary length. Moreover, given any subset S ⊆ Pn of size |S| = Ω(|Pn|), the number of

k-APs in S is Θ(n2/ logk n).3

The Green–Tao theorem therefore tells us that any linear size subset of Pn is rich in arithmetic
progressions, for any large n ∈ N. It is natural to ask about sparser subsets of Pn: given some
p = p(n), does a typical subset S of Pn of size approximately p|Pn| contain k-APs? Let Pn,p denote
the subset of Pn obtained by retaining each element of Pn with probability p, independently of all
other elements.

Theorem 2.2 (Random Green–Tao theorem). Let k ≥ 3.

lim
n→∞

P[Pn,p contains a k-AP] =

{
0 if p = o(n−2/k log n);

1 if p = ω(n−2/k log n).

Theorem 2.2 tells us that typical subsets of Pn of size significantly above |Pn|n−2/k log n ∼
n(k−2)/k contain k-APs; conversely, typical subsets of Pn of size significantly smaller than n(k−2)/k

do not. Note that, since Theorem 2.2 is not a Ramsey-type result, we do not use the random Rado
lemma to prove it. Instead, we make use of the following result.

Lemma 2.3. Let k ∈ N with k ≥ 2 and let ℓ ∈ [k]. For every prime q ∈ Pn, the number of k-APs

in Pn such that the ℓth term is equal to q is O(n/ logk−1 n).

3Note that the moreover part of Theorem 2.1 is implicit in [30]. An explicit proof of (a strengthening of) this part
of Theorem 2.1 can be found in, e.g., [16, Theorem 1.2].

4



We prove Lemma 2.3 in Section 10.1 via a sieve theory argument. With Lemma 2.3 and The-
orem 2.1 at hand, the proof of Theorem 2.2 is just a simple application of the second moment
method. For completeness, a full proof is given in Appendix A.2.

Given k ≥ 3 and δ > 0, we say a finite set X ⊆ N is (δ, k)-Szemerédi if every subset of X of size
at least δ|X| contains a k-AP. The following result tells us that not too sparse subsets of Pn are
typically (δ, k)-Szemerédi.

Theorem 2.4 (Balogh, Liu and Sharifzadeh [3]). For any δ, γ > 0 and k ≥ 3, if p ≥ n− 1
k−1

+γ then

lim
n→∞

P[Pn,p is (δ, k)-Szemerédi] = 1.

Note that the bound on p in Theorem 2.4 is significantly higher than the corresponding bound
in the 1-statement of Theorem 2.2. Further, Theorem 2.4 is tight up to the γ term. Indeed, it is

not hard to see that if p = o(n− 1
k−1 log n) then

lim
n→∞

P[Pn,p is (δ, k)-Szemerédi] = 0.

This follows as for such p (suitably bounded away from 0), the expected number of k-APs is much
less than the expected number of elements in Pn,p. Hence, with high probability, greedily deleting
a number from each k-AP produces a linear size subset of Pn,p containing no k-AP. In Section 12.2
we give a significant strengthening of Theorem 2.4; see Theorem 12.4.

2.2. Monochromatic arithmetic progressions in the primes. The following seminal result is
one of the first proven in Ramsey theory.

Theorem 2.5 (van der Waerden [61]). Any finite colouring of N yields a monochromatic arithmetic
progression of arbitrary length.

One beautiful consequence of the Green–Tao theorem is the following generalisation of van der
Waerden’s theorem.4

Theorem 2.6 (van der Waerden theorem for the primes [30]). Any finite colouring of P yields a
monochromatic arithmetic progression of arbitrary length.

Given k ≥ 3 and r ≥ 2, we say a subset X ⊆ N is (r, k)-van der Waerden if whenever X is
r-coloured there is a monochromatic k-AP. One of the main applications of our machinery is the
following random analogue of Theorem 2.6.

Theorem 2.7 (Random van der Waerden theorem for the primes). Let k ≥ 3 and r ≥ 2. There
are constants c, C > 0 such that

lim
n→∞

P[Pn,p is (r, k)-van der Waerden] =

{
0 if p ≤ cn− 1

k−1 log n;

1 if p ≥ Cn− 1
k−1 log n.

Theorem 2.7 tells us that typical subsets of Pn of size significantly above |Pn|n− 1
k−1 log n ∼ n

k−2
k−1

are (r, k)-van der Waerden whilst typical subsets of Pn of size significantly smaller than n
k−2
k−1 are

not.
Theorem 2.7 follows from the random Rado lemma combined with Theorem 2.1 and Lemma 2.3.

The proof is postponed to Section 11.

3. Partition regularity and supersaturation

In this section, we give a brief survey of Ramsey-type results for homogeneous systems of linear
equations. Partition regularity is covered in the first subsection while supersaturation, including a
new result for integer lattices, is covered in the second.

4In fact, the Green–Tao theorem implies a supersaturation version of Theorem 2.6, see Theorem 3.6.
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3.1. Partition regularity. An integer matrix A is called partition regular if every finite colouring
of N yields a monochromatic solution to Ax = 0. A classical result of Rado [45] characterises all
those matrices that are partition regular. In order to state Rado’s theorem, and other results in
this section, we require the following definition.

Definition 3.1 (The columns condition over R). Let R be a commutative ring and A be a matrix
with entries in R. We say A satisfies the columns condition over R if there exists a partition
C0, C1, ..., Cm of the columns of A such that the following holds. Let cj denote the jth column of
A and set

si :=
∑
cj∈Ci

cj

for every 0 ≤ i ≤ m. Then

• s0 = 0 and
• si can be written as a linear combination of the elements {cj : cj ∈ Ck, k < i} over R, for
every 1 ≤ i ≤ m.

Theorem 3.2 (Rado [45]). An integer matrix A is partition regular if and only if A satisfies the
columns condition over Q.

There have been several works investigating the analogous problem for other algebraic structures.
In general, given a ring R acting on an abelian group G, a subset X ⊆ G and r ∈ N, we say an
ℓ × k matrix A with entries in R is r-partition regular in X if every r-colouring of X yields a
monochromatic solution to Ax = 0, where 0 denotes the identity of Gℓ. Furthermore, A is partition
regular in X if it is r-partition regular in X for every r ∈ N. Bergelson, Deuber, Hindman and
Lefmann [7] gave some sufficient conditions for partition regularity in the case where G = R and
R is a commutative ring that acts on itself via ring multiplication. In a recent paper, Byszewski
and Krawczyk [11] proved several interesting extensions of Rado’s theorem for integral domains,
noetherian rings and modules.

In this paper, we are interested in monochromatic solutions within abelian groups. We mainly
focus on matrices with integer entries since there is an obvious action from Z to abelian groups:
given an arbitrary abelian group (G,+), for g ∈ G and n ∈ N we write ng to denote g + · · ·+ g. If
n is a negative integer, we write ng to denote the inverse of |n|g in G. For the rest of the paper, Z
will act on abelian groups as we just described.

Given any abelian group G, Deuber [19] provided a necessary and sufficient condition for an
integer matrix A to be partition regular in G \ {0}. For finite G though it is not interesting as it
simply states that A is partition regular in G \ {0} if and only if there exists x ∈ G \ {0} such that
A(x, . . . , x)T = 0, i.e., there is a trivial solution. Indeed, if the number of colours r is larger than
|G \ {0}| then colouring every element of G \ {0} differently prevents any monochromatic solution
other than trivial ones.

Therefore, in order to ensure a non-trivial monochromatic solution, one must insist that the size
of the finite arithmetic structure is large compared to the number of colours. In this direction,
Bergelson, Deuber and Hindman [6] proved the following analogue of Rado’s theorem for finite
vector spaces.

Theorem 3.3 (Bergelson, Deuber and Hindman [6]). Let F be a finite field and A be an ℓ × k
matrix with entries from F. The following statements are equivalent:

• for all r ∈ N, there exists n0 = n0(r, |F|, k) ∈ N such that for all n ≥ n0 every r-colouring
of Fn \ {0} yields a monochromatic solution to Ax = 0 in Fn \ {0};

• the matrix A is partition regular in FN \ {0};
• the matrix A satisfies the columns condition over F.
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Note that Rado’s theorem itself may be restated in a style similar to Theorem 3.3 by using the
following well-known fact.

Fact 3.4. For an integer matrix A, the following statements are equivalent:

(A) A is partition regular;
(B) for every r ∈ N, there exists n0 ∈ N such that for all n ≥ n0 every r-colouring of [n] :=

{1, 2, . . . , n} yields a monochromatic solution to Ax = 0 in [n]. □

Statement (B) trivially implies statement (A) while the converse can be proved using a standard
compactness argument.

3.2. Supersaturation. As mentioned in the introduction, the topic of Ramsey multiplicity con-
cerns how many copies of a given structure one can guarantee within a partition of a mathematical
object. We are interested in a particular class of results in this area which we refer to as supersat-
uration results. In the context of this paper, a supersaturation result essentially states that within
any finite colouring of an arithmetic structure, a linear proportion of the total number of solutions
of a system of linear equations are monochromatic. As a clarifying example, consider the following
theorem of Frankl, Graham and Rödl [22].

Theorem 3.5 (Frankl, Graham and Rödl [22]). Let r ∈ N and let A be a partition regular ℓ × k
integer matrix of rank ℓ. There exist δ, n0 > 0 such that the following holds: for all n ≥ n0, every
r-colouring of [n] yields at least δnk−ℓ monochromatic solutions to Ax = 0 in [n].

It is easy to see that there are at most nk−ℓ solutions to Ax = 0 in [n] (see, e.g., case (ii) of
Lemma 6.16). Thus, Theorem 3.5 states that in any r-colouring of [n], a linear proportion of the
total number of solutions are monochromatic.

Our motivation for considering supersaturation results is that they are a prerequisite for under-
standing the typical Ramsey properties of subsets of a given size within an arithmetic structure.
Specifically, supersaturation results can be used in combination with the hypergraph container
method to give an upper bound on the probability that a Ramsey property is not satisfied, thereby
yielding a proof for a 1-statement. See Section 8.1.1 for a more detailed sketch of how this calcula-
tion works. Note that supersaturation results were employed to prove 1-statements of Ramsey-type
results even before the introduction of the hypergraph container method. In particular, in [26], The-
orem 3.5 was used in the proof of the 1-statement of the random Rado theorem (Theorem 4.3 in
the next section).

As we will see in Section 6, supersaturation is one of the key conditions to check in the random
Rado lemma (Lemma 6.8). In some cases, supersaturation can be easily obtained from existing
results. For example, Theorem 2.1 immediately implies the following supersaturation result for the
primes.

Theorem 3.6. Given any r, k ∈ N with k ≥ 3, any r-colouring of Pn yields Θ(n2/ logk n)
monochromatic k-APs in Pn. □

One can similarly obtain a supersaturation result for finite abelian groups and translation-
invariant matrices. We say an ℓ × k integer matrix A is translation-invariant with respect to
a group G if A(g, . . . , g)T = 0 for every g ∈ G.5 Consider such a translation-invariant matrix A
with respect to an abelian group G. As observed by Saad and Wolf [52, page 2], a generalised
version of Szemerédi’s theorem for finite abelian groups [29] yields that for any linear sized subset
S of G, provided |G| is sufficiently large, a constant proportion of all solutions to Ax = 0 in G
are fully contained in S. This immediately implies that, given any r ∈ N, any r-colouring of G is

5For example, any integer matrix A whose columns sum to 0 is translation-invariant with respect to any abelian
group. This includes integer matrices for which the solutions to Ax = 0 in Z correspond to k-APs, for fixed k ≥ 3.
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such that a linear proportion of all solutions to Ax = 0 in G are monochromatic, provided |G| is
sufficiently large.

We finish this section by highlighting three further supersaturation results that we require for
our applications of the random Rado lemma appearing in Section 5. First, Serra and Vena [57,
Theorem 2.1] proved an analogue of Theorem 3.5 for finite vector spaces. This can be seen as a
quantitative analogue of Theorem 3.3.

Theorem 3.7 (Serra and Vena [57]). Let r ∈ N, let F be a finite field and let A be an ℓ× k matrix
with entries in F and rank ℓ which satisfies the columns condition over F. There exist δ, n0 > 0
such that, for all n ≥ n0, every r-colouring of Fn \ {0} yields at least δ|F|n(k−ℓ) monochromatic
solutions to Ax = 0 in Fn \ {0}.

One can show that there are at most |F|n(k−ℓ) solutions to Ax = 0 in Fn and so the lower bound
in Theorem 3.7 is linear in the total number of solutions.

The works of Serra and Vena [57, Theorem 1.3] and Vena [62] extend Theorem 3.7 to finite
abelian groups. To state (a special case of) their result, we need a couple of definitions. We say an
abelian group (G,+) has exponent s if s is the smallest positive integer such that sg = g+· · ·+g = 0
for every g ∈ G. We say an integer matrix A satisfies the s-columns condition if A satisfies the
columns condition over the ring Zs (where the entries of A are treated as elements of Zs, i.e.,
residues modulo s). Finally, S(A,G) denotes the set of solutions to Ax = 0 in G.

Theorem 3.8 (Serra and Vena [57], Vena [62]). Let r ∈ N, let G be a finite abelian group with
exponent s and let A be an ℓ × k integer matrix which satisfies the s-columns condition. There
exist δ, n0 > 0 such that, for all n ≥ n0, every r-colouring of Gn \ {0} yields at least δ|S(A,Gn)|
monochromatic solutions to Ax = 0 in Gn \ {0}.

Note that in [57], a slightly weaker quantitative bound was obtained for Theorem 3.8. However,
the result used a previous weaker removal lemma of Král’, Serra and Vena [39]. Vena [62] observed
that by using his own removal lemma, one can obtain the stronger bound as stated in Theorem 3.8.

We conclude this section with a new supersaturation result for integer lattices.

Theorem 3.9. Let r, d ∈ N and let A be a partition regular ℓ× k integer matrix of rank ℓ. There
exist δ, n0 > 0 such that the following holds: for all n ≥ n0, every r-colouring of [n]d yields at least

δnd(k−ℓ) monochromatic solutions to Ax = 0 in [n]d.

Again, the lower bound in Theorem 3.9 is a linear proportion of the total number of solutions.
Observe that the case d = 1 of Theorem 3.9 is exactly Theorem 3.5. The proof of Theorem 3.9 is
given in Section 10.

4. The random Ramsey problem for graphs and the integers

In this section we cover two settings where the random Ramsey problem has been extensively
studied: edge-coloured graphs and the integers. Further background on these two problems can be
found, e.g., in [14] and [32, Section 1]. We also discuss a few known random Ramsey-type results
for Zn.

4.1. Ramsey properties of random graphs. The random graph model provides a framework
for studying the typical Ramsey properties of graphs of a given density. The random graph Gn,p

has vertex set [n] where each possible edge is present with probability p, independently of all other
edges. An event occurs in Gn,p with high probability (w.h.p.) if its probability tends to 1 as n → ∞.
For many properties P of Gn,p (including Ramsey properties), the probability that Gn,p has the
property exhibits a phase transition, that is, there is a threshold for P: a function p̂ := p̂(n) such
that Gn,p has P w.h.p. when p = ω(p̂) (the 1-statement), while Gn,p does not have P w.h.p. when
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p = o(p̂) (the 0-statement). Bollobás and Thomason [8] proved that every monotone property P
has a threshold.

Rödl and Ruciński [47, 48, 49] proved a general Ramsey-type result for the random graph. To
state their result we need a few definitions. Recall that we write V (H) and E(H) for the vertex
and edge sets of a graph H, respectively, and define v(H) := |V (H)| and e(H) := |E(H)|. Given an
r ∈ N and a graph G, an r-edge-colouring of G is a function σ : E(G) → [r]. Given a graph H, we
say that G is (H, r)-Ramsey if every r-edge-colouring of G yields a monochromatic copy of H in G.
Given a graph H, set d2(H) := 0 if e(H) = 0; d2(H) := 1/2 when H is precisely an edge and define
d2(H) := (e(H) − 1)/(v(H) − 2) otherwise. Then define m2(H) := maxH′⊆H d2(H

′) to be the 2-
density of H. For example, if we consider the triangle K3, then m2(K3) = (e(K3)−1)/(v(K3)−2) =
2. On the other hand, if we consider the disjoint union of K3 and an edge, i.e., H := K3∪K2, then
we also have that m2(H) = 2, even though d2(H) = 1, as the ‘densest’ part of H is the copy of K3.

Theorem 4.1 (The random Ramsey theorem [47, 48, 49]). Let r ≥ 2 be a positive integer and
let H be a graph that is not a forest consisting of stars and paths of length 3. There are positive
constants c, C such that

lim
n→∞

P[Gn,p is (H, r)-Ramsey] =

{
0 if p ≤ cn−1/m2(H);

1 if p ≥ Cn−1/m2(H).

Thus n−1/m2(H) is the threshold for the (H, r)-Ramsey property. Roughly speaking, the random
Ramsey theorem tells us that a typical n-vertex graph of edge density significantly greater than
n−1/m2(H) is (H, r)-Ramsey, whilst a typical n-vertex graph of edge density significantly less than

n−1/m2(H) is not (H, r)-Ramsey.

An intuition for the threshold in Theorem 4.1 is as follows: for small c > 0, if p < cn−1/m2(H)

then there is a subgraph H ′ of H for which the expected number of copies of H ′ in Gn,p is much
smaller than the expected number of edges in Gn,p. So intuitively this suggests the copies of H ′

(and therefore H) are ‘spread out’ in the random graph and so one may be able to colour the edges

to avoid a monochromatic copy of H. On the other hand, for large C > 0, if p > Cn−1/m2(H) then
the expected number of copies of any subgraph H ′′ of H in Gn,p is much larger than the expected
number of edges; so in this sense, the copies of H in Gn,p are more ‘densely distributed’ making it
harder to avoid a monochromatic copy of H.

In more recent work, Nenadov and Steger [44] gave a short proof of Theorem 4.1 using the
hypergraph container method. There has also been significant effort to generalise Theorem 4.1 to
the setting of random hypergraphs (see, e.g., [15, 26, 31]) and also to asymmetric Ramsey properties;
that is, now the monochromatic graph one seeks can be different for each colour class (see, e.g., [9,
13, 32, 35, 38, 40, 41, 42, 43]).

4.2. Ramsey properties of random sets of integers. Suppose that A is an ℓ × k integer
matrix, and let S be a set of elements of an abelian group (e.g., a set of integers). If a vector
x = (x1, . . . , xk) ∈ Sk satisfies Ax = 0 and the xis are pairwise distinct, we call x a k-distinct
solution to Ax = 0 in S. We say that S is (A, r)-Rado if given any r-colouring of S, there is a
monochromatic k-distinct solution x = (x1, . . . , xk) to Ax = 0 in S. Note that in the study of
random versions of Rado’s theorem authors have (implicitly) considered the (A, r)-Rado property,
rather than seeking a monochromatic solution that is not necessarily k-distinct (as in the original
theorem of Rado); see [33, Section 4] for a discussion on why this has been the case.

An ℓ × k integer matrix A is irredundant if there exists a k-distinct solution to Ax = 0 in
N. Otherwise, A is redundant. The study of random versions of Rado’s theorem has focused on
irredundant partition regular matrices. This is natural since for every redundant ℓ×k matrix A for
which Ax = 0 has solutions in N, there exists an irredundant ℓ′ × k′ matrix A′ for some ℓ′ ≤ ℓ and
k′ ≤ k with the same family of solutions (viewed as sets). See [50, Section 1] for a full explanation.
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Index the columns of A by [k]. For a partition W ∪̇W = [k] of the columns of A, we denote by
AW the matrix obtained from A by restricting to the columns indexed by W . Let rank(AW ) be

the rank of AW , where rank(AW ) := 0 for W = ∅. We set

m(A) := max
W ∪̇W=[k]
|W |≥2

|W | − 1

|W | − 1 + rank(AW )− rank(A)
.(1)

The definition of m(A) was introduced in [50]. As noted there, the denominator of m(A) is strictly
positive provided that A is irredundant and partition regular, and so m(A) is well-defined in this
case. We say A is strictly balanced if the expression in (1) is maximised precisely when W = [k]. If
A has precisely one row consisting of non-zero entries (i.e., it corresponds to a single linear equation)
then A is strictly balanced and so

m(A) =
k − 1

k − 2
.

For example, if Ax = 0 corresponds to the equation x+ y = z, then m(A) = 2.
We write [n]p for the random subset of [n] = {1, . . . , n} where each element in [n] is included

with probability p independently of all other elements. Rödl and Ruciński [50] showed that m(A) is
an important parameter for determining whether [n]p is (A, r)-Rado or not. Indeed, one can view
m(A) as the arithmetic analogue of the 2-density m2(H) which we considered for the graph case
in the previous subsection.

Theorem 4.2 (Rödl and Ruciński [50]). For all irredundant partition regular full rank matrices A
and all positive integers r ≥ 2, there exists a constant c > 0 such that

lim
n→∞

P [[n]p is (A, r)-Rado] = 0 if p ≤ cn−1/m(A).

Roughly speaking, Theorem 4.2 implies that a typical subset of [n] with significantly fewer than

n1−1/m(A) elements is not (A, r)-Rado for any irredundant partition regular matrix A. The following
theorem of Friedgut, Rödl and Schacht [26] complements this result, implying that a typical subset

of [n] with significantly more than n1−1/m(A) elements is (A, r)-Rado.

Theorem 4.3 (Friedgut, Rödl and Schacht [26]). For all irredundant partition regular full rank
matrices A and all positive integers r, there exists a constant C > 0 such that

lim
n→∞

P [[n]p is (A, r)-Rado] = 1 if p ≥ Cn−1/m(A).

So together, Theorems 4.2 and 4.3 form the random Rado theorem and show that the threshold
for the property of being (A, r)-Rado is p = n−1/m(A). The intuition for this threshold is similar to

that for the threshold in Theorem 4.1: in the case when A is strictly balanced, when p = n−1/m(A),
in expectation there are roughly the same number of elements in [n]p as there are solutions to

Ax = 0 in [n]p. So if p ≤ cn−1/m(A) for some small c > 0, then one would expect the solutions to
Ax = 0 to be ‘spread out’ (i.e., one would expect most elements of [n]p lie in very few solutions

to Ax = 0). Meanwhile, if p ≥ Cn−1/m(A) for some large C > 0, then one would expect some
clustering of solutions to Ax = 0, making it harder to avoid monochromatic solutions.

Note that Theorem 4.3 was confirmed earlier by Graham, Rödl and Ruciński [28] in the case
where r = 2 and Ax = 0 corresponds to x + y = z, and then by Rödl and Ruciński [50] in the
case when A is so-called density regular. We remark that both Theorem 4.2 and Theorem 4.3 are
straightforward corollaries of the random Rado lemma (Lemma 6.8), which in turns follows from
our general 1- and 0-statement for hypergraphs (Theorem 7.7). Furthermore, the 1-statement of
the random Ramsey theorem (Theorem 4.1) also follows directly from the general 1-statement for
hypergraphs (Theorem 7.7).
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In [32, 58], Theorem 4.3 was generalised to allow one to consider matrices A that are not partition
regular, but for which N is (A, r)-Rado for some choices of r. In particular, the condition that A
is partition regular can be replaced with one of the following two equivalent definitions, subject to
a suitable Ramsey-type supersaturation result holding. We say that an integer matrix A satisfies
property (∗) if under Gaussian elimination A does not have any row which consists of precisely two
non-zero rational entries. The definition of abundant, introduced in [54] and used in [58] is that, for
an ℓ× k matrix A, every ℓ× (k − 2) submatrix of A has the same rank as A. Clearly irredundant
full rank matrices which satisfy (∗) are equivalent to irredundant full rank abundant matrices.

4.3. Ramsey properties of random sets of Zn. Recently there have been a few random Ramsey-
type results proven for Zn. The first explicit result in this area is the following sharp threshold
version of van der Waerden’s theorem for random subsets of Zn [24]. Recalling the definition of
(r, k)-van der Waerden from earlier, note that, for example, (r, 3)-van der Waerden and (A, r)-
Rado are equivalent notions if A = (1, 1,−2). We write Zn,p to denote the subset of Zn obtained
by including each element of Zn independently and with probability p.

Theorem 4.4 (Friedgut, Hàn, Person and Schacht [24]). For all k ≥ 3, there exist constants
c1, c0 > 0 and a function c(n) satisfying c0 ≤ c(n) ≤ c1 such that for every ε > 0 we have

lim
n→∞

P[Zn,p is (2, k)-van der Waerden] =

{
0 if p ≤ (1− ε)c(n)n−1/(k−1);

1 if p ≥ (1 + ε)c(n)n−1/(k−1).

Note that the threshold in Theorem 4.4 is sharp compared to, e.g., the threshold given by
Theorems 4.2 and 4.3. See, e.g., [14, Section 5.1] for further discussion on sharp thresholds.

Recently, Theorem 4.4 has been generalised to the (r, k)-van der Waerden property (i.e., r does
not have to be 2 now) and an analogous sharp threshold version of the random Schur theorem for
Zn (where n is prime) has been obtained; see [25].

5. Further applications of the random Rado lemma

In addition to the random van der Waerden theorem for the primes (Theorem 2.7), we prove
several other novel random Ramsey-type results via the random Rado lemma (Lemma 6.8). The
proofs of all the results presented in this section are postponed to Section 11. Given a subset X of
an abelian group, we write Xp to denote the subset of X obtained by including each element of X
independently and with probability p.

Recall that Theorems 4.2 and 4.3 determine the threshold for the property that [n]p is (A, r)-

Rado. The following result is a generalisation of this statement to [n]dp for any fixed d ∈ N.

Theorem 5.1 (Random Rado theorem for integer lattices). For all irredundant partition regular
full rank matrices A and all positive integers r ≥ 2 and d ≥ 1, there exist constants C, c > 0 such
that the following holds.

lim
n→∞

P[[n]dp is (A, r)-Rado] =

{
0 if p ≤ cn−d/m(A);

1 if p ≥ Cn−d/m(A).

Observe that the d = 1 case corresponds precisely to Theorems 4.2 and 4.3. To deduce Theo-
rem 5.1 from the random Rado lemma, we require a corresponding supersaturation result for [n]d,
namely Theorem 3.9.

Note that the probability threshold in Theorem 5.1 is independent of d in the following sense. As
we are interested in how ‘sparse’ a subset can be while typically retaining its Ramsey properties, the
probability threshold should always be compared to the size of the initial set we are considering.
In this case, the size of [n]d is nd and so we may rewrite the probability threshold n−d/m(A) as
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|[n]d|−1/m(A). Indeed, this shows that the probability threshold depends exclusively on the matrix
A. However, this phenomenon does not occur in general: for a fixed matrix A, the probability
threshold may change depending on the underlying arithmetic structure. For instance, consider
the equation 2x+ 2y = 2z and the product group (Z4)

n.

Theorem 5.2. Let A = (2 2 − 2) and r ≥ 2. There exist constants c, C > 0 such that

lim
n→∞

P[(Z4)
n
p is (A, r)-Rado] =

{
0 if p ≤ c 4−3n/4;

1 if p ≥ C 4−3n/4.

As the size of (Z4)
n is 4n, we may rewrite 4−3n/4 as |(Z4)

n|−3/4. On the other hand, m(A) = 2

and so the corresponding threshold when considering solutions to Ax = 0 in [n]p is n−1/2. Thus,
we can have different thresholds depending on the underlying abelian group.

Note that the probability threshold p = 4−3n/4 is consistent with the heuristic that the expected
size of (Z4)

n
p should ‘match’ the expected number of solutions to Ax = 0 in (Z4)

n
p . Indeed, for

p = 4−3n/4, the expected size of (Z4)
n
p is 4np = 4n/4. The total number of solutions of 2x+2y = 2z

in (Z4)
n is 4n · 4n · 2n = 45n/2 and so the expected number of solutions in (Z4)

n
p is 45n/2p3 = 4n/4.

Observe that the total number of solutions to 2x+2y = 2z in [n] is at most n ·n ·1 = n2 since for
every choice of x and y there is at most one choice of z. The change of threshold in Theorem 5.2
(and more generally in Theorem 5.3 below) depends on the fact that we have many more choices
for z in (Z4)

n.

Theorem 5.2 follows easily from the following application of the random Rado lemma to abelian
groups. The definitions of rankG(A) and mG(A) appearing in the statement require further mo-
tivation so we defer them to the next section; see Definitions 6.11 and 6.27. However, one may
think of mG(A) as the natural generalisation of m(A) which captures the intuition described for
Theorem 5.2. Indeed, mZ4(A) = 4/3 for A = (2 2 − 2). For an ℓ× k matrix A, we say that (A,G)
is abundant if every ℓ× (k − 2) submatrix A′ of A satisfies rankG(A

′) = rankG(A). This naturally
generalises the previous definition of abundant; see also Definition 6.22.

Theorem 5.3. Let G be a finite abelian group with exponent s ∈ N. Let A be an integer matrix
which satisfies the s-columns condition, with rankG(A) > 0 and such that (A,G) is abundant. For
all r ≥ 2, there exist constants C, c > 0 such that the following holds.

lim
n→∞

P[Gn
p is (A, r)-Rado] =

{
0 if p ≤ c|G|−n/mG(A);

1 if p ≥ C|G|−n/mG(A).

Note that the condition rankG(A) > 0 in Theorem 5.3 is very mild: if A has dimension ℓ × k,
rankG(A) > 0 is equivalent to stating that not every ordered k-tuple over G is a solution to Ax = 0.

Given a finite subset S of an abelian group, we say that an ℓ × k matrix A is irredundant with
respect to S if there exists a k-distinct solution to Ax = 0 in S. So a matrix A is irredundant
precisely if it is irredundant with respect to N. Another application of the random Rado lemma
is the following random version of the Ramsey-type result of Bergelson, Deuber and Hindman for
vector spaces Fn (Theorem 3.3). For an ℓ×k matrix A with entries from a field F, we define mF(A)
analogously to (1), that is

mF(A) := max
W ∪̇W=[k]
|W |≥2

|W | − 1

|W | − 1 + rankF(AW )− rankF(A)
,(2)

where we write rankF to denote that we calculate rank with respect to the field F.

Theorem 5.4. Let F be a non-trivial finite field. Consider any full rank matrix A with entries
from F so that A satisfies the columns condition over F and A is also irredundant with respect to
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Fn for all n ∈ N sufficiently large. Given any positive integer r ≥ 2, there exist constants C, c > 0
such that the following holds.

lim
n→∞

P[Fn
p is (A, r)-Rado] =

{
0 if p ≤ c|F|−n/mF(A);

1 if p ≥ C|F|−n/mF(A).

We also obtain the analogue of Theorem 5.4 for matrices A which have integer entries. Here we
must be slightly careful: as we are interested in solutions to Ax = 0 in Fn, one must compute the
rank of the integer matrix A with respect to the underlying field F (see Definition 6.14) and hence
the threshold depends on mF(A) rather than m(A).6 For example, the matrix A =

(
3 3 −3

)
usually has rank(A) = 1, however, in Z3, we have 3 ≡ 0 (mod 3) and so we have rankZ3(A) = 0.

Theorem 5.5. Let F be a finite field of order qk, for some prime q and k ∈ N. Consider any full
rank integer matrix A so that A satisfies the q-columns condition and A is also irredundant with
respect to Fn for all n ∈ N sufficiently large. Given any positive integer r ≥ 2, there exist constants
C, c > 0 such that the following holds.

lim
n→∞

P[Fn
p is (A, r)-Rado] =

{
0 if p ≤ c|F|−n/mF(A);

1 if p ≥ C|F|−n/mF(A).

Theorem 5.5 is just a simple application of Theorem 5.4; its proof is given in Section 11.

6. The random Rado lemma

In this section, we rigorously state the random Rado lemma (Lemma 6.8). As previously men-
tioned, the random Rado lemma serves as a general black box that outputs a random Ramsey-type
result for a given sequence of finite subsets of abelian groups provided that certain conditions, most
notably supersaturation, are satisfied.

The content of this section is divided into four subsections. The first subsection contains the
statement of Lemma 6.8 preceded by a list of all the required definitions. In the second subsection,
we prove a general bound for the number of solutions to Ax = 0 in S when S is either a finite
abelian group or a (power of a) finite subset of a field. This bound is used in the third subsection
to prove that several technical requirements of the random Rado lemma trivially hold, or can be
relaxed, in these specific settings. In light of these results, in the fourth subsection we formulate a
simplified version of the random Rado lemma (Lemma 6.33) for finite abelian groups and (powers
of) finite subsets of fields.

We stress once more that the random Rado lemma can be straightforwardly deduced from our
general 1-statement and 0-statement for hypergraphs (Theorem 7.7). The proof of Lemma 6.8 is
deferred to Section 9.

6.1. Definitions and main statement. Let (Sn)n∈N be a sequence of finite subsets of abelian
groups. We write Sn,p to denote the subset of Sn obtained by including each element of Sn inde-
pendently and with probability p. We say an event occurs in Sn,p with high probability (w.h.p.) if
its probability tends to 1 as n → ∞. Let A be an ℓ × k integer matrix. We are interested in the
probability threshold p̂ := p̂(n) such that Sn,p is (A, r)-Rado w.h.p. if p = ω(p̂) and Sn,p is not
(A, r)-Rado w.h.p. if p = o(p̂).

Of course, as each subset Sn can lie in a different abelian group, it is easy to come up with a
sequence (Sn)n∈N for which no such probability threshold p̂ exists. On the other hand, in Defini-
tion 6.2 we provide a candidate for p̂ for ‘well-behaved’ sequences (Sn)n∈N. Given a k-tuple (xi)i∈[k]
and W ⊆ [k], we write xW for the |W |-tuple (xi)i∈W .

6Note that the definition of mF(A) for an integer matrix A is also consistent with putting G = F into the definition
of mG(A) for groups (see Definition 6.27 and Fact 6.15).
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Definition 6.1 (Projected solutions). Let S be a finite subset of an abelian group and A be an

ℓ×k integer matrix. Let W ⊆ Y ⊆ [k] and w0 ∈ S|W |. The set of projected solutions SolAS (w0,W, Y )

is the set of vectors y ∈ S|Y | such that there exists a solution x ∈ Sk to Ax = 0 with xY = y and
xW = w0. For brevity, we write Sol

A
S (Y ) := SolAS (∅, ∅, Y ), i.e., SolAS (Y ) is the set of vectors y ∈ S|Y |

such that there exists a solution x ∈ Sk to Ax = 0 with xY = y. In particular, SolAS ([k]) is the set
of all solutions to Ax = 0 in S.

Definition 6.2 (Probability threshold for abelian groups). Let S be a finite subset of an abelian
group and A be an ℓ× k integer matrix. For every W ⊆ [k], we let

pW (A,S) :=

(
|SolAS (W )|

|S|

)− 1
|W |−1

.

Additionally, we let

p̂(A,S) := max
W⊆[k]

|W |≥2

pW (A,S).

The intuition for the choice of p̂(A,S) in Definition 6.2 aligns with the heuristic we discussed in
Section 4, where we considered the random Ramsey problem for the integers. Indeed, it is easy to
check that for p := pW (A,S) the expected number of projected solutions |SolAS (W )|p|W | equals the
expected size |S|p of the ground set. The probability threshold p̂(A,S) is obtained by taking the
largest of these pW (A,S).

Remark 6.3. As the definition of (A, r)-Rado involves k-distinct solutions, the reader may wonder
why, in Definition 6.1, we do not insist that the solutions to Ax = 0 must be k-distinct. This choice
is designed to simplify later calculations. We will be able to restrict our attention to k-distinct
solutions by imposing additional assumptions over the sequence (Sn)n∈N (namely, conditions (A3)
and (A6) of Lemma 6.8).

Next, we introduce four properties that the sequence (Sn)n∈N must satisfy in the hypothesis of the
random Rado lemma. The first one is supersaturation, which we introduced and gave motivation
for in Section 3.2. We will use the following formal definition.

Definition 6.4 (Supersaturation). Let r ∈ N, (Sn)n∈N be a sequence of finite subsets of abelian
groups and A be an ℓ×k integer matrix. We say that (Sn)n∈N is (A, r)-supersaturated if there exist
an ε > 0 and n0 ∈ N such that the following holds: if n ≥ n0 then whenever Sn is r-coloured there
are at least ε|SolASn

([k])| monochromatic solutions to Ax = 0 in Sn.

The second property involves an upper bound on the number of projected solutions. Intuitively,
this forces the solutions to be uniformly distributed over the ground set. This condition is rather
natural since the heuristic argument for the probability threshold relies on the assumption that the
solutions to Ax = 0 are ‘spread out’.

Definition 6.5 (Extendability). Let S be a finite subset of an abelian group, let A be an ℓ × k
integer matrix and let B ≥ 1 be a real number. We say the pair (A,S) is B-extendable if for all

non-empty W ⊆ Y ⊆ [k] and any w0 ∈ S|W | we have

|SolAS (w0,W, Y )| ≤ B · |Sol
A
S (Y )|

| SolAS (W )|
.

The third property is more involved and perhaps the most artificial out of all requirements of
the random Rado lemma. This property is tied to the calculations appearing in the proof of the
general 0-statement for hypergraphs (Theorem 7.7) in Section 8.
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Definition 6.6 (Compatibility). Let (Sn)n∈N be a sequence of finite subsets of abelian groups
and A be an ℓ × k integer matrix with k ≥ 3. We say (Sn)n∈N is compatible with respect to A
if there exists a sequence (Xn)n∈N of subsets Xn ⊆ [k] with |Xn| ≥ 3 for all n ∈ N such that the
following holds. We have pXn(A,Sn) = Ω(p̂(A,Sn)) and, for all sequences (Wn)n∈N and (W ′

n)n∈N
with Wn,W

′
n ⊂ Xn, |Wn| = 2 and |W ′

n| ≥ 2,

|Sn|2

| SolASn
(Wn)|

(
pW ′

n
(A,Sn)

pXn(A,Sn)

)|W ′
n|−1

→ 0(3)

as n → ∞.

The fourth property is a mild technical requirement that will be needed in the proof of Lemma 6.8
to allow us to restrict our attention to k-distinct solutions (see Lemma 6.9).

Definition 6.7 (Weak compatibility). Let (Sn)n∈N be a sequence of finite subsets of abelian groups
and A be an ℓ× k integer matrix with k ≥ 2. We say (Sn)n∈N is weakly compatible with respect to
A if for every W ⊆ [k] with |W | = 2 we have

|Sn|
|SolASn

(W )|
→ 0

as n → ∞.

We are now ready to formally state the random Rado lemma.

Lemma 6.8 (The random Rado lemma). Let r ≥ 2, k ≥ 3 and ℓ ≥ 1 be integers. Let (Sn)n∈N be
a sequence of finite subsets of abelian groups, A be an ℓ× k integer matrix and set p̂n := p̂(A,Sn).

Suppose that

(A1) p̂n → 0 and |Sn|p̂n → ∞ as n → ∞;
(A2) (Sn)n∈N is (A, r)-supersaturated;
(A3) there exists B ≥ 1 such that the pair (A,Sn) is B-extendable for all sufficiently large n ∈ N;
(A4) there exists D > 0 such that for every W ⊂ Y ⊆ [k] with |W | = 1 and w0 ∈ Sn, we have

| SolASn
(w0,W, Y )| ≤ D

| SolASn
(Y )|

|Sn| for all sufficiently large n ∈ N;
(A5) (Sn)n∈N is compatible with respect to A;
(A6) (Sn)n∈N is weakly compatible with respect to A.

Then there exist constants c, C > 0 such that

lim
n→∞

P[Sn,p is (A, r)-Rado] =

{
0 if p ≤ cp̂n;

1 if p ≥ Cp̂n.

We find the generality of Lemma 6.8 very interesting - it confirms that for ‘well-behaved’ se-
quences (Sn)n∈N, the probability threshold essentially depends on the number of (projected) solu-
tions to Ax = 0 in Sn.

Note that (A4) is a similar condition to the |W | = 1 case of the definition of B-extendable; we
have written (A3) and (A4) as separate conditions as they correspond to conditions (P3) and (P4)
in our general 1-statement and 0-statement for hypergraphs (Theorem 7.7). In fact, the random
Rado lemma is a simple corollary of Theorem 7.7 and each of conditions (A1)–(A5) are adaptations
of conditions (P1)–(P5) from Theorem 7.7. Condition (A6) is a mild requirement that we impose
in order to restrict our attention to k-distinct solutions (see Lemma 6.9 below).

For most natural applications, conditions (A3)–(A6) can be further simplified. Thus, in prac-
tice, condition (A2) is the crucial assumption that one needs to verify. The goal of the next three
subsections is to state a simplified version of the random Rado lemma (Lemma 6.33) which holds
for sequences of finite abelian groups and sequences of (powers of) finite subsets of fields. Nonethe-
less, there are interesting examples where the generality of the random Rado lemma as stated in
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Lemma 6.8 is required. The most notable such example is the random van der Waerden theorem
for the primes (Theorem 2.7), proved in Section 11.

It would be interesting to see if one can relax some of the assumptions in the random Rado
lemma; if so, condition (A5) is the most likely candidate for where the hypothesis can be weakened.
See Section 12.3 for a brief discussion related to this.

The next result states that conditions (A3) and (A6) imply a linear proportion of projected
solutions are induced by k-distinct solutions. The proof is postponed to Section 9 but we state the
result here in order to give the reader a better intuition why we did not impose in Definition 6.1
that the solutions are k-distinct.

Lemma 6.9. Let (Sn)n∈N be a sequence of finite subsets of abelian groups and let A be an ℓ × k
integer matrix with k ≥ 2. Suppose that conditions (A3) and (A6) from Lemma 6.8 hold; so there
is a B ≥ 1 such that (A,Sn) is B-extendable for every n ∈ N sufficiently large.

For each non-empty Y ⊆ [k], let k -SolASn
(Y ) be the set of y ∈ S

|Y |
n such that there exists a

k-distinct solution x ∈ Sk to Ax = 0 with xY = y. For n sufficiently large, we have

1

2B
≤

|k -SolASn
(Y )|

| SolASn
(Y )|

≤ 1.

Furthermore, for Y = [k] we have

lim
n→∞

|k -SolASn
([k])|

|SolASn
([k])|

= 1.

Remark 6.10. Recall that given a finite subset S of an abelian group, we say that an ℓ× k matrix
A is irredundant with respect to S if there exists a k-distinct solution to Ax = 0 in S. In many
of the results mentioned previously in this paper (e.g., Theorem 5.1) we require that the matrix
considered is irredundant. However, we do not explicitly state that A is irredundant with respect to
Sn in Lemma 6.8 as conditions (A3) and (A6) combined with Lemma 6.9 already imply that many
solutions are k-distinct.

6.2. Rank and counting solutions. The notion of extendability and (weak) compatibility intro-
duced in the previous subsection are tied to the quantity |SolAS (W )|. In many natural cases we are
able to approximate, or at least bound, this number using standard methods from group theory
and linear algebra. For example, it is well known that the size of SolA[n]([k]), i.e., the number of

solutions to Ax = 0 in [n], is at most nk−rank(A) (see, e.g., case (ii) of Lemma 6.16).
The notion of rank is useful here. For instance, the parameterm(A) which governs the probability

threshold for the random Rado theorem for the integers is expressed in terms of rank(AW ) for
W ⊆ [k]. We now provide an appropriate generalisation of the notion of rank for the cases where
S is either a finite abelian group or (a power of) a finite subset of a field.

Definition 6.11 (Rank for finite abelian groups). Let S be a finite abelian group. Let A be an
ℓ× k integer matrix and let fA : Sk → Sℓ be the function defined by fA : x 7→ Ax. We define

rankS(A) :=

{
log|S| | im(fA)| if |S| > 1;

0 if |S| = 1.

By the first isomorphism theorem for groups, we have |S|k = | im(fA)| · | ker(fA)|. In particular,
the number of solutions to Ax = b is equal to{

| ker(fA)| = |S|k
| im(fA)| = |S|k−rankS(A) if b ∈ im(fA);

0 otherwise.
(4)
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A motivation for the choice of rankS(A) in Definition 6.11 is that it will allow us to rewrite
pW (A,S) from Definition 6.2 as a power of |S|. Indeed, in all applications of the random Rado
lemma discussed in Sections 2 and 5, the probability threshold is expressed in such form. For
example, it follows immediately from equation (4) that if A is an ℓ × k integer matrix and S is a

finite abelian group then |SolAS ([k])| = |S|k−rankS(A) and so p[k](A,S) = |S|−(k−1−rankS(A))/(k−1).

Next, we consider the case where S = Ld for some finite subset L of a field F and d ∈ N. We
are mostly interested in integer matrices, but it will be convenient to first consider matrices with
entries in F. We write 0F and 1F for the additive and multiplicative identities of F, respectively.

Definition 6.12. Let S = Ld where L is a finite subset of a field F and d ∈ N. Let A be a matrix
with entries from F. If L = {0F}, let rankS(A) := 0. Otherwise, let rankS(A) be the rank of A
with respect to F.

The following simple fact shows that rankS(A) in Definition 6.12 is well-defined: the value of
rankS(A) is independent of the choice of F.

Fact 6.13. Let F ⊆ F′ be two fields. Let A be a matrix whose entries lie in F. Then, the rank of
A with respect to F is the same as the rank of A with respect to F′.

Proof. The rank of A is the size of the largest square submatrix of A with non-zero determinant.
The determinant of a submatrix is computed by performing multiplications and additions using
the entries of the submatrix. Let F0 be the field generated by the entries of A. Since the entries
of A lie in F0 ⊆ F ⊆ F′ and F0 is closed under addition and multiplication, the determinant of any
submatrix of A is the same whether we are working in F or F′. □

Definition 6.12 easily extends to matrices with integer entries by treating the entries of such
matrices as elements of the field F.

Definition 6.14 (Rank for powers of finite subsets of fields). Let S = Ld where L is a finite subset
of a field F and d ∈ N. Let A = {aij} be an ℓ × k matrix with integer entries. If L = {0F}, let
rankS(A) := 0. Otherwise, let rankS(A) be the rank of B with respect to F, where B := {bij} is
the ℓ× k matrix with bij := aij · 1F ∈ F.

Note that the entries of the matrix B in Definition 6.14 lie in the subfield ⟨1F⟩ ⊆ F generated
by 1F. Thus, by Fact 6.13, the rank of B is the same with respect to F and ⟨1F⟩. If F and F′

are non-trivial fields with L ⊆ F and L ⊆ F′, then 1F = 1F′ and in particular ⟨1F⟩ = ⟨1F′⟩. Thus
rankS(A) from Definition 6.14 is independent from different choices of F and so it is well-defined.

The following fact states that Definition 6.14 is consistent with Definition 6.11.

Fact 6.15. Let A = {aij} be an ℓ × k integer matrix and S = Ld where L is a finite subset of a
field F and d ∈ N. If S is a finite abelian group, then rankS(A) from Definition 6.14 is the same
as rankS(A) from Definition 6.11.

Proof. As S is a finite abelian group, L is a finite abelian group too. If L = {0F} then rankS(A) = 0
in both Definitions 6.11 and 6.14; so suppose L ̸= {0F}.

It is well-known that every element in (F,+) other than 0F has (additive) order exactly p where
either p = ∞ or p is a prime number. Since L is a finite abelian group, we must have L ∼= ((Zp)

t,+)
for some prime p and t ∈ N. Furthermore, we have ⟨1F⟩ ∼= (Zp,+,×).

Let B := {bij} where bij := aij · 1F ∈ ⟨1F⟩ ⊆ F and let r be the rank of B with respect to F.
By Fact 6.13, r equals the rank of B with respect to ⟨1F⟩. This in turn is equal to the rank of
A with respect to Zp, where we treat the entries of A modulo p, by the definition of B and since
⟨1F⟩ ∼= (Zp,+,×).
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Let fA : Sk → Sℓ, gA : Lk → Lℓ, hA : (Zp)
k → (Zp)

ℓ be defined by fA, gA, hA : x 7→ Ax. Note
that the rank of hA is precisely r by the previous observations, and so | im(hA)| = |Zp|r = pr. It is
easy to see that

| im(fA)| = | im(gA)|d = | im(hA)|dt.
In particular, | im(fA)| = prdt = |S|r and so r = log|S| | im(fA)|, as required. □

Next, we prove a general upper bound for the number of projected solutions for finite abelian
groups and powers of finite subsets of fields. We will use this tool in Section 6.3 to simplify
conditions (A3)–(A6) for these settings.

Lemma 6.16 (Key bounding result). Let A be an ℓ× k integer matrix. Suppose that either

(i) S is a finite abelian group or
(ii) S = Ld for some finite subset L of a field and d ∈ N.

Then for all W ⊆ Y ⊆ [k] and w0 ∈ S|W | we have

|SolAS (w0,W, Y )| ≤ |S||Y |−|W |−rankS(AW )+rankS(AY ).(5)

Note that here we define rankS(AW ) := 0 if W = ∅.

Proof. Fix W ⊆ Y ⊆ [k] and w0 ∈ S|W |. If W = Y then | SolAS (w0,W, Y )| = 1 and (5) holds. So
we may assume that W ⊂ Y .

Case (i): S is a finite abelian group. We double count the quantity | SolAS (w0,W, [k])|. This
is equal to the number of solutions x to AWx = −AWw0 which in turn is equal to either 0 or

|S|k−|W |−rankS(AW ) by (4). In the former case, | SolAS (w0,W, [k])| = 0 implies |SolAS (w0,W, Y )| = 0
and so (5) holds. Hence, suppose that

(6) | SolAS (w0,W, [k])| = |S|k−|W |−rankS(AW ).

In particular, we have | SolAS (w0,W, Y )| > 0. Let y0 ∈ SolAS (w0,W, Y ). By the same argument as

above, we have | SolAS (y0, Y, [k])| = |S|k−|Y |−rankS(AY ). Thus,

| SolAS (w0,W, [k])| =
∑

y0∈SolAS (w0,W,Y )

| SolAS (y0, Y, [k])| = | SolAS (w0,W, Y )| · |S|k−|Y |−rankS(AY ).

Combining the above with (6) yields

|SolAS (w0,W, Y )| = |S||Y |−|W |−rankS(AW )+rankS(AY ),

as required.

Case (ii): S = Ld for some finite subset L of a field F and d ∈ N. If L = {0F} then
|SolAS (w0,W, Y )| ≤ 1 and so (5) holds. Hence, assume L ̸= {0F}. For the rest of this case, we treat
the entries of A as elements of F (namely, we view n ∈ N as n · 1F). Let I0 ⊆ [k] be the indices
of a maximal set of linearly independent columns in AY and I1 be the indices of a maximal set
of columns in AY \W such that the columns with indices I0 ∪ I1 are linearly independent. Then
recalling W ⊆ Y , we have rankS(AW ) = |I0 ∪ I1|.

Claim 6.17. Let u, v be two solutions Au = Av = 0 in F. If uY \I1 = vY \I1 then uI1 = vI1.

Proof of the claim. Since A(u− v) = 0 and uY \I1 = vY \I1

AI1(u− v)I1 +AY (u− v)Y = 0,

and thus AI1(u−v)I1 ∈ ⟨AY ⟩, where ⟨AY ⟩ denotes the vector space spanned by the columns of AY .
By the maximality of I0 we have ⟨AY ⟩ = ⟨AI0⟩ and so AI1(u − v)I1 ∈ ⟨AI0⟩. Since the columns
with indices I0 ∪ I1 are linearly independent, this implies that (u− v)I1 = 0.
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Now we bound | SolAS (w0,W, Y )| from above. Recall w0 ∈ S|W | and S = Ld. We can therefore

write w0 in the form w0 = (t1, . . . , td) where ti ∈ L|W |. Note that

| SolAS (w0,W, Y )| =
d∏

i=1

| SolAL(ti,W, Y )|,

so it suffices to prove that | SolAL(ti,W, Y )| ≤ |L||Y |−|W |−rankS(AW )+rankS(AY ) for every i. By
Claim 6.17, there is at most one projected solution for every choice of the entries with indices
Y \ I1. Note that the entries with indices in W are already fixed and W and I1 are disjoint, thus

|SolAL(ti,W, Y )| ≤ |L||Y |−|W |−|I1| = |L||Y |−|W |−|I0∪I1|+|I0| = |L||Y |−|W |−rankS(AW )+rankS(AY ).

□

Applying inequality (5) from Lemma 6.16 with W = ∅ and Y = [k] immediately implies that

there are at most |S|k−rankS(A) solutions to Ax = 0 in S. Informally, we say (A,S) is rich if this
bound is close to tight.

Definition 6.18 (Richness). Let A be an ℓ×k integer matrix, let ε > 0 and let S be either a finite
abelian group or a power of a finite subset of a field. We say (A,S) is ε-rich if there are at least

ε|S|k−rankS(A) solutions to Ax = 0 in S.

Intuitively, richness is a measure of how strongly the elements of S are related within the arith-
metic structure of S. For example, if S is a finite abelian group then (A,S) is 1-rich by (4) for any
integer matrix A. If A is partition regular then Theorem 3.5 implies (in a very strong form) that
S = [n] is δ-rich for some δ > 0 and n ∈ N sufficiently large. On the other hand, this is not the case
for S = Pn (see, e.g., Theorem 2.1), and indeed, the primes have a very loose arithmetic structure.

The next corollary states that if (A,S) is rich then the bound given by Lemma 6.16 is close to
tight for certain projected solutions.

Corollary 6.19. Let A be an ℓ× k integer matrix and let 0 < ε ≤ 1. Suppose that either

(i) S is a finite abelian group or
(ii) S = Ld for some finite subset L of a field and d ∈ N.

If (A,S) is ε-rich, then for every non-empty Z ⊆ [k] we have

ε|S||Z|−rankS(A)+rankS(AZ) ≤ |SolAS (Z)| ≤ |S||Z|−rankS(A)+rankS(AZ).(7)

Proof. Fix Z ⊆ [k]. Applying (5) from Lemma 6.16 with Y := Z and W := ∅ yields the upper
bound

|SolAS (Z)| ≤ |S||Z|−rankS(A)+rankS(AZ).

Fix z0 ∈ SolAS (Z). By applying (5) with Y := [k] and W := Z, we obtain that

(8) |SolAS (z0, Z, [k])| ≤ |S|k−|Z|−rankS(AZ).

The total number of solutions to Ax = 0 in S is

| SolAS ([k])| =
∑

z0∈SolAS (Z)

|SolAS (z0, Z, [k])|
(8)

≤ |SolAS (Z)| · |S|k−|Z|−rankS(AZ).

Combining the above with | SolAS ([k])| ≥ ε|S|k−rankS(A) yields

|SolAS (Z)| ≥ ε|S|k−rankS(A) · |S|−k+|Z|+rankS(AZ) = ε|S||Z|−rankS(A)+rankS(AZ).

□
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6.3. Conditions (A3)–(A6) for finite groups and powers of finite subsets of fields. In this
subsection, we use the key bounding results (Lemma 6.16 and Corollary 6.19) from the previous
subsection to investigate conditions (A3)–(A6) when the sets Sn in the sequence (Sn)n∈N are either
finite abelian groups or powers of finite subsets of fields. We start by showing that in this case,
richness implies condition (A3).

Lemma 6.20. Let A be an ℓ× k integer matrix. Suppose that either

(i) S is a finite abelian group or
(ii) S = Ld for some finite subset L of a field and d ∈ N.

If there exists B > 0 such that (A,S) is (1/B)-rich, then (A,S) is B-extendable.

Proof. Let W ⊆ Y ⊆ [k] and w0 ∈ S|W |. It follows from Lemma 6.16 and Corollary 6.19 that

B|SolAS (Y )|
| SolAS (W )|

(7)

≥ |S||Y |−rankS(A)+rankS(AY )

|S||W |−rankS(A)+rankS(AW )
= |S||Y |−|W |−rankS(AW )+rankS(AY )

(5)

≥ |SolAS (w0,W, Y )|.

Hence (A,S) is B-extendable. □

For finite abelian groups, we deduce the following corollary.

Corollary 6.21. Let A be an ℓ× k integer matrix and S be a finite abelian group. Then (A,S) is
1-extendable.

Proof. By (4), (A,S) is 1-rich. Lemma 6.20 implies that (A,S) is 1-extendable. □

Next, we consider conditions (A4), (A5) and (A6). First, we give the definition of abundance.
This notion appeared in Section 4 when we considered the random Ramsey problem for the integers.

Definition 6.22 (Abundancy). Let A be an ℓ× k integer matrix and S be either a finite abelian
group or a power of a finite subset of a field. We say (A,S) is abundant if rankS(A) = rankS(AW )
for every W ⊆ [k] with |W | = 2.

Before we show how abundancy can help simplify conditions (A4), (A5) and (A6), we show it is
a mild requirement in the case of powers of finite subsets of a field F. For brevity, we will write 0
and 1 for the additive and multiplicative identities of F, respectively. The next lemma establishes
that irredundancy and 3-partition regularity imply abundancy. We remark that the field F in the
statement of the lemma may be finite or infinite.

Lemma 6.23. Let A be an ℓ × k integer matrix and S = Ld for some finite subset L of a field F
and d ∈ N. If A is irredundant with respect to Fd and 3-partition regular in S \ {0}d, then (A,S)
is abundant.

Proof. If L = {0} then rankS(A
′) = 0 for any integer matrix A′, and we are done. Thus, suppose

that L ̸= {0}. As before, we can view A as a matrix with entries in F. Let C1, . . . , Ck denote
the columns of A. To prove that (A,S) is abundant it suffices to show that C1 and C2 are both
spanned by C3, ..., Ck in F. For the rest of the proof, given a solution x to Ax = 0, we write xi for
the ith entry of x.

If C1 cannot be expressed as a linear combination of C2, . . . , Ck, then a solution x to Ax = 0 in
F satisfies x1 = 0. In turn, this implies that a solution x to Ax = 0 in Fd satisfies x1 = {0}d. This
contradicts the assumption that A is 3-partition regular in S \ {0}d.

Hence, C1 is spanned by C2, . . . , Ck. In particular, there exists α ∈ F such that C1 + αC2

is spanned by C3, . . . , Ck. If α is not unique then one can write C2 as a linear combination of
C3, . . . , Ck and thus we are done.

Suppose therefore that α is unique. Thus, any solution x to Ax = 0 in Fd must satisfy x2 = α ·x1.
If α = 1 then x1 = x2 and A is therefore not irredundant with respect to Fd, a contradiction. If
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α = 0 then x2 = {0}d, and so A is not 3-partition regular in S \ {0}d, a contradiction. Thus,
α ̸= 0, 1.

Consider the graph G with vertex set V (G) = S and edge set E(G) = {ss′ : s′ = α · s} (here the
edges are unordered pairs). Since α ̸= 0, each s ∈ V (G) is incident to at most two edges, namely
α · s and α−1 · s. Thus ∆(G) ≤ 2. In particular, there exists a proper 3-vertex-colouring of G which
induces a 3-colouring of S.

Recall that for any solution x of Ax = 0 in Fd we have x2 = α · x1. Since α ̸= 1, x1 and x2
are distinct unless x1 = x2 = {0}d. In the former case, x1 and x2 are adjacent in G and so they
are coloured differently. It follows that there is no monochromatic solution to Ax = 0 in S \ {0}d.
Hence A is not 3-partition regular in S \ {0}d, a contradiction. □

Note that the statement of Lemma 6.23 does not necessarily hold for finite abelian groups.
Indeed, consider the example A =

(
2 2 1 1

)
and S = Zn

6 . The columns of A sum to zero (mod
6), so A satisfies the 6-columns condition. By Theorem 3.8, for fixed r and n sufficiently large,
every r-colouring of Zn

6 \ {0}n yields (many) monochromatic solutions to Ax = 0. Additionally A
is irredundant with respect to Zn

6 . This follows easily by observing that (2, 4, 1, 5) is a 4-distinct
solution to Ax = 0 in Z6. However (A,Zn

6 ) is not abundant, since the rank decreases after deleting
the last two columns of A.

Next, we show how abundancy can help simplify conditions (A4), (A5) and (A6). First, if (A,S)
is abundant and rich then condition (A4) trivially holds.

Lemma 6.24. Let A be an ℓ× k integer matrix. Suppose that either

(i) S is a finite abelian group or
(ii) S = Ld for some finite subset L of a field and d ∈ N.

Furthermore, assume that (A,S) is abundant and ε-rich for some 0 < ε ≤ 1. Then, for every
W ⊆ Y ⊆ [k] with |W | = 1 and w0 ∈ S we have | SolAS (w0,W, Y )| ≤ | SolAS (Y )|/(ε|S|).

Proof. By Lemma 6.16 we have

|SolAS (w0,W, Y )| ≤ |S||Y |−1−rankS(AW )+rankS(AY ),

while by Corollary 6.19 we have

| SolAS (Y )| ≥ ε|S||Y |−rankS(A)+rankS(AY ).

Combining the two inequalities above yields

|SolAS (w0,W, Y )| ≤ 1

ε
· |Sol

A
S (Y )|
|S|

· |S|rankS(A)−rankS(AW ).(9)

Let W ⊆ W ′ with |W ′| = 2 and note that rankS(AW ′) ≤ rankS(AW ) ≤ rankS(A). We have
rankS(AW ′) = rankS(A) since |W ′| = 2 and (A,S) is abundant. Thus, rankS(AW ) = rankS(A)

and so (9) implies that |SolAS (w0,W, Y )| ≤ |SolAS (Y )|/(ε|S|). □

Next, we consider conditions (A5) and (A6). If (A,S) is abundant and rich then the following
bound holds.

Lemma 6.25. Let A be an ℓ× k integer matrix. Suppose that either

(i) S is a finite abelian group or
(ii) S = Ld for some finite subset L of a field and d ∈ N.

Furthermore, assume that (A,S) is abundant and ε-rich for some 0 < ε ≤ 1. Then for any W ⊆ [k]
with |W | = 2, we have

|S|2

| SolAS (W )|
≤ 1

ε
.
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Proof. We have
|S|2

|SolAS (W )|

(7)

≤ |S|2

ε|S||W |−rankS(A)+rankS(AW )
=

|S|2

ε|S|2
=

1

ε
,

where the equality follows from the fact that |W | = 2 and rankS(A) = rankS(AW ) since (A,S) is
abundant. □

Observe that if A and (Sn)n∈N satisfy the hypothesis of Lemma 6.25 with the same ε > 0 for all
n ∈ N, and |Sn| → ∞ as n → ∞, then condition (A6) trivially holds. Condition (A5) is also close
to being satisfied: it would suffice to additionally prove that there exists some sequence (Xn)n∈N
of subsets Xn ⊆ [k] with |Xn| ≥ 3 for all n ∈ N where pXn(A,Sn) = Ω(p̂(A,Sn)) and such that

pW ′
n
(A,Sn)

pXn(A,Sn)
→ 0

as n → ∞ for any sequence (W ′
n)n∈N with W ′

n ⊂ Xn and |W ′
n| ≥ 2. The next result states that this

is the case for powers of subsets of fields as long as we have abundancy and richness.

Lemma 6.26. Let 0 < ε ≤ 1 and let A be an ℓ × k integer matrix and S = Ld for some finite
subset L of a field and d ∈ N. Suppose rankS(A) > 0. If (A,S) is ε-rich and abundant, then there
exists X ⊆ [k] such that |X| ≥ 3, pX(A,S) ≥ εp̂(A,S) and for every W ′ ⊂ X with |W ′| ≥ 2 we
have

pW ′(A,S)

pX(A,S)
≤ (1/ε)|S|−1/k2 .

Proof. For every Z ⊆ [k] with |Z| ≥ 2 set

D(Z) :=
|Z| − 1− rankS(A) + rankS(AZ)

|Z| − 1
.

As 0 < ε ≤ 1, by definition of pZ(A,S) and Corollary 6.19, we have that

(10) |S|−D(Z)
(7)

≤ pZ(A,S)
(7)

≤ (1/ε)|S|−D(Z).

Pick X ⊆ [k] with |X| ≥ 2 so that the function D(X) is minimised; additionally choose X so
that |X| is as small as possible under this assumption. We have

pX(A,S)
(10)

≥ |S|−D(X) ≥ |S|−D(Z)
(10)

≥ εpZ(A,S)

for every Z ⊆ [k] with |Z| ≥ 2. By maximising over Z, it follows that pX(A,S) ≥ εp̂(A,S),
as required. Moreover, |X| ≥ 3. Indeed, for any Z ⊆ [k] with |Z| = 2, we have rankS(A) =
rankS(AZ) since (A,S) is abundant. In particular, we have D(Z) = 1. On the other hand,
D([k]) = (k − 1− rankS(A))/(k − 1) < 1 since rankS(A) > 0. Thus, |X| ≠ 2.

Let W ′ ⊂ X with |W ′| ≥ 2. We have

pW ′(A,S)

pX(A,S)

(10)

≤ (1/ε)|S|−D(W ′)+D(X).

By the minimality of X, we have D(X) < D(W ′). Since S = Ld for some finite subset L of a
field, rankS(·) is always an integer and so

D(W ′)−D(X) ≥ 1

(|X| − 1)(|W ′| − 1)
≥ 1

k2
.

It follows that
pW ′(A,S)

pX(A,S)
≤ (1/ε)|S|−1/k2 .

□
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6.4. Simplified random Rado lemma. In this subsection we state a simplified version of the
random Rado lemma for finite abelian groups and powers of finite subsets of fields. This version of
the random Rado lemma will be used to prove most of our applications (see Section 11). First, we
introduce a generalisation of the parameter m(A) to this setting.

Definition 6.27. Let S be either a finite abelian group or a power of a finite subset of a field. Let
A be an ℓ× k integer matrix. We set

mS(A) := max
W⊆[k]

|W |≥2

|W | − 1

|W | − 1 + rankS(AW )− rankS(A)
.(11)

Here we recall that rankS(AW ) := 0 if W = ∅. We call A strictly balanced with respect to S if the
expression in (11) is maximised precisely when W = [k].

Note that if S := [n] then as S is a subset of the field Q, we have that mS(A) = m(A). Indeed,
in this setting the function rankS is the same as the rank function appearing in the definition of
m(A).

Remark 6.28. Observe that mS(A) is not always well-defined since the denominator in (11) might
be zero. However, if (A,S) is abundant then for all |W | ≥ 2 we have

rankS(AW ) ≥ rankS(A)− |W |+ 2,(12)

since the rank of a matrix can decrease by at most one by deleting a column.7 If (12) is satisfied
then the denominator in (11) is always strictly positive and so mS(A) is well-defined in this case.

Before proceeding further, we provide several examples and facts about the parameter mS(A).
Firstly, we show that mZ4(A) = 4/3 for A = (2 2 − 2), as stated in Section 5.

Example 6.29. Let A = (2 2 − 2). The number of solutions x = (x1, x2, x3) to Ax = 0 in Z4 is

precisely 2 · 42 = 43−1/2: we have 42 choices for x1, x2 and, for each fixed choice, we have 2 choices
for x3. It follows from (4) that rankZ4(A) = 1/2. Now, let W ⊆ [3]. If |W | = 3 we trivially have

rankZ4(AW ) = 0. If |W | = 2 then AWx = 0 is the same as 2x = 0, which has 2 = 41−1/2 solutions
in Z4. So we have rankZ4(AW ) = 1/2 again. Thus,

mZ4(A) = max

{
3− 1

3− 1 + 0− 1/2
,

2− 1

2− 1 + 1/2− 1/2

}
= 4/3.

Next, we highlight certain similarities and differences between the parameters m(A) and mS(A).
Recall that if A is a 1 × k integer matrix with non-zero entries then A is strictly balanced and
m(A) = k−1

k−2 . This is not always the case for mS(A), as shown in the next example.

Example 6.30. Let m ∈ N and A = (1 m m). The number of solutions x = (x1, x2, x3) to Ax = 0
in Z2m is precisely (2m)2 = (2m)3−1. It follows that rankZ2m(A) = 1. If W = [3] we trivially have
rankZ4(AW ) = 0. If W = {2, 3} then AWx = 0 is the same as x = 0, which has 1 = (2m)1−1

solution in Z2m, and so rankZ2m(AW ) = 1. If W = {1, 2} or W = {1, 3} then AWx = 0 is the same

as mx = 0, which has m = (2m)1−log2m 2 solutions in Z2m, and so rankZ2m(AW ) = log2m 2. Thus,

mZ2m(A) = max

{
3− 1

3− 1 + 0− 1
,

2− 1

2− 1 + 1− 1
,

2− 1

2− 1 + log2m 2− 1

}
= max{2, 1, (log2m 2)−1}.

In particular, for m ≥ 2 we have mZ2m(A) = (log2m 2)−1. Furthermore, for m > 2, the value of
mZ2m(A) is achieved precisely by W = {1, 2} and W = {1, 3}, and so A is not strictly balanced
with respect to Z2m.

7This fact follows immediately from the definition of rankS(A) when S is the power of a subset of a field F . When
S is a finite abelian group, it can be proved using equation (4).
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Despite the example above, by imposing some additional restrictions on the 1× k matrix A, one
can infer that A is strictly balanced with respect to S and, furthermore, mS(A) = m(A) = k−1

k−2 .

Example 6.31. Let A be a 1× k integer matrix with non-zero entries. Let S be a finite subset of
an abelian group G. Suppose that S ̸= {0G} and that either

• S is a finite abelian group or
• S is a power of a finite subset of a field F.

Furthermore, suppose that

(α) for every entry a of A and s ∈ S \ {0G} we have a · s ̸= 0.

Then A is strictly balanced with respect to S and mS(A) = m(A) = k−1
k−2 .

Indeed, let W ⊆ [k] be non-empty. If S is a power of a finite subset of a field F then (α) implies
AW is not the 1 × |W | zero vector in F and thus AW has rank 1 with respect to F. In particular,
rankS(AW ) = 1. Similarly, if S is a finite abelian group then the number of solutions to AWx = 0

in S is precisely |S||W |−1: we can pick the first |W | − 1 entries of x arbitrarily and for each such
choice we have 1 choice for the last entry (this follows from (α)). Thus, we have rankS(AW ) = 1.
In both cases, we have

mS(A) = max
2≤w≤k−1

{
k − 1

k − 1 + 0− 1
,

w − 1

w − 1 + 1− 1

}
=

k − 1

k − 2
.

In particular, the value of mS(A) is achieved precisely when W = [k] and so A is strictly balanced
with respect to S.

Note that if a 1× k integer matrix A is strictly balanced then m(A) = k−1
k−2 . Conversely, if A is

strictly balanced with respect to S, it may not be the case that mS(A) = k−1
k−2 . For instance, in

Example 6.29, we saw A = (2 2 −2) is strictly balanced with respect to Z4 but mZ4(A) = 4/3 < 2.
Another observation is that, for A fixed, mS(A) may change depending on S. For example,

consider A = (1 3 3). From Example 6.30 we have that mZ6(A) = (log6 2)
−1 ≈ 2.58, while from

Example 6.31 we have mZ2(A) = 3−1
2−1 = 2 (since A and Z2 satisfy property (α)).

There are cases where mS(A) is independent of S, as long as S is non-trivial. Indeed, let A be
a 1 × k matrix whose entries are all from {1,−1}. Then (α) from Example 6.31 holds for every
S which is either a finite abelian group or a power of a finite subset of a field, provided that S
includes a non-identity element. In particular, we have mS(A) =

k−1
k−2 for any such S.

The next result states that p̂(A,S) and |S|−1/mS(A) are within a constant factor of each other,
as long as we are in a rich setting.

Lemma 6.32. Let A be an ℓ× k integer matrix and 0 < ε ≤ 1. Suppose that either

(i) S is a finite abelian group or
(ii) S = Ld for some finite subset L of a field and d ∈ N.

If mS(A) is well-defined and (A,S) is ε-rich then

|S|−
1

mS(A) ≤ p̂(A,S) ≤ (1/ε2)|S|−
1

mS(A) .

Proof. For every Z ⊆ [k] with |Z| ≥ 2 let

D(Z) :=
|Z| − 1− rankS(A) + rankS(AZ)

|Z| − 1
.

As 0 < ε ≤ 1, by definition of pZ(A,S) and Corollary 6.19, we have that

(13) |S|−D(Z)
(7)

≤ pZ(A,S)
(7)

≤ (1/ε)|S|−D(Z).
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Pick X ⊆ [k] with |X| ≥ 2 so that the function D(X) is minimised; so mS(A) = 1/D(X). For
any Z ⊆ [k] with |Z| ≥ 2, we have

pX(A,S)
(13)

≥ |S|−D(X) ≥ |S|−D(Z)
(13)

≥ εpZ(A,S).

As Z was arbitrary, it follows that

pX(A,S) ≤ p̂(A,S) ≤ (1/ε)pX(A,S).

Combining the above with (13) yields

|S|−
1

mS(A) = |S|−D(X)
(13)

≤ p̂(A,S)
(13)

≤ (1/ε2)|S|−D(X) = (1/ε2)|S|−
1

mS(A) .

□

We can now state the simplified version of the random Rado lemma.

Lemma 6.33 (Simplified random Rado lemma). Let r ≥ 2, k ≥ 3 and ℓ ≥ 1 be integers. Let
(Sn)n∈N be a sequence where Sn is either a finite abelian group or Sn = Ld for some finite subset
L of a field and d ∈ N, for every n ∈ N. Let A be an ℓ× k integer matrix and set p̂n := p̂(A,Sn).
Suppose that

(C1) p̂n → 0 and |Sn|p̂n → ∞ as n → ∞;
(C2) (Sn)n∈N is (A, r)-supersaturated;
(C3) there exists 0 < ε ≤ 1 such that (A,Sn) is ε-rich for every sufficiently large n ∈ N;
(C4) (A,Sn) is abundant for every sufficiently large n ∈ N;
(C5) given any n ∈ N there exists Xn ⊆ [k] with |Xn| ≥ 3 such that pXn(A,Sn) = Ω(p̂(A,Sn))

and for every sequence (W ′
n)n∈N with W ′

n ⊂ Xn and |W ′
n| ≥ 2 we have

pW ′
n
(A,Sn)

pXn(A,Sn)
→ 0

as n → ∞.

Then there exist constants c, C > 0 such that

lim
n→∞

P[Sn,p is (A, r)-Rado] =

0 if p ≤ c|Sn|
− 1

mSn
(A) ;

1 if p ≥ C|Sn|
− 1

mSn
(A) .

Remark 6.34. Note that Lemma 6.33 can be further simplified if we consider finite abelian groups
and powers of finite subsets of fields separately. Namely, if all sets in (Sn)n∈N are finite abelian
groups then condition (C3) holds since by (4) (A,Sn) is 1-rich. On the other hand, if all sets in
(Sn)n∈N are powers of finite subsets of fields and rankSn(A) > 0 for all n ∈ N, then condition (C5)
follows from conditions (C1), (C3) and (C4) combined with Lemma 6.26. Furthermore, in this
case, condition (C4) can be replaced by irredundancy and 3-partition regularity; see Lemma 6.23.

If we set Sn := [n] and let A be an irredundant partition regular matrix, then it is easy to check
that (C1) and (C3)–(C5) hold. Theorem 3.5 gives (C2), and therefore Lemma 6.33 recovers the
random Rado theorem (i.e., Theorems 4.2 and 4.3).8

Recall that Lemma 6.8 confirms the probability threshold essentially depends on the number of
(projected) solutions to Ax = 0 in Sn. For sequences that satisfy the hypothesis of Lemma 6.33,
we see that we can express this phenomenon cleanly in terms of the parameter mSn(A). In par-
ticular, if (Sn)n∈N is a sequence as in Lemma 6.33 then, for large n ∈ N, a typical subset of Sn

of size significantly greater than |Sn|1−1/mSn (A) will be (A, r)-Rado, whilst a typical subset of size

significantly smaller than |Sn|1−1/mSn (A) will not be (A, r)-Rado.

8We formally verify this in the more general setting of integer lattices in the proof of Theorem 5.1 in Section 11.
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The proof of Lemma 6.33 follows easily from our original random Rado lemma, Lemma 6.8,
combined with the results from the previous subsection.

Proof of Lemma 6.33. Let r ≥ 2, k ≥ 3 and ℓ ≥ 1 be integers. Let (Sn)n∈N be a sequence where
Sn is either a finite abelian group or Sn = Ld for some finite subset L of a field and d ∈ N, for
every n ∈ N. Suppose that conditions (C1)–(C5) hold. First we show that conditions (A1)–(A6)
hold too.

Conditions (A1) and (A2) are identical to (C1) and (C2) respectively. Condition (A3) follows
from condition (C3) and Lemma 6.20.

Pick arbitrary W ⊂ Y ⊆ [k] with |W | = 1. As (C3) and (C4) hold, we can apply Lemma 6.24
and deduce that | SolASn

(w0,W, Y )| ≤ |SolASn
(Y )|/(ε|Sn|) for every sufficiently large n ∈ N and every

w0 ∈ Sn. This immediately implies condition (A4).
As (C3) and (C4) hold, we can apply Lemma 6.25 to A and Sn, for any sufficiently large n ∈ N,

to obtain the following: for any W ⊆ [k] with |W | = 2, we have

|Sn|2

| SolASn
(W )|

≤ 1

ε
.

Combining the above with conditions (C1) and (C5) yields conditions (A6) and (A5) respectively.

As conditions (A1)–(A6) hold, by Lemma 6.8 there exist constants c0, C0 > 0 such that

(14) lim
n→∞

P[Sn,p is (A, r)-Rado] =

{
0 if p ≤ c0 · p̂(A,Sn);

1 if p ≥ C0 · p̂(A,Sn).

Condition (C4) implies mSn(A) is well-defined for every sufficiently large n ∈ N (see, e.g., Re-
mark 6.28). Condition (C3) combined with Lemma 6.32 implies that, for sufficiently large n ∈ N,

(15) |Sn|
− 1

mSn
(A) ≤ p̂(A,Sn) ≤ (1/ε2)|Sn|

− 1
mSn

(A) .

Let C := (1/ε2)C0 and c := c0. Combining (14) and (15) yields

lim
n→∞

P[Sn,p is (A, r)-Rado] =

0 if p ≤ c|Sn|
− 1

mSn
(A) ;

1 if p ≥ C|Sn|
− 1

mSn
(A) .

□

7. The general 1-statement and 0-statement for hypergraphs

In this section, we formulate our general random Ramsey 1-statement and 0-statement for hy-
pergraphs. We combine both statements in a single result (Theorem 7.7), but first we provide some
definitions and motivation.

7.1. Basic definitions for hypergraphs.

Definition 7.1 (Hypergraphs). Let k ∈ N. A k-uniform hypergraph H is a pair (V (H), E(H))
where V (H) is a finite set and E(H) is a set of unordered k-tuples {v1, . . . , vk} ∈ V (H)k with
vi ̸= vj for i ̸= j. A k-uniform ordered hypergraph H is a pair (V (H), E(H)) where V (H) is a finite

set and E(H) is a set of ordered k-tuples (v1, . . . , vk) ∈ V (H)k with vi ̸= vj for i ̸= j.

V (H) and E(H) are respectively the vertex set and the edge set of H. We write v(H) := |V (H)|
and e(H) := |E(H)|. Next, we define the analogues of the notions of partition regularity and
supersaturation for hypergraphs and ordered hypergraphs.
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Definition 7.2 (r-Ramsey, (r, ε)-supersaturated and r-supersaturated). Let H be an (ordered)
hypergraph, r ∈ N and ε > 0. We say H is r-Ramsey if every r-colouring of V (H) yields a
monochromatic edge in E(H). Similarly, H is (r, ε)-supersaturated if every r-colouring of V (H)
yields at least εe(H) monochromatic edges. We say that a sequence (Hn)n∈N of (ordered) hy-
pergraphs is r-supersaturated if there exists ε > 0 and n0 ∈ N such that for all n ≥ n0, Hn is
(r, ε)-supersaturated.

Before proceeding further, we give an informal explanation of how a Ramsey problem can be
rephrased in terms of (ordered) hypergraphs. Say F is some discrete object (e.g., a graph, an
abelian group etc.) over a ground set of elements. Given a colouring of the elements in F , we
are interested in finding a monochromatic copy of a certain structure F in F . We consider the
(ordered) hypergraph H whose vertex set is the set of elements of F and the edge set is the set of
copies of F in F . Clearly, the colouring of the elements of F induces a colouring of the vertices of
H. In particular, every monochromatic copy of F in F corresponds to a monochromatic edge in H
and vice versa. Consider the following example, where F := [n] and F is a 3-distinct solution to
the equation x+ y = z.

Example 7.3. Any 2-colouring of [n] yields a monochromatic 3-distinct solution to the equation
x + y = z as long as n is sufficiently large (A). In fact, Theorem 3.5 implies that there exists
c > 0 so that if n is sufficiently large, then any 2-colouring of [n] yields at least cn2 3-distinct
monochromatic solutions9 (B).

Consider the 3-uniform ordered hypergraph H with V (H) = [n] and E(H) = {(x, y, z) : x+y = z}.
Statement (A) is equivalent to H being 2-Ramsey as long as v(H) is sufficiently large while statement
(B) is equivalent to H being (2, c′)-supersaturated for some constant c′ > 0, provided v(H) is
sufficiently large.

In practice, we can usually work in the setting of unordered hypergraphs.

Definition 7.4. Given an ordered hypergraph H, the unordered restriction of H is the hypergraph
H′ obtained from H by ignoring the order of the edges in E(H). Formally, V (H′) := V (H) and

E(H′) := {{v1, . . . , vk} : (v1, . . . , vk) ∈ E(H)}.

Note that we do not allow multiple edges here; that is, if two ordered edges e1, e2 become the
same unordered edge e, then we only keep one copy of e.

Remark 7.5. By definition, a k-uniform ordered hypergraph H is r-Ramsey if and only if the
unordered restriction H′ of H is also r-Ramsey. Similarly, a sequence of k-uniform ordered hyper-
graphs (Hn)n∈N is r-supersaturated if and only if the sequence (H′

n)n∈N is r-supersaturated, where
H′

n is the unordered restriction of Hn.

Next, we define notions of maximum degree for (ordered) hypergraphs. Let H be a k-uniform
ordered hypergraph and let W ⊆ [k], say W = {i1, i2, . . . , i|W |} where i1 < i2 < · · · < i|W |. The
restriction HW of H is the |W |-uniform ordered hypergraph with V (HW ) := V (H) and

E(HW ) := {(xi1 , . . . , xi|W |) : ∃ (y1, . . . , yk) ∈ E(H) with yis = xis for each s ∈ {1, . . . , |W |}}.

Again, we do not allow multiple edges. Given sets W ⊆ Y ⊆ [k], we define ∆W (HY ) to be the
maximum number of edges in HY that restrict to the same edge in HW . More precisely, given any
ordered tuple f ∈ E(HW ), let EH(f, Y ) be the set of ordered tuples e ∈ E(HY ) so that f equals

9While the statement of Theorem 3.5 does not insist that the solutions are 3-distinct, since there are at most O(n)
solutions to x + y = z which are not 3-distinct, it is easy to obtain the result as stated here.
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the ordered tuple obtained from e by deleting the entries of e in the positions corresponding to
Y \W . Then we define

∆W (HY ) := max
f∈E(HW )

|EH(f, Y )|.

Let H′ be a k-uniform hypergraph. For i ∈ [k], we set

∆i(H′) := max
f⊆V (H′), |f |=i

|{e ∈ E(H′) : f ⊆ e}|.

Note that if H′ is the unordered restriction of an ordered hypergraph H then

1

k!
· max

W⊆[k]

|W |=i

∆W (H) ≤ 1

(k − i)!
· max

W⊆[k]

|W |=i

∆W (H) ≤ ∆i(H′) ≤
(
k

i

)
· i! · max

W⊆[k]

|W |=i

∆W (H) ≤ k! · max
W⊆[k]

|W |=i

∆W (H).

(16)

The second inequality in (16) uses that, given any edge e in H′, there are (k − i)! ordered k-tuples
that have e as their underlying (unordered) set and have the entries in i of their positions fixed.

For an (ordered) hypergraph H, we write Hv
p to denote the hypergraph obtained from H by

including each vertex of H with probability p independently of all other vertices, while including
each edge of H if and only if all of its vertices are kept. We use the superscript v to remind the
reader that it is the vertices that we keep with probability p rather than edges (as in the binomial
random hypergraph).

7.2. Heuristic for the probability threshold. The random Ramsey-type results we covered in
Section 2 (for the primes), in Section 4 (for graphs and integers) and in Section 5 (for abelian
groups) are formulated as follows: given a sequence (Fn)n∈N of objects that exhibit a Ramsey
property in a robust way (i.e., supersaturation), there is probability threshold p̂ = p̂(n) such that,
as n tends to infinity, the random binomial subset Fn,p retains the Ramsey property w.h.p. if
p = ω(p̂) and loses it w.h.p. if p = o(p̂). Our general 1-statement and 0-statement for hypergraphs
are formulated in a similar fashion.

Definition 7.6 (Probability threshold for hypergraphs). Given a sequence (Hn)n∈N of k-uniform
ordered hypergraphs and W ⊆ [k], let

fn,W :=

(
e(Hn,W )

v(Hn)

)− 1
|W |−1

and p̂(Hn) := max
W⊆[k]

|W |≥2

fn,W .(17)

Note that in Definition 7.6 we slightly abuse notation, writing Hn,W for the restriction HnW of
Hn.

Our choice of p̂(Hn) follows precisely the same heuristic as the probability threshold for the
random Ramsey problem for graphs and the integers (see Section 4). Namely, consider the expected
number of vertices and edges in the random hypergraph Hv

n,p. Assuming that the edges in Hv
n,p are

distributed uniformly in some way, if E(e(Hv
n,p)) is much less than E(v(Hv

n,p)) then intuitively the
edges in Hv

n,p should be fairly spread out. Therefore, one should be able to 2-colour the vertices of
Hv

n,p without creating monochromatic edges.
However, similarly to the random Ramsey problem for graphs and the integers, it may be the

case that the above reasoning is applicable to a ‘lower’ level in the following sense. For any W ⊆ [k],
a 2-colouring that does not yield monochromatic edges in Hv

n,W,p also does not yield monochromatic

edges in Hv
n,p. By the previous reasoning, if E(e(Hv

n,W,p)) is much less than E(v(Hv
n,W,p)) then one

should be able to 2-colour the vertices of Hv
n,W,p while avoiding any monochromatic edge in Hv

n,W,p,

and therefore in Hv
n,p. For any W ⊆ [k] with |W | ≥ 2, we have

E(v(Hv
n,W,p)) = pv(Hn) and E(e(Hv

n,W,p)) = p|W |e(Hn,W ).
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In particular, E(e(Hv
n,W,p)) ≤ E(v(Hv

n,W,p)) if and only if

p ≤
(
e(Hn,W )

v(Hn)

)− 1
|W |−1

= fn,W .

It is then natural to let p̂(Hn) be equal to the largest of the fn,W ’s.

7.3. General 1- and 0-statements for hypergraphs. We are now ready to state our general
1-statement and 0-statement for hypergraphs.

Theorem 7.7. Let r, k ≥ 2 be integers, and let b > 0. Let (Hn)n∈N be a sequence of k-uniform
ordered hypergraphs and set p̂n := p̂(Hn) as given by (17). Let (P1)–(P5) be the following properties.

(P1) Probabilities: p̂n → 0 and p̂nv(Hn) → ∞ as n → ∞.
(P2) Supersaturation: (Hn)n∈N is r-supersaturated.
(P3) Bounded degree: for any W ⊆ Y ⊆ [k], and any sufficiently large n ∈ N we have ∆W (Hn,Y ) ≤

b
e(Hn,Y )
e(Hn,W ) .

(P4) Bounded 1-degree: for any W ⊂ Y ⊆ [k] with |W | = 1 and any sufficiently large n ∈ N, we
have ∆W (Hn,Y ) ≤ b

e(Hn,Y )
v(Hn)

.

(P5) Bounded 2-degree: there exists a sequence (Xn)n∈N of subsets Xn ⊆ [k] with |Xn| ≥ 3 for
all n ∈ N such that

(18) fn,Xn = Ω(p̂n)

and

(19) ∆Wn(Hn,Xn) ·∆W ′
n
(Hn,Xn) · e(Hn,Xn) · (p̂n)3|Xn|−2−|W ′

n| = o(1)

for any sequences (Wn)n∈N and (W ′
n)n∈N with Wn,W

′
n ⊂ Xn, |Wn| = 2 and |W ′

n| ≥ 2.

If (P1)–(P4) hold, then there exists a constant C > 0 such that if qn ≥ Cp̂n then

lim
n→∞

P[Hv
n,qn is r-Ramsey] = 1.

If (P1) and (P3)–(P5) hold, then there exists a constant c > 0 such that if qn ≤ cp̂n then

lim
n→∞

P[Hv
n,qn is r-Ramsey] = 0.

All of our new random Ramsey-type results are essentially corollaries of Theorem 7.7. Indeed,
we use Theorem 7.7 to prove the random Rado lemma (Lemma 6.8) which we have in turn used to
prove the simplified random Rado lemma (Lemma 6.33). Further, the proofs of our new results for
the primes (Theorem 2.7), integer lattices (Theorem 5.1), groups (Theorem 5.3) and finite vector
spaces (Theorems 5.4 and 5.5) all apply one of these two random Rado lemmas (see Section 11).
This in turn implies that the random Rado theorem (Theorems 4.2 and 4.3) is a consequence of
Theorem 7.7. As we describe in Appendix A.3, the 1-statement of the random Ramsey theorem
(Theorem 4.1) can also be deduced from Theorem 7.7.

The reader should therefore take away the following philosophy. Theorem 7.7 is the most general
of our black box results, and its applications are not just restricted to systems of linear equations.
On the other hand, the random Rado lemma is more readily applicable to the setting of Ramsey
properties in arithmetic structures. The simplified random Rado lemma has the most restricted
hypothesis of these three results, but has the advantage that it explicitly produces the corresponding
probability threshold.

The proof of Theorem 7.7 is given in Section 8. The conditions required for the 1-statement
to hold, namely (P1)–(P4), are natural. Condition (P1) is needed to ensure the expected value
of v(Hv

n,p) tends to infinity. In Section 3.2, we already discussed the notion of supersaturation
(condition (P2)) and how it is typically required in random Ramsey-type results. (P3) and (P4)
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are recurring assumptions when applying the hypergraph container method, which we indeed use
to prove Theorem 7.7. They are also natural conditions to make to ensure our heuristic described
in Section 7.2 is valid. Indeed, (P3) and (P4) ensure that edges are fairly spread out in Hn and its
associated restrictions Hn,Y .

On the other hand, condition (P5) is more artificial: it arises naturally in the setting of abelian
groups but fails to hold in general. Indeed, while the 0-statement of the random Rado lemma
(Lemma 6.8) follows from Theorem 7.7, the 0-statement for random Ramsey theorem (Theorem 4.1)
does not. In Section 8 we explain how the 0-statement of Theorem 7.7 follows from the combination
of a deterministic lemma, stating that certain substructures must arise in the hypergraph assuming
it is r-Ramsey, and a probabilistic lemma, stating that such structures do not appear w.h.p. The
proof of the latter consists of bounding the expected number of the forbidden structures so that
the expectation tends to 0 as n goes to infinity. Condition (P5) is precisely designed to achieve
these bounds.

Returning to Theorem 4.1, its 0-statement is proved by using a much stronger deterministic
lemma than what we use here. In particular, this statement says that graphs with density at most
m2(H) can be 2-coloured so to avoid a monochromatic copy of H. Using this strong result, one
can prove a suitable corresponding probabilistic lemma without needing (P5) to be satisfied.

Note that the use of ordered hypergraphs in Theorem 7.7 is only really necessary for the 0-
statement. Indeed, we will deduce the 1-statement of Theorem 7.7 very quickly from a theorem
for unordered hypergraphs, Theorem 8.1. The proof of Theorem 8.1 is obtained via the method
of containers, which was first formalised in the setting of hypergraphs by Balogh, Morris and
Samotij [4] and independently by Saxton and Thomason [53]. The use of containers is now standard
in proofs of 1-statements for various Ramsey-type problems, see, e.g., [1, 4, 5, 24, 25, 31, 32, 43, 44,
58]. We emphasise that the proof of Theorem 8.1 is not particularly difficult. Indeed, a researcher
familiar with the container method would be able to come up with such a proof, and in particular,
our proof here is an easy adaption of the short proof of the 1-statement of Theorem 4.1 given by
Nenadov and Steger [44]. The proof of the 0-statement of Theorem 7.7 adapts a recent argument
of the second and third authors [33].

There are several results in the literature of a similar flavour to Theorem 7.7. Indeed, Friedgut,
Rödl and Schacht proved a similar result to our 1-statement; see [26, Theorem 2.5]. In their
hypothesis though, they require the sequence (Hn)n∈N to be R-supersaturated for some R much
larger than r. Furthermore, Aigner-Horev and Person [1, Theorem 2.8] proved an asymmetric
version of the 1-statement of Theorem 7.7, where one considers a sequence of r-tuples of hypergraphs
(Hn,1, . . . ,Hn,r)n∈N on the same vertex set Vn and ask for the probability threshold such that
whenever the vertices are r-coloured, there is some i ∈ [r] such that there is an edge in Hv

n,i,p which
is monochromatic in colour i. Note that their result requires some rather technical conditions on
the Hn,i which are not necessary in the symmetric setting.

Finally, in their recent paper on sharp Ramsey thresholds, Friedgut, Kuperwasser, Samotij and
Schacht [25, Theorem 2.1] gave general criteria for a sequence of hypergraphs (Hn)n∈N to have a
sharp threshold for being r-Ramsey. The threshold function in their theorem is Θ(fn,[k]), which
is the value of our p̂n in the case where W = [k] is the maximiser of the fn,W ’s: note that this
is indeed the case when considering the Schur property or sets avoiding monochromatic k-APs in
Zn; as mentioned at the end of Section 4, these are two of the specific settings for which sharp
thresholds are obtained in [25].
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8. Proof of Theorem 7.7

8.1. Proof of the 1-statement of Theorem 7.7. In this subsection we state a general 1-
statement, Theorem 8.1 for hypergraphs. We then show that the 1-statement for ordered hy-
pergraphs (Theorem 7.7) follows immediately from it. We prove Theorem 8.1 in Section 8.1.3.

8.1.1. The Ramsey property in supersaturated hypergraphs.

Theorem 8.1. Let r, k ≥ 2 be integers and let c > 0. Suppose that (Hn)n∈N is a sequence of
k-uniform hypergraphs. Let (pn)n∈N with pn ∈ (0, 1) be such that pn → 0 and pnv(Hn) → ∞ as
n → ∞, and for each sufficiently large n ∈ N and each ℓ ∈ [k], we have

∆ℓ(Hn) ≤ c(pn)
ℓ−1 e(Hn)

v(Hn)
.

Further, suppose that (Hn)n∈N is r-supersaturated. Then there exists C ≥ 1 such that for qn ≥ Cpn,

lim
n→∞

P[Hv
n,qn is r-Ramsey] = 1.

The proof of Theorem 8.1 is in the same spirit as that of the proof of the 1-statement of Theo-
rem 4.1 given by Nenadov and Steger in [44]. In particular, as mentioned in Section 7, it utilises
the hypergraph container method.

For a set A, let P(A) denote the powerset of A. For a hypergraph H, let Ir(H) be the collection
of r-tuples (I1, . . . , Ir) such that each Ii ∈ P(V (H)) is an independent set in H and Ii ∩ Ij = ∅ for
every i ̸= j ∈ [r]. For a sequence of hypergraphs (Hn)n∈N, to show that w.h.p. Hv

n,p is r-Ramsey, it
is equivalent to show that with probability tending to 0 the vertex set ofHv

n,p can be partitioned into
r parts such that each part induces an independent set, i.e., it admits an r-partition I ∈ Ir(Hn).
Bounding this probability by using a union bound over all r-tuples in Ir(Hn) does not work because
|Ir(Hn)| is too large. The power of a hypergraph container result is that one can instead use a
union bound over all ‘containers’, since informally such a result says that every independent set
lies in a container, and there are not too many containers overall.

8.1.2. Deducing the 1-statement of Theorem 7.7 from Theorem 8.1.

Proof of the 1-statement of Theorem 7.7. Let (Hn)n∈N be a sequence of k-uniform ordered hyper-
graphs satisfying (P1)–(P4). For all W ⊆ [k] with |W | ≥ 2 we have

p̂n = max
X⊆[n]

|X|≥2

(
e(Hn,X)

v(Hn)

) −1
|X|−1

≥
(
e(Hn,W )

v(Hn)

) −1
|W |−1

;

=⇒ e(Hn,W ) ≥ (p̂n)
−(|W |−1) · v(Hn).(20)

Therefore, for such W ⊆ [k] with |W | ≥ 2, and each n ∈ N sufficiently large, we have

∆W (Hn)
(P3)

≤ b
e(Hn)

e(Hn,W )

(20)

≤ b · (p̂n)|W |−1 · e(Hn)

v(Hn)
.(21)

For any W ⊆ [k] with |W | = 1, and each n ∈ N sufficiently large, we have

∆W (Hn)
(P4)

≤ b
e(Hn)

v(Hn)
= b · (p̂n)|W |−1 · e(Hn)

v(Hn)
.(22)

For each n ∈ N, let H′
n be the unordered restriction of Hn. We now check the hypothesis of

Theorem 8.1 with respect to (H′
n)n∈N and (pn)n∈N where pn := p̂n. (P1) implies pn → 0 and

pnv(H′
n) → ∞ as n → ∞. Remark 7.5 and (P2) imply (H′

n)n∈N is r-supersaturated. Finally,
equations (21), (22) and (16) yield the required upper bound on ∆ℓ(H′

n) where c := b · k!.
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Now, by Remark 7.5, the conclusion of Theorem 8.1 implies the 1-statement of Theorem 7.7.
□

8.1.3. Proof of Theorem 8.1. First, we introduce some notation. Let H be a hypergraph and let
F ⊆ P(V (H)). We say F is increasing if A ∈ F and A ⊆ B ⊆ V (H) imply B ∈ F . We write F
to denote the complement family of F , i.e., the family of sets A ∈ P(V (F)) which are not in F .
Finally, for ε ∈ (0, 1], we say that H is (F , ε)-dense if e(H[A]) ≥ εe(H) for every A ∈ F .

For this proof, when we consider r-tuples of sets, the r-tuples are always ordered. For two r-
tuples of sets I = (I1, . . . , Ir) and J = (J1, . . . , Jr) we write I ⊆ J if Ii ⊆ Ji for all i ∈ [r]; we define
I ∪ J := (I1 ∪ J1, . . . , Ir ∪ Jr). If X is a collection of sets, then we write X r for the collection of
r-tuples (X1, . . . , Xr) so that Xi ∈ X for all i ∈ [r].

We now state the following container result from [32], from which Theorem 8.1 will follow. Note
that Proposition 8.2 itself follows from the general hypergraph container theorem of Balogh, Morris
and Samotij [4, Theorem 2.2].

Proposition 8.2. [32, Proposition 3.2] For every k, r ∈ N and all c, ε > 0, there exists D > 0 such
that the following holds. Let H be a k-uniform hypergraph and let F ⊆ P(V (H)) be an increasing
family of sets such that |A| ≥ εv(H) for all A ∈ F . Suppose that H is (F , ε)-dense and p ∈ (0, 1)
is such that, for every ℓ ∈ [k],

∆ℓ(H) ≤ c · pℓ−1 e(H)

v(H)
.

Then there exists a family Sr ⊆ Ir(H) and functions f : Sr → (F)r and g : Ir(H) → Sr such that
the following conditions hold:

(1) If (S1, . . . , Sr) ∈ Sr then
∑r

i=1 |Si| ≤ Dp · v(H);
(2) for every (I1, . . . , Ir) ∈ Ir(H), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f(S) where S :=

g(I1, . . . , Ir).

Proof of Theorem 8.1. Note that it suffices to prove the theorem under the additional assumption
that c ≥ k. Pick ε > 0 so that, for all sufficiently large n ∈ N, Hn is (r, ε)-supersaturated. Define

ε′ :=
ε

3
, ε′′ :=

ε′k

c
and δ :=

ε

3c
.(23)

As c ≥ k we have that ε′′ ≤ ε′. Apply Proposition 8.2 with ε′′ playing the role of ε to obtain D > 0.
Since pn → 0 as n → ∞, if n is sufficiently large then

cDpn ≤ ε′.(24)

Next, we pick a sufficiently large constant C > 0 so that (†) in (25) below holds for all sufficiently
large n ∈ N.

Let n ∈ N be sufficiently large and set Fn := {F ⊆ V (Hn) : e(Hn[F ]) ≥ ε′e(Hn)}. Clearly Fn

is increasing and Hn is (Fn, ε
′)-dense, and thus also (Fn, ε

′′)-dense. Further, for all F ∈ Fn, we
have10

kε′e(Hn) ≤ ke(Hn[F ]) =
∑
y∈F

degHn[F ](y) ≤ |F |∆1(Hn) ≤
|F |c · e(Hn)

v(Hn)
,

where the last inequality uses the bound on ∆1(Hn) in the statement of Theorem 8.1. Rearranging,
we obtain

|F | ≥ ε′k

c
v(Hn)

(23)
= ε′′v(Hn),

10Here degHn[F ](y) denotes the number of edges y lies in within Hn[F ].
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for all F ∈ Fn. Thus Hn and Fn satisfy the hypothesis of Proposition 8.2 with ε′′ and pn playing
the roles of ε and p respectively. Apply Proposition 8.2 to obtain the family Sr ⊆ Ir(Hn) and
functions f : Sr → (Fn)

r and g : Ir(Hn) → Sr.
Now let qn ≥ Cpn and let Bqn be the event that Hv

n,qn is not r-Ramsey. It suffices to show that
P[Bqn ] → 0 as n → ∞. Since qn ≤ q′n ≤ 1 implies P[Bq′n ] ≤ P[Bqn ], we may assume that qn = Cpn.

Suppose that Hv
n,qn is not r-Ramsey, i.e., there exists a partition V (Hv

n,qn) = X1 ∪ · · · ∪Xr with
(X1, . . . , Xr) ∈ Ir(Hn). By Proposition 8.2, there exists S := (S1, . . . , Sr) := g(X1, . . . , Xr) ∈ Sr

such that S ⊆ (X1, . . . , Xr) ⊆ S ∪ f(S) and | ∪i∈[r] Si| ≤ Dpnv(Hn). For brevity, we write

f(S) =: (f(S1), . . . , f(Sr)), X(S) := ∪i∈[r]Si, Y (S) := ∪i∈[r]f(Si) and Z(S) := X(S) ∪ Y (S).11

Claim 8.3. We have |Z(S)| ≤ (1− δ)v(Hn).

Proof of the claim. Since Hn is (r, ε)-supersaturated, in any partition V (Hn) = V1 ∪ · · · ∪Vr there
exists i ∈ [r] such that e(Hn[Vi]) ≥ εe(Hn). Any vertex in Hn is contained in at most ∆1(Hn) edges,
and thus by deleting a set U of fewer than δv(Hn) vertices, we delete at most |U |∆1(Hn) < δce(Hn)
edges. Thus, given any induced subhypergraph of Hn with more than (1−δ)v(Hn) vertices, for any
partition W1 ∪ · · · ∪Wr of it, there exists i ∈ [r] such that e(Hn[Wi]) > (ε− δc)e(Hn) = 2ε′e(Hn)
edges (where the last equality follows from (23)).

Now we bound e(Hn[Si ∪ f(Si)]) for each i ∈ [r]. Since f(Si) ∈ Fn we have e(Hn[f(Si)]) <
ε′e(Hn). The number of edges in Hn[Si ∪ f(Si)] containing at least one vertex from Si is at most

|Si| ·∆1(Hn) ≤ Dpnv(Hn) · c
e(Hn)

v(Hn)

(24)

≤ ε′e(Hn).

Thus, in total we have e(Hn[Si ∪ f(Si)]) < 2ε′e(Hn). Overall we see that the set Z(S) can be
partitioned into r sets so that each set induces fewer than 2ε′e(Hn) edges in Hn. Combining with
the conclusion of the last paragraph, this implies that |Z(S)| ≤ (1− δ)v(Hn) as required.

■

As X1 ∪ · · · ∪ Xr is a partition of V (Hv
n,qn), we must have that X(S) ⊆ V (Hv

n,qn) ⊆ Z(S).
Crucially, this event depends uniquely on S and thus

P[Bqn ] ≤
∑
S∈Sr

P[X(S) ⊆ V (Hv
n,qn) ⊆ Z(S)] ≤

∑
S∈Sr

q|X(S)|
n (1− qn)

δv(Hn) ≤
∑
S∈Sr

q|X(S)|
n e−δqnv(Hn),

where the first inequality follows from the union bound, while the second inequality follows from
Claim 8.3.

Recall that for every S = (S1, . . . , Sr) ∈ Sr we have | ∪i∈[r] Si| ≤ Dpnv(Hn). We may bound
|Sr| from above as follows: choose a set of i ≤ Dpnv(Hn) vertices from V (Hn) and then take an

11Note the slight abuse of the f notation here.
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(ordered) partition of these vertices into r classes. Therefore we have,

P[Bqn ] ≤
∑
S∈Sr

q|X(S)|
n e−δqnv(Hn) ≤

Dpnv(Hn)∑
i=0

(
v(Hn)

i

)
riqine

−δqnv(Hn)

≤ (Dpnv(Hn) + 1)(rqn)
Dpnv(Hn)

(
v(Hn)

Dpnv(Hn)

)
e−δqnv(Hn)

≤ (Dpnv(Hn) + 1)

(
rqnev(Hn)

Dpnv(Hn)

)Dpnv(Hn)

e−δqnv(Hn)

= (Dpnv(Hn) + 1)

(
reC

D

)D
C
qnv(Hn)

e−δqnv(Hn)

(†)
≤ e−

δ
2
qnv(Hn).(25)

Note that the equality follows since qn = Cpn. Now using that pnv(Hn) and hence qnv(Hn) tends
to infinity as n → ∞, we have P[Bqn ] → 0 as n → ∞, as required. □

8.1.4. A remark on container theorems for solutions to systems of linear equations in abelian groups.
Note that we could have used Proposition 8.2 to obtain a container theorem for solutions to systems
of linear equations in abelian groups, and then used this directly to prove the 1-statement of
Lemma 6.8. Saxton and Thomason also gave a container theorem in this setting; see Theorem 4.2
in [54]. However, we do not use their result, as they give an alternative definition of mG(A) which
we now state. (See Definitions 1.6 and 4.1 of their paper.) First define an ℓ× k matrix A to have
full image if given any b ∈ Gℓ, there exists x ∈ Gk such that Ax = b. Now if G is a finite abelian
group which is not a field, define m′

G(A) := ℓ+t−1
t−1 , where t is the maximum j for which AW has

full image for all W ⊆ [k] with |W | = j.12

One can show that mG(A) ≤ m′
G(A) for all finite abelian groups G and full image matrices A

such that (A,G) is abundant. Further, there exist examples for which this inequality is strict. For
example, consider the matrix

A :=

(
1 1 1 0 0
0 1 1 1 1

)
together with any finite abelian group G which is not a field, for example Z6. We have that (A,G)
is abundant and in particular t ≥ 2. By deleting the first three columns we obtain a submatrix
which does not have full image, and so t = 2 and m′

G(A) = 3. However, under our definition, it
is easy to compute that mG(A) = 2. (Indeed, we have that rankG(AW ) is equal to the number

of distinct columns in W , except for when there are 3 distinct columns, in which case it equals
2.) Consequently, using Theorem 4.2 from [54] for such an example would lead to a suboptimal
1-statement.

8.2. Proof of the 0-statement of Theorem 7.7. The following proof adapts an argument of
the second and third authors [33] (which in turn builds on work from [50]). Suppose (Hn)n∈N
is a sequence of k-uniform ordered hypergraphs that satisfies conditions (P1) and (P3)–(P5) of
Theorem 7.7. In particular, (P5) yields a sequence (Xn)n∈N.

Let c > 0 be sufficiently small and pick qn ≤ cp̂(Hn). Our aim is to show that w.h.p. there
is a red-blue colouring of the vertices of Hv

n,Xn,qn
so that there are no monochromatic edges. By

12Note that Saxton and Thomason only consider G for which t ≥ 2, and so m′
G(A) is well-defined in this case.
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definition ofHv
n,Xn,qn

, such a vertex colouring also does not produce a monochromatic edge inHv
n,qn ,

so this would prove the 0-statement of Theorem 7.7. We may further assume that qn = cp̂(Hn).
We say an (ordered) hypergraph is Rado if it has the property that however its vertices are red-

blue coloured, there is always a monochromatic edge.13 Furthermore, a Rado hypergraph is Rado
minimal if it is no longer Rado under the deletion of any edge. If Hv

n,Xn,qn
is Rado, fix a spanning

subhypergraph H of Hv
n,Xn,qn

which is Rado minimal. Otherwise set H := ∅. So it suffices to prove

that w.h.p. H = ∅. We will do this by combining two lemmas;

• A deterministic lemma, which states that if H is Rado then it must contain one of a finite
list of subhypergraphs.

• A probabilistic lemma, which states that w.h.p. Hv
n,Xn,qn

, and hence H, does not contain
any of these subhypergraphs.

Before we state these two lemmas, we provide some motivation and state some required definitions.
The first step is to build some structure in H. The following claim is an analogue of Proposi-

tion 7.4 from [50] and Claim 1 from [33]. The proof of the claim follows in the same manner.

Claim 8.4. Suppose H is non-empty, i.e., H is a Rado minimal ordered hypergraph. Then for
every edge a of H and every vertex v ∈ a, there exists an edge b in H such that a ∩ b = v.

Proof. Let a be an edge, and let v ∈ a be such that for all edges b such that v ∈ b, there exists
another vertex w ∈ a such that w ∈ b. Since H is Rado minimal, it is possible to red-blue colour
the vertices of H − a so that there are no red or blue edges. Thus once we add a back, it must
be the case that a is (w.l.o.g.) red since H is Rado. But then change the colour of v to blue. If
there is a monochromatic edge now, it must be a blue edge which contains v. However all edges
containing v also contain another vertex from a which is red, thus we obtain a contradiction. □

Using the above claim, one can build up more and more structure in H. Eventually, one can
obtain enough structure so that H contains one of the subhypergraphs listed in Lemma 8.5 below.
We now define some hypergraph notation in order to state it. In what follows, t is a positive integer.
Further, in these definitions we just view edges as sets of vertices (i.e., we are not concerned about
the order of an edge).

• A simple path of length t consists of edges e1, . . . , et such that |ei ∩ ej | = 1 if j = i+ 1, and
|ei ∩ ej | = 0 if j > i+ 1.

• A fairly simple cycle of length t (t ≥ 2) consists of a simple path e1, . . . , et and an edge e0
such that |e0 ∩ e1| = 1; |e0 ∩ ei| = 0 for 2 ≤ i ≤ t− 1; |e0 ∩ et| = s ≥ 1.

• A simple cycle is a fairly simple cycle with s = 1.
• A simple path P = e1, . . . , et in H is called spoiled if there exists an edge e∗ ∈ E(H) such
that e∗ ̸∈ E(P ), e∗ ⊆ V (P ) and |e∗ ∩ e1| = 1 where the vertex e∗ ∩ e1 does not lie in e2.

• A subhypergraph H0 of H is said to have a handle if there is an edge e∗ in H such that
|e∗| > |e∗ ∩ V (H0)| ≥ 2.

• A faulty simple path of length t (t ≥ 3) is a simple path e1, . . . , et together with two edges
ex and ez such that e1, e2, ex form a simple cycle with |ex ∩ ei| = 0 for i ≥ 3; et−1, et, ez
form a simple cycle with |ez ∩ ei| = 0 for i ≤ t − 2; each edge has size 3; the edges ex and
ez may or may not be disjoint.

• A bad triple is a set of three edges e1, ex, ey, where e1 ∩ ex = {x}, e1 ∩ ey = {y}, x ̸= y, and
|ex ∩ ey| ≥ 2.

• A bad tight path is a set of three edges e1, e2, e3 each of size 3 such that |e1 ∩ e2| = 2,
|e1 ∩ e3| = 1 and |e2 ∩ e3| = 2.

We also require the following definition in the proof of Lemma 8.5.

13So being Rado is equivalent to being 2-Ramsey.
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• A Pasch configuration is a set of four edges e1, e2, e3, e4 of size 3 such that vij = ei ∩ ej is
a distinct vertex for each pair i < j.

Write N := n · qn = E(v(Hv
n,Xn,qn

)) for brevity.

Lemma 8.5 (Deterministic lemma). If H is non-empty then it contains at least one of the following
structures:

(i) A simple path of length at least logN .
(ii) A spoiled simple path of length at most logN .
(iii) A fairly simple cycle of length at most logN , with a handle.
(iv) A faulty simple path of length at most logN .
(v) A bad triple.
(vi) A bad tight path.

Lemma 8.6 (Probabilistic lemma). If c > 0 is sufficiently small then w.h.p. Hv
n,Xn,qn

does not

contain any of the hypergraphs (i)–(vi) listed in Lemma 8.5.

These two results immediately prove the 0-statement of Theorem 7.7.

8.2.1. Proof of Lemma 8.5. Suppose for a contradiction that H is non-empty but does not contain
any of the structures defined in (i)–(vi). Note that H is an |Xn|-uniform ordered hypergraph, and
|Xn| ≥ 3 by (P5).

Let P = e1, . . . , et be the longest simple path in H. As we have no simple paths of length at
least logN , we have t ≤ logN . By Claim 8.4, t ≥ 2. Let x, y be two vertices which belong only to
e1 in P , and let ex and ey be two edges of H such that ez ∩ e1 = {z} for z = x, y (such ex, ey exist
by Claim 8.4). By the maximality of P , we have hz := |V (P ) ∩ ez| ≥ 2 for z = x, y.

If hz = |Xn| for some z = x, y, then P together with ez is a spoiled simple path, a contradiction.
Otherwise, let iz := min{i ≥ 2 : ez ∩ei ̸= ∅} for z = x, y, and assume without loss of generality that
iy ≤ ix. We know e1, . . . , eix , ex must not form a fairly simple cycle for which ey is a handle. This
implies ey ⊆ e1 ∪ · · · ∪ eix ∪ ex. In particular, this means ex must contain all those vertices in ey
which do not lie on P . If |ey ∩ ex| ≥ 2 then e1, ex and ey form a bad triple, a contradiction. Thus,
ey ∩ ex consists of precisely one vertex vxy (and vxy lies outside of P ). Now consider e1, . . . , eiy , ey.
This is a fairly simple cycle that ex intersects in at least two vertices (namely x and vxy). Thus,
we obtain a fairly simple cycle with a handle unless all the vertices in ex lie in e1, . . . , eiy , ey. In
particular, ex ⊆ (e1 ∪ eiy ∪ ey) as iy ≤ ix. This in turn implies eiy = eix . Indeed, otherwise ex
must contain one vertex from e1 and |Xn| − 1 ≥ 2 vertices from ey, a contradiction as we already
observed that ex only intersects ey in one vertex.

In summary, we have that ix = iy and ex and ey intersect in a single vertex vxy outside of
P . As mentioned in the last paragraph, we must have ex ⊆ (e1 ∪ eiy ∪ ey). Similarly, we have
that e1, . . . , eix , ex form a fairly simple cycle for which ey is a handle (a contradiction) unless
ey ⊆ (e1 ∪ eix ∪ ex).

The two previous inequalities imply ex \ {x, vxy} ⊆ eiy and ey \ {y, vxy} ⊆ eix . Recall here that
eix = eiy . We must have that |eix \ (ex ∪ ey)| ≥ 1; indeed, otherwise either ex or ey contains the
vertex eix ∩ eix−1, which either contradicts the minimality of ix or iy. Note that ex \ {x, vxy} and
ey \{y, vxy} are disjoint, they have size |Xn|−2 each, and their union is a strict subset of eix . Thus
2(|Xn| − 2) ≤ |eix | − 1 = |Xn| − 1. This implies |Xn| ≤ 3, and so |Xn| = 3.

If ix ≥ 3 then e1, ex, ey form a fairly simple cycle for which eix is a handle (since |eix\(ex∪ey)| ≥ 1
and e1 ∩ eix = ∅), a contradiction. Thus we have that ix = 2, and so e1, ex, ey, eix form a Pasch
configuration.

Now repeat the maximal path process which we did for e1 to find ex and ey, except from the other
end of the path. That is, there must exist edges ez and ew such that ez ∩ et = {z}, ew ∩ et = {w},
where z, w are vertices in et that are not in et−1. By repeating the previous case analysis, we arrive

36



at the conclusion that et−1, et, ez, ew must also form a Pasch configuration where ez ∩ ew is a vertex
vzw outside of P . If t ≥ 3, then e1, . . . , et, ex, ez together form a faulty simple path. Hence we must
have t = 2.

If the union of these two Pasch configurations contains 7 vertices (i.e., vxy ̸= vzw), then e1, e2, ex
form a fairly simple cycle for which ez is a handle. So we now suppose that the two Pasch config-
urations cover the same 6 vertices. If we do not have {ex, ey} = {ez, ew} then ex, ez, ey form a bad
tight path. Hence we do have equality and the two Pasch configurations we found are identical.

Relabel the edges and vertices as in the definition of a Pasch configuration. We observe that H
cannot be just these four edges: such a hypergraph is not Rado, e.g., colour v12, v13, v34 red, and
the remaining vertices blue. Also, by definition of Rado minimal, this cannot be a component of H.
That is, there is an edge e5 in H, where e5 ̸= ei for i ∈ [4], and e5 contains s vertices from inside
the Pasch configuration, where s ≥ 1. If s = 1 then w.l.o.g. e5 contains v1,2; then e5, e1, e3 is a
simple path of length 3, a contradiction to the longest path in H of length 2 found earlier. If s = 2
then whichever two vertices of the Pasch configuration e5 contains, taking any of the simple cycles
of the Pasch configuration together with e5 gives a (fairly) simple cycle with a handle. If s = 3,
first suppose e5 = {v1,2, v1,3, v2,3}. Then e1, e5, e2 is a bad tight path. If e5 = {v1,2, v1,3, v2,4}, then
again e1, e5, e2 is a bad tight path. For all other 3-sets of vertices e5 could contain, a symmetrical
argument shows that we find a bad tight path. Since all three values of s give a contradiction, this
concludes the proof. □

8.2.2. Proof of Lemma 8.6. Let c > 0 be sufficiently small and n ∈ N be sufficiently large. Recall
that qn = cp̂n(Hn). Given an |Xn|-uniform ordered hypergraph G, we will obtain an upper bound
on the expected number of copies of G in Hv

n,Xn,qn
by obtaining upper bounds on the expected

number of possible assignments of vertices v ∈ V (Hv
n,Xn,qn

) to an edge in which some vertices are
already fixed, and others are to be assigned. To make this precise, we need some notation. Given
an edge order e1, . . . , et of E(G), we call a vertex v new in ei if v ∈ ei but v ̸∈ ej for all j < i.
Otherwise we call v ∈ ei old in ei. Clearly (provided G has no isolated vertices) each vertex in G is
new in one edge, and old in any subsequent edge that it appears in. Now, for 0 ≤ w ≤ |Xn| − 1, we
will shortly provide an upper bound Pw on the expected number of edges in Hv

n,Xn,qn
that contain

a fixed set of w (old) vertices; crucially, Pw is independent of the exact set of w vertices considered.
Then one can obtain an upper bound on the expected number of copies of G in Hv

n,Xn,qn
directly

as some function of the Pw’s (which will depend on G). We first obtain bounds for these Pw’s.

Given a fixed set of w vertices in Hv
n,Xn,qn

, there are
(|Xn|

w

)
w! ≤ |Xn|! ≤ k! ways of selecting

some W ⊆ Xn with |W | = w and picking an ordering v1, . . . , vw of these w vertices. Then, there
are at most ∆W (Hn,Xn) choices for an edge e in Hn,Xn such that eW = (v1, . . . , vw). Each vertex
in Hn,Xn is included with probability qn in Hv

n,Xn,qn
, thus we obtain the upper bound

Pw = (k!) ·
(

max
W⊆Xn, |W |=w

∆W (Hn,Xn)

)
· (qn)|Xn|−w.

For w = 0, we will use the bound

P0 ≤ e(Hn,Xn) · (qn)|Xn| ≤ n|Xn| · (qn)|Xn| ≤ Nk.

We now use conditions (P3), (P4) and (P5) to bound Pw further for values of w greater than 0.
First, condition (P4) implies that,

P1 ≤ (k!) · b ·
e(Hn,Xn)

v(Hn)
· (qn)|Xn|−1.
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By (18) and since n ∈ N is sufficiently large, we have that fn,Xn ≥ ηp̂n(Hn) for some constant
η > 0. It follows from the above that

P1 ≤ (k!) · b ·
e(Hn,Xn)

v(Hn)
· (cp̂n(Hn))

|Xn|−1

(18)

≤ (k!) · b ·
e(Hn,Xn)

v(Hn)
· (fn,Xn)

|Xn|−1 · (c/η)|Xn|−1

(17)
= (k!) · b · (c/η)|Xn|−1 ≤

√
c,

where the last inequality follows from c > 0 being sufficiently small.
Similar calculations hold for higher values of w. Recall we have qn = cp̂n ≥ cfn,W for every

W ⊆ [k] with |W | ≥ 2. Let 2 ≤ w ≤ |Xn| − 1 and pick W ⊂ Xn with |W | = w maximising
∆W (Hn,Xn). As n ∈ N is sufficiently large we have

Pw

(P3)

≤ (k!) · b ·
e(Hn,Xn)

e(Hn,W )
· (qn)|Xn|−w = (k!) · b ·

e(Hn,Xn)

v(Hn)
· (qn)|Xn|−1 · v(Hn)

e(Hn,W )
· (qn)−(w−1)

≤
(
(k!) · b · (c/η)|Xn|−1

)
· v(Hn)

e(Hn,W )
· (cfn,W )−(w−1)

(17)
=
(
(k!) · b · (c/η)|Xn|−1

)
· c−(w−1) ≤ (k!) · b · c · η−(|Xn|−1) ≤

√
c,

where the last two inequalities follow from |Xn| > w and c > 0 being sufficiently small.
Finally, for any 2 ≤ w ≤ |Xn| − 1, we have that P0 · P2 · Pw is at most

(k!)2·e(Hn,Xn) ·
(

max
W⊆Xn,|W |=2

∆W (Hn,Xn)

)
·
(

max
W⊆Xn,|W |=w

∆W (Hn,Xn)

)
· (qn)3|Xn|−2−w

(19)
= o(1).

For brevity, let P≥w := max
i≥w

Pi. To recap, we have shown that

(26) P0 ≤ Nk, P≥1 ≤
√
c and P0 · P2 · P≥2 = o(1).

To prove the lemma it suffices to show that, for each set of hypergraphs stated in Lemma 8.5, the
expected number of such structures in Hv

n,Xn,qn
is o(1). Indeed, then by Markov’s inequality w.h.p.

Hv
n,Xn,qn

does not contain any of these structures. In each case, we will find an edge order and

then use (26) to bound the expected number of these structures. Let G be an ordered hypergraph.
Given an edge order e1, . . . , et of E(G), we call an edge ei

• initial if all its vertices are new;
• normal if it has precisely one old vertex;
• 2-bad if it has precisely two old vertices;
• bad if it has at least two and at most |Xn| − 1 old vertices.

Now observe the bounds P0, P1, P2 and P≥2 correspond to upper bounds on the expected number
of ways one can place an initial, normal, 2-bad and bad edge in Hv

n,Xn,qn
respectively.

Case (i). Note that for this case it suffices to show that w.h.p. Hv
n,Xn,qn

contains no simple path

of length exactly s := ⌈logN⌉; thus we only need to consider the expected number of simple paths
of length s. Let e1, . . . , es be the simple path. Here, e1 is initial, and all other edges are normal.
Thus, we can bound the expected number of simple paths of length s in Hv

n,Xn,qn
by

P0 · P s−1
1

(26)

≤ Nk · (
√
c)s−1 ≤ (

√
c)(logN)−1 ·Nk (P1)

= o(1),
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which follows since c > 0 is sufficiently small.

Case (ii). Let e1, . . . , et be the simple path and let e∗ be the spoiling edge. Choose i to be the
smallest i ≥ 2 such that |ei ∩ e∗| ≥ 1. Consider the edge order e∗, ei, ei−1, . . . , e1, ei+1, . . . , et. Here
e∗ is initial. If |ei ∩ e∗| ≥ 2 then ei is bad, the ej for 2 ≤ j ≤ i− 1 are normal, e1 is 2-bad, and each
ej for i+ 1 ≤ j ≤ t is normal or bad. If |ei ∩ e∗| = 1 then ej for 2 ≤ j ≤ i are normal, e1 is 2-bad,
and each ej for i + 1 ≤ j ≤ t is normal or bad. In particular, for at least one such j, ej is bad,
since e∗ must intersect at least one of these edges (as |Xn| ≥ 3). In either case, we have found an
edge order with one initial edge, one 2-bad edge, at least one further bad edge, and all other edges
normal or bad edges. We have t ≤ logN and there are at most tk choices for the location on the
simple path of each vertex of e∗ intersecting it. Overall, the expected number of spoiled paths of
length at most logN is at most

logN∑
t=2

(tk)k · P0 · P t−2
≥1 · P2 · P≥2

(26)

≤
logN∑
t=2

(tk)k · (
√
c)t−2 · o(1) = o(1),

where the last inequality holds as c > 0 is sufficiently small.

Case (iii). Let e1, . . . , et, e0 be the fairly simple cycle and let e∗ be the handle. Consider the edge
order e0, et, . . . , e1, e

∗. Here e0 is initial, et is normal or bad, the ej for 2 ≤ j ≤ t − 1 are normal,
e1 is 2-bad and e∗ is bad. We have t ≤ logN and there are at most tk choices for the location on
the fairly simple cycle for the choice of where each of the u vertices of the handle e∗ intersect it,
where 2 ≤ u ≤ k − 1. Overall, the expected number of fairly simple cycles of length at most logN
with a handle is at most

logN∑
t=2

k−1∑
u=2

(tk)u · P0 · P t−1
≥1 · P2 · P≥2

(26)

≤
logN∑
t=2

k−1∑
u=2

(tk)u · (
√
c)t−1 · o(1) = o(1).

Case (iv). Let e1, . . . , et, ex, ez be the faulty simple path. Consider the edge order e1, ex, e2, . . . ,
et−1, ez, et. Here e1 is initial, e2 and et are 2-bad, ez is normal or 2-bad (depending whether ez
intersects ex), and all other edges are normal. We have t ≤ logN , and a choice of whether ex and
ez intersect or not. Overall, we can bound the expected number of faulty simple paths of length at
most logN by

logN∑
t=3

P0 · P t−1
1 · P 2

2 +

logN∑
t=3

P0 · P t−2
1 · P 3

2

(26)

≤ 2

logN∑
t=3

(
√
c)t−1 · o(1) = o(1).

Case (v). Let e1, ex, ey be the bad triple. Consider the edge order ex, ey, e1. Here, ex is initial, ey
is bad and e1 is 2-bad. We have a choice of the size of t := |ex ∩ ey|. Overall, the expected number
of bad triples is at most

k−1∑
t=2

P0 · P2 · P≥2
(26)
= o(1).

Case (vi). Let e1, e2, e3 be a bad tight path. In this edge order, e1 is initial, and e2 and e3 are
2-bad. Overall, we can bound the expected number of bad tight paths by

P0 · P 2
2

(26)
= o(1).

□
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9. Proof of the random Rado lemma

Before we deduce the random Rado lemma (Lemma 6.8) from Theorem 7.7, we next prove
Lemma 6.9.

Proof of Lemma 6.9. We first prove the second statement of the lemma.

Claim 9.1.

lim
n→∞

|k -SolASn
([k])|

|SolASn
([k])|

= 1.

Proof of the claim. We bound from above the number of non k-distinct solutions in SolASn
([k]). For

each such solution, we have |Sn| choices for the repeated entry. Using conditions (A3) and (A6),
for n sufficiently large, we obtain∑

z∈Sn

∑
W⊆[k]

|W |=2

|SolASn
((z, z),W, [k])|

(A3)

≤ B
∑
z∈Sn

∑
W⊆[k]

|W |=2

| SolASn
([k])|

|SolASn
(W )|

= B|Sn|
∑

W⊆[k]

|W |=2

| SolASn
([k])|

|SolASn
(W )|

(A6)
= o(|SolASn

([k])|).

In other words, | SolASn
([k])|− |k -SolASn

([k])| = o(|SolASn
([k])|) which immediately implies the claim.

■

Next, we prove the inequality stated in the lemma. Let Y ⊆ [k]. Note that k -SolASn
(Y ) ⊆

SolASn
(Y ), so the upper bound follows trivially. By definition, if y ∈ k -SolASn

(Y ) then there exists

some x ∈ k -SolASn
([k]) such that xY = y. Thus,

|k -SolASn
(Y )| · max

y0∈S|Y |
|SolASn

(y0, Y, [k])| ≥ |k -SolASn
([k])|.

As (A,Sn) is B-extendable, for n large the above implies

|k -SolASn
(Y )| ·

B|SolASn
([k])|

|SolASn
(Y )|

≥ |k -SolASn
([k])|.

Rearranging gives

|k -SolASn
(Y )|

|SolASn
(Y )|

≥
|k -SolASn

([k])|
B| SolASn

([k])|
≥ 1

2B
,

where the last inequality holds for n sufficiently large by Claim 9.1. □

Lemma 6.8 follows easily from Theorem 7.7. We use Lemma 6.9 to restrict our attention to
k-distinct solutions.

Proof of Lemma 6.8. Let r ≥ 2, k ≥ 3 and ℓ ≥ 1 be integers. Let (Sn)n∈N be a sequence of finite
subsets of abelian groups and A be an ℓ × k integer matrix. Suppose that conditions (A1)–(A6)
from Lemma 6.8 hold. Let Hn be the k-uniform ordered hypergraph with vertex set Sn, and edge
set consisting of all k-distinct solutions x = (x1, . . . , xk) to Ax = 0 in Sn.

Let Y ⊆ [k]. Observe that e(Hn,Y ) = |k -SolASn
(Y )|. As (A3) and (A6) hold, Lemma 6.9 implies

that

(27) e(Hn,Y ) = Θ(|SolASn
(Y )|) and e(Hn) ∼ |SolASn

([k])|.
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It follows that, for |Y | ≥ 2,

(28) fn,Y =

(
e(Hn,Y )

v(Hn)

)− 1
|Y |−1

= Θ

(
| SolASn

(Y )|
|Sn|

)− 1
|Y |−1

= Θ(pY (A,Sn))

and thus p̂(Hn) = Θ(p̂(A,Sn)). We now prove that conditions (P1)–(P5) hold.

(P1): Since p̂n(Hn) = Θ(p̂n(A,Sn)) and |Sn| = v(Hn), (A1) implies that (P1) holds.
(P2): Since e(Hn) = |k -SolASn

([k])| ∼ | SolASn
([k])| by (27), (A2) implies that (P2) holds.

(P3): For any W ⊆ Y ⊆ [k] we have

∆W (Hn,Y ) ≤ max
w0∈S|W |

n

{|SolASn
(w0,W, Y )|}

(A3)

≤ Θ

(
|SolASn

(Y )|
| SolASn

(W )|

)
(27)

≤ Θ

(
|e(Hn,Y )|
|e(Hn,W )|

)
,

and so (P3) holds.
(P4): Pick W ⊂ Y ⊆ [k] with |W | = 1. We have

∆W (Hn,Y ) ≤ max
w0∈Sn

|SolASn
(w0,W, Y )| (A4)

= O

(
|SolASn

(Y )|
|Sn|

)
(27)
= O

(
e(Hn,Y )

v(Hn)

)
.

(P5): Pick a sequence (Xn)n∈N of subsets Xn ⊆ [k] with |Xn| ≥ 3 for all n ∈ N as in Definition 6.6.
Note that

fn,Xn =

(
e(Hn,Xn)

v(Hn)

)− 1
|Xn|−1 (28)

= Θ

(
SolASn

(Xn)

|Sn|

)− 1
|Xn|−1

= Θ(p̂(A,Sn)) = Θ(p̂(Hn)),

and so fn,Xn = Ω(p̂(Hn)). It remains to verify equation (19). Pick sequences (Wn)n∈N and
(W ′

n)n∈N with Wn,W
′
n ⊂ Xn, |Wn| = 2 and |W ′

n| ≥ 2. Then

∆Wn(Hn,Xn) ·∆W ′
n
(Hn,Xn) · e(Hn,Xn) · p̂(Hn)

3|Xn|−2−|W ′
n|

(P3),(27)

≤ Θ

 |SolASn
(Xn)|

| SolASn
(Wn)|

·
| SolASn

(Xn)|
|SolASn

(W ′
n)|

· | SolASn
(Xn)| ·

(
|SolASn

(Xn)|
|Sn|

)− 3|Xn|−2−|W ′
n|

|Xn|−1


= Θ

 |Sn|2

| SolASn
(Wn)|

· |Sn|
|SolASn

(W ′
n)|

·

(
| SolASn

(Xn)|
|Sn|

) |W ′
n|−1

|Xn|−1


= Θ

(
|Sn|2

|SolASn
(Wn)|

·
(
pW ′

n
(A,Sn)

pXn(A,Sn)

)|W ′
n|−1

)
(A5)
= o(1).

As conditions (P1)–(P5) are satisfied, by Theorem 7.7 there exist constants c, C > 0 such that

lim
n→∞

P[Hv
n,qn is r-Ramsey] =

{
0 if qn ≤ cp̂(Hn);

1 if qn ≥ Cp̂(Hn).

Note that Hv
n,qn is r-Ramsey if and only if Sn,qn is (A, r)-Rado. Furthermore, we have p̂(Hn) =

Θ(p̂(A,Sn)) and so there exist constants c0, C0 such that

lim
n→∞

P[Sn,qn is (A, r)-Rado] =

{
0 if qn ≤ c0 · p̂(A,Sn);

1 if qn ≥ C0 · p̂(A,Sn).

□
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10. Proof of two auxiliary results

In this section, we prove two auxiliary results. Lemma 2.3 gives an upper bound on the number
of k-APs in Pn containing a fixed prime number and it is used in the proofs of Theorem 2.2 and
Theorem 2.7. Theorem 3.9 is a supersaturation result for integer lattices which is used to prove
Theorem 5.1.

10.1. Proof of Lemma 2.3. We make use of the following sieve result.

Lemma 10.1 ([60]). Let k ∈ N with k ≥ 2 and let q be a prime number. For each prime p ≥ k

with p ̸= q, let Ep be the union of k − 1 residue classes modulo p. Then |E(n)| = O(n/ logk−1 n)
where

E(n) := [n] \
⋃

p ̸= q prime
k≤p≤

√
n

Ep.

Lemma 10.1 is a weakened version of Theorem 32 from [60]. A precise explanation of how to
deduce Lemma 10.1 from the original statement in [60] can be found in Appendix A.1.

Proof of the Lemma 2.3. Let k, ℓ, n and q be as in the statement of Lemma 2.3. Let A(n) be the
set of k-APs in Z such that the ℓth term of the progression is q and the common difference is an
integer between 1 and n inclusive. In particular, we have |A(n)| = n. Furthermore, the collection
of k-APs in Pn whose ℓth element is q is a subset of A(n). Thus, it suffices to show that the number

of k-APs in A(n) consisting entirely of primes is O(n/ logk−1 n).
For every prime number p ̸= q, let Ap be the set of k-APs in A(n) with at least one term divisible

by p. Consider the set

E(n) := A(n) \
⋃

p ̸= q prime
k≤p≤

√
n

Ap.

In other words, E(n) is the set of all k-APs in A(n) such that no term of the progression is
divisible by a prime between k and

√
n (except q). In particular, E(n) contains all k-APs in A(n)

whose terms (other than perhaps q) are all primes greater than
√
n. Conversely, the number of

k-APs in A(n) containing at least one prime p′ ≤
√
n where p′ ̸= q is o(n/ logk−1 n). This follows

from (i) the fact that there are at most k arithmetic progressions of length k containing both q (in

the ℓth position) and a fixed prime p ̸= q and as (ii) P√
n ∼ 2

√
n

logn by the prime number theorem.

By the observations above, the number of k-APs in A(n) consisting entirely of primes is at most

o(n/ logk−1 n) + |E(n)|; so it suffices to prove that |E(n)| = O(n/ logk−1 n).

Now we reformulate the problem in terms of common differences. Since the ℓth term of all k-APs
in A(n) is equal to q, each k-AP in A(n) is uniquely determined by its common difference. For every
prime p ̸= q, let Ep be the set of all common differences of k-APs in Ap. It follows immediately
that |Ep| = |Ap|. Furthermore, the set of common differences of k-APs in A(n) is exactly [n] by
definition. Thus we have |E(n)| = |E(n)| where

E(n) := [n] \
⋃

p ̸= q prime
k≤p≤

√
n

Ep.

Applying Theorem 10.1 yields |E(n)| = |E(n)| = O(n/ logk−1 n), as required. The only assump-
tion of Theorem 10.1 that needs to be checked is that, for every prime p ≥ k with p ̸= q, Ep is the
union of k − 1 residue classes modulo p.

Let a ∈ [n] and bi := q + a(i − ℓ) for every i ∈ [k]. Then, a ∈ Ep if and only if (b1, . . . , bk) is
a k-AP in Ap, i.e., p divides some bi. Now, p divides bi = q + a(i − ℓ) if and only if i ̸= ℓ and
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a ≡ −q(i − ℓ)−1 (mod p). Note that i − ℓ ̸= 0 is always invertible modulo p since |i − ℓ| < k ≤ p.
It follows that Ep = {a ∈ [n] : a ≡ −q(i − ℓ)−1 (mod p), i ∈ [k], i ̸= ℓ}. Hence, Ep is the set of
precisely k − 1 residue classes modulo p, as required. □

10.2. Supersaturation in the integer lattice. To prove Theorem 3.9, we first need a few inter-
mediate results. Throughout this subsection, we will repeatedly use the following fact.

Fact 10.2. Let d, ℓ, k ∈ N and A be an ℓ × k integer matrix of rank ℓ. Let b ∈ (Zd)ℓ and S ⊆ Zd

be a finite subset. The number of solutions to Ax = b in S is at most |S|k−ℓ.

Proof. As A has rank ℓ, there are ℓ linearly independent columns in A, w.l.o.g. the first ℓ columns.
We bound the number of solutions x = (x1, . . . , xk) to Ax = 0 in S as follows. There are at most
|S|k−ℓ choices for xℓ+1, . . . , xk. For each such choice, x′ := (x1, . . . , xℓ) is a solution to A′x′ = b′ in
S ⊆ Zd where A′ is the ℓ× ℓ matrix consisting of the first ℓ columns of A and b′ is some vector in
(Zd)ℓ. Since the columns of A′ are linearly independent, there is at most one solution to A′x′ = b′

in Zd. Thus, there are at most |S|k−ℓ solutions to Ax = 0 in S, as required. □

The following lemma essentially states that if a supersaturation result holds for S ⊆ Zd then it
also holds for S′ ⊆ S, provided that S′ contains almost all elements of S.

Lemma 10.3. Let r, d, ℓ, k ∈ N and γ > 0. Let A be a partition regular ℓ × k integer matrix of
rank ℓ and let S and S′ be finite sets such that S′ ⊆ S ⊆ Zd and |S′| ≥ (1 − γ/(2k))|S|. Fix an
r-colouring of S (and thus S′). If there are at least γ|S|k−ℓ monochromatic solutions to Ax = 0 in
S, then there are at least (γ/2)|S|k−ℓ monochromatic solutions to Ax = 0 in S′.

Proof. We determine an upper bound on the number of monochromatic solutions (z1, . . . , zk) which
lie in S but not in S′. For one such solution, there must be some zi which lies in S but not in
S′. We have k choices for i and |S| − |S′| ≤ γ|S|/(2k) choices for zi. The remaining elements
(z1, . . . , zi−1, zi+1, . . . , zk) form a solution to A′x = b in S where A′ is obtained from A by removing
the ith column and b is some vector. Note that A′ has rank ℓ. If not, then the ith column of A
cannot be expressed as a linear combination of the columns of A′. In particular, the ith entry of
any solution to Ax = 0 in Z must be 0, contradicting the assumption that A is partition regular.
Since A′ has rank ℓ, there are at most |S|k−1−ℓ solutions to A′x = b in S by Fact 10.2. Overall,

there are at most k · γ|S|
2k · |S|k−ℓ−1 = γ

2 |S|
k−ℓ possible choices for (z1, . . . , zk).

Therefore, the number of monochromatic solutions to Ax = 0 in S′ is at least

γ|S|k−ℓ − γ

2
|S|k−ℓ =

γ

2
|S|k−ℓ.

□

The following proposition asserts that if the statement of Theorem 3.9 holds for d ∈ N then it
also holds for d− 1.

Proposition 10.4. Let r, d, n ∈ N with d ≥ 2 and δ > 0. Let A be an ℓ× k integer matrix of rank
ℓ. If every r-colouring of [n]d yields at least δnd(k−ℓ) monochromatic solutions to Ax = 0 in [n]d,

then every r-colouring of [n]d−1 yields at least δn(d−1)(k−ℓ) monochromatic solutions to Ax = 0 in
[n]d−1.

Proof. Let A, r, d, n and δ be as in the statement of the proposition. Let f : [n]d → [n]d−1 be such
that for x = (x1, . . . , xd) ∈ [n]d we have f(x) := (x1, . . . , xd−1), i.e., f(x) is the vector consisting of
the first d− 1 entries of x. We first prove the following property of f .

Claim 10.5. Given a solution (y
1
, . . . ,y

k
) to Ax = 0 in [n]d−1, there are at most nk−ℓ solutions

(x1, . . . ,xk) to Ax = 0 in [n]d such that f(xi) = y
i
for every i ∈ [k].
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Proof of the claim. Let S be the set of solutions (x1, . . . ,xk) in [n]d such that f(xi) = y
i
for every

i ∈ [k]. Let q : S → [n]k with q((x1, . . . ,xk)) := (x1, . . . , xk) where xi is the dth entry of xi. Since
S is a set of solutions in [n]d, it follows that the image q(S) of q is a set of solutions to Ax = 0
in [n]. In particular, |q(S)| ≤ nk−ℓ by Fact 10.2. Note that the assumption f(xi) = y

i
for every

i ∈ [k] implies q is injective, hence |S| = |q(S)| ≤ nk−ℓ, as required.
■

Pick an arbitrary r-colouring C : [n]d−1 → [r] of [n]d−1. Let C∗ : [n]d → [r] be the r-colouring
of [n]d where C∗(x) := C(f(x)). If (x1, . . . ,xk) is a monochromatic solution to Ax = 0 in [n]d

(with respect to C∗) then (f(x1), . . . , f(xk)) is a monochromatic solution to Ax = 0 in [n]d−1 (with

respect to C). By assumption, there exist at least δnd(k−ℓ) monochromatic solutions to Ax = 0 in
[n]d with respect to C∗. Hence, by Claim 10.5, the number of monochromatic solutions in [n]d−1

with respect to C is at least

δnd(k−ℓ)

nk−ℓ
= δn(d−1)(k−ℓ),

as required. □

By Proposition 10.4, it is clear that if the statement of Theorem 3.9 holds for an infinite sequence
d1 < d2 < . . . of positive integers then it holds for any d ∈ N. Therefore, it suffices to prove the
following relaxation of Theorem 3.9.

Theorem 10.6. Let r ∈ N, c ∈ N ∪ {0} and let A be a partition regular ℓ × k integer matrix of
rank ℓ. There exist δ, n0 > 0 such that for all n ≥ n0 the following holds: every r-colouring of [n]2

c

yields at least δn2c(k−ℓ) monochromatic solutions to Ax = 0 in [n]2
c
.

Proof of Theorem 3.9. Let r, d ∈ N and let A be a partition regular ℓ × k integer matrix of rank
ℓ. Choose c ∈ N such that d ≤ 2c. Let δ, n0 be the constants obtained by applying Theorem 10.6
with parameters r, c and A. By Proposition 10.4, the statement of Theorem 3.9 holds for A, r, δ, n0

and every d′ ∈ N with d′ ≤ 2c. In particular, it holds for A, r, d, δ, n0. □

We conclude this subsection with the proof of Theorem 10.6. Before proceeding with the proof,
we give a rough intuition of the main idea by considering an easier case. For integers a, b ∈ Z, we
write [a, b] := {m ∈ Z : a ≤ m ≤ b}. Let A = (1 1 − 1). Given an arbitrary r-colouring C of
[−n, n]2, our aim is to find Θ(n4) monochromatic solutions to Ax = 0.

Define a colouring C∗ of [(εn)2], where ε > 0 is a small constant, as follows. If z ∈ [(εn)2], then
z = x + (εn)y for a unique pair (x, y) ∈ [εn] × [0, εn − 1]. Then colour z with (c−2, c−1, c0, c1, c2)
where cλ is the colour of (x−λ(εn), y+λ) ∈ [−n, n]2 with respect to C. Note that if z1+z2−z3 = 0
is a solution in [(εn)2], then (x1 + x2 − x3) + (εn)(y1 + y2 − y3) = 0. Since the xi’s lie in [εn],
|y1+y2−y3| ≤ 2. Thus, there exists λ ∈ Z with |λ| ≤ 2 such that (y1+λ)+(y2+λ)− (y3+λ) = 0,
which implies (x1−(εn)λ)+(x2−(εn)λ)−(x3−(εn)λ) = 0. In particular, {(xj−λ(εn), yj+λ)}j=1,2,3

is a solution to Ax = 0 in [−n, n]2. Furthermore, suppose {zj}j=1,2,3 is a monochromatic solution
to Ax = 0 in [(εn)2] with respect to C∗; say the colour is (c−2, c−1, c0, c1, c2). Then there exists
λ ∈ Z with |λ| ≤ 2 such that {(xj − λ(εn), yj + λ)}j=1,2,3 is a monochromatic solution to Ax = 0
in [−n, n]2 with respect to C, the colour being cλ.

It is not difficult to see that different monochromatic solutions in [(εn)2] with respect to C∗ give
rise to different monochromatic solutions in [−n, n]2 with respect to C. That is, we have defined an
injection from monochromatic solutions in [(εn)2] with respect to C∗ to monochromatic solutions
in [−n, n]2 with respect to C. By Theorem 3.5 there are Θ(n4) many of the former, yielding the
required result.
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The proof of Theorem 10.6 proceeds by induction on c and follows a similar idea, where instead
of Theorem 3.5 we invoke the induction hypothesis. Essentially, we project a solution to Ax = 0

in [(εn)2]2
c
to an ‘almost’ solution in [εn]2

c+1
, and then apply a shifting procedure to obtain an

exact solution in [n]2
c+1

. The colouring C∗ we require is more involved than the one above due
to two technicalities: (i) ensuring that the parameter λ (which is the analogue of λ in the general
case) is a vector with integer entries, thereby implying that the shifting procedure is well-defined;

(ii) ensuring that solutions generated by the shifting procedure lie in [n]2
c+1

rather than [−n, n]2
c+1

.
We will use the following notation. Given two vectors x and y, we denote their concatenation as

x ∗ y. Furthermore, we let abs[x] be the vector obtained by taking the absolute value of all entries
of x. For example, if x = (1,−2) and y = (3, 4) then x ∗ y = (1,−2, 3, 4) and abs[x] = (1, 2). We
write x · y for the scalar product of x and y. Let 1 denote the all one vector.

Proof of Theorem 10.6. Let r ∈ N and let A be a partition regular ℓ× k integer matrix of rank ℓ.
We proceed by induction on c. The case c = 0 follows immediately from Theorem 3.5. For the
induction hypothesis, suppose that the statement of Theorem 10.6 holds for some c ∈ N ∪ {0}.

Denote the ith row of A as ai. Let C := maxi∈[ℓ]{|ai · 1|, 1}. By relabelling the rows of A
and changing their sign (these operations do not affect the set of solutions), we may assume that
C = max{a1 · 1, 1} ≥ 1. Let E ≥ 0 be the largest entry of A in absolute value. Fix constants ε, P
such that

Ek ≪ 1/ε ≪ P,

where P is a prime number that does not divide C. Let d := 2c and R := r(2Ek+1)d · (CP )d. By
assumption, we can apply Theorem 10.6 with input A,R and c to obtain γ, n0 > 0. Finally, we take
n ∈ N with n ≥ max{n0/ε, 2

d+2Ek2d/(εγ)}. For simplicity, we will assume that εn is an integer.
Let C be an arbitrary r-colouring of [0, n]2d. We define an R-colouring C∗ of [Ek(εn)+ 1, (εn)2]d

as follows. For any z ∈ [Ek(εn) + 1, (εn)2]d, there exists a unique pair of vectors x ∈ [εn]d and
y ∈ [Ek, εn]d such that z = x + y(εn). Let I := [−Ek,Ek]d. We colour z with ({cs}s∈I , t) where
for each s ∈ I, cs is the colour of abs[(y+s)∗ (x−s(εn))] ∈ [0, n]2d with respect to C and t ∈ [CP ]d

is the unique vector such that y ≡ t (mod CP ). Note that all entries of (y+ s) ∗ (x− s(εn)) have

absolute value at most (εn)(Ek + 1) ≪ n, so abs[(y + s) ∗ (x− s(εn))] indeed lies in [0, n]2d.

Observe that C∗ is a well-defined R-colouring of [Ek(εn) + 1, (εn)2]d: x,y and t are unique, so

the colour of z ∈ [Ek(εn)+1, (εn)2]d in C∗ is uniquely determined. There are r possible colours for
each cs and (CP )d possible values for t; since |I| = (2Ek+ 1)d, at most R colours have been used.

Next, we describe a shifting procedure which generates a monochromatic solution in [0, n]2d with
respect to C given a monochromatic solution in [Ek(εn) + 1, (εn)2]d with respect to C∗.

Suppose (z1, . . . , zk) is a monochromatic solution to Ax = 0 in [Ek(εn) + 1, (εn)2]d with respect
to C∗. For every 1 ≤ i ≤ k we have zi = xi + y

i
(εn) for some unique xi ∈ [εn]d and y

i
∈ [Ek, εn]d.

Let zi := (z1i , . . . , z
d
i ), xi := (x1i , . . . , x

d
i ) and y

i
:= (y1i , . . . , y

d
i ). Pick an arbitrary j ∈ [d] and let

x := (xj1, . . . , x
j
k), y := (yj1, . . . , y

j
k) and z := (zj1, . . . , z

j
k). Then we have Az = 0 and z = x+ (εn)y.

In particular, for every i ∈ [ℓ] we have

(29) ai · z = ai · x+ (εn)ai · y = 0.

Note that the absolute value of every entry of ai is at most E and every entry of x lies in [εn],
thus we obtain

(30) |ai · x| ≤ εnEk.

Now (29) and (30) immediately imply

(31) |ai · y| ≤ Ek.
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Next, we distinguish two cases.

Case 1. Suppose that C = a1 · 1 ≥ 1. Since (z1, . . . , zk) is monochromatic with respect to C∗,
there exists some t ∈ [CP ] such that y ≡ t1 (mod CP ). Hence, we have

a1 · y ≡ a1 · (t1) ≡ t(a1 · 1) ≡ Ct ≡ 0 (mod C).

Set λ := −(a1 · y)/C. The previous equality implies that λ is an integer, while by (31) we have
|λ| ≤ Ek/C. Observe that

a1 · (y + λ1) = a1 · y + λC = 0.(32)

As y ≡ t1 (mod CP ), we have

0
(32)
= a1 · (y + λ1) ≡ (t+ λ)a1 · 1 ≡ C(t+ λ) (mod P ),

and so we must have that t+ λ ≡ 0 (mod P ) since P is a prime number which does not divide C.
It follows that

(33) ai · (y + λ1) ≡ (t+ λ)(ai · 1) ≡ 0 (mod P )

for every i ∈ [ℓ]. Note that

|ai · (y + λ1)| ≤ |ai · y|+ |λ(ai · 1)|
(31)

≤ Ek + |λC| ≤ 2Ek.

As we picked P so that P ≫ Ek, the previous inequality and (33) imply that

ai · (y + λ1) = 0

for every i ∈ [ℓ]. Furthermore, this together with (29) implies that, for every i ∈ [ℓ] we have

ai · (x− λ(εn)1) = 0.

Case 2. Suppose a1 · 1 = 0 (and so ai · 1 = 0 for every i ∈ [ℓ]). Then set λ := 0 and observe
that

ai · (y + λ1) = ai · y ≡ t(ai · 1) ≡ 0 (mod P ).

By (31) and as P ≫ Ek, we deduce that ai · (y + λ1) = 0 and so ai · (x − λ(εn)1) = 0, for every
i ∈ [ℓ].

In both cases, we obtain two solutions (yji + λ)i∈[k] and (xji − λ(εn))i∈[k] to Ax = 0 in Z, where
|λ| ≤ Ek. In general, since j was arbitrarily chosen, for every j ∈ [d] there exists λj ∈ [−Ek,Ek]

such that (yji + λj)i∈[k] and (xji − λj(εn))i∈[k] are two solutions to Ax = 0 in Z. By setting
λ := (λ1, . . . , λd), we obtain that (y

i
+ λ)i∈[k] and (xi − λ(εn))i∈[k] are two solutions to Ax = 0 in

Zd.
Note that y

i
+ λ ∈ [0, 2εn]d for every i ∈ [k] since y

i
∈ [Ek, εn]d and λ ∈ [−Ek,Ek]d. Further-

more, for every m ∈ [d], the mth entries of the vectors (xi − λ(εn))i∈[k] must have the same sign

since xi ∈ [εn]d and λ has integer entries. Hence (abs[(y
i
+ λ) ∗ (xi − λ(εn))])i∈[k] is a solution to

Ax = 0 in [0, n]2d.
Crucially, all vectors (abs[(y

i
+λ)∗(xi−λ(εn))])i∈[k] have the same colour in C by the construction

of C∗ and the fact that λ ∈ I = [−Ek,Ek]d. Namely, if all (z1, . . . , zk) are coloured with, say,
({cs}s∈I , t) in C∗ then all (abs[(y

i
+ λ) ∗ (xi − λ(εn))])i∈[k] are coloured with cλ in C. Hence,

(abs[(y
i
+ λ) ∗ (xi − λ(εn))])i∈[k] is a monochromatic solution to Ax = 0 in [0, n]2d.

Arbitrarily extend the R-colouring C∗ of [Ek(εn) + 1, (εn)2]d to an R-colouring C∗∗ of [(εn)2]d.

As (εn)2 ≥ n0, the induction hypothesis implies that there are at least γ(εn)2d(k−ℓ) monochromatic
solutions in [(εn)2]d with respect to C∗∗. Note that [Ek(εn) + 1, (εn)2]d contains all but at most
dEk(εn)2d−1 ≤ γ(εn)2d/(2k) of the elements of [(εn)2]d. Thus, by Lemma 10.3, there are at least
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(γ/2)(εn)2d(k−ℓ) monochromatic solutions in [Ek(εn)+1, (εn)2]d with respect to C∗; moreover, using
the procedure described above, we can produce a monochromatic solution in [n]2d with respect to
C from each one of them. It remains to check how many times we could have counted each solution
in [n]2d.

Observe that a different monochromatic solution (z1, . . . , zk) in [(Ek(εn)+1, (εn)2]d would have

generated different k-tuples (yji + λ)i∈[k] and (xji − λ(εn))i∈[k], since xi and y
i
are unique and by

(29). On the other hand, the preimage of a singleton in abs : [−n, n]d → [0, n]d has size at most 2d.
Hence, a monochromatic solution in [n]2d with respect to C could be counted at most 2d times.

In conclusion, there are at least (γ/2d+1)(εn)2d(k−ℓ) monochromatic solutions to Ax = 0 in

[0, n]2d with respect to C. Using Lemma 10.3, there are at least (γ/2d+2)(εn)2d(k−ℓ) monochromatic

solutions to Ax = 0 in [n]2d. Taking δ := (γ/2d+2)ε2d(k−ℓ), the statement of Theorem 10.6 holds
for c+ 1 since 2d = 2c+1. This concludes the inductive step and the proof. □

11. Proof of the applications of the random Rado lemma

In this section, we prove the applications of the random Rado lemma presented in Sections 2
and 5, that is Theorems 2.7, 5.1, 5.2, 5.3, 5.4 and 5.5. The first uses the full version of the random
Rado lemma, Lemma 6.8. The others all use the simplified version, Lemma 6.33.

Proof of Theorem 2.7. Let r, k ∈ N with r ≥ 2 and k ≥ 3. Let A = (aij) be the (k − 2)× k matrix
where

aij :=


1 if i = j;

−2 if i+ 1 = j;

1 if i+ 2 = j;

0 otherwise.

Hence k -SolAPn
([k]) corresponds to the set of all k-APs in Pn.

The prime number theorem yields

|Pn| = Θ

(
n

log n

)
.(34)

Note that any solution to Ax = 0 that does not correspond to a k-AP must be a trivial solution
(i.e., all entries in x are the same). Moreover, given fixed integers a, b and 1 ≤ i < j ≤ k, there is
at most one k-AP that has a in its ith position and b in its jth position. Thus, for any Y ⊆ [k]
with 2 ≤ |Y | ≤ k, each element of SolAPn

(Y ) corresponds to either a trivial solution to Ax = 0 or a
single k-AP. Hence, by Theorem 2.1 we have that

|SolAPn
(Y )| = Θ

(
n2

logk n

)
for each Y ⊆ [k] with 2 ≤ |Y | ≤ k.(35)

Therefore, (34) and (35) imply that

pY (A,Pn) = Θ

((
n

logk−1 n

)− 1
|Y |−1

)
for each Y ⊆ [k] with 2 ≤ |Y | ≤ k.(36)

Note that [k] maximises pY (A,Pn) over all Y ⊆ [k] with |Y | ≥ 2, and so

(37) p̂n := p̂(A,Pn) = Θ
(
n− 1

k−1 log n
)
.

We now verify the conditions of Lemma 6.8.

(A1): By (34) and (37), we have |Pn|p̂n = Θ(n
k−2
k−1 ) → ∞ and p̂n → 0 as n → ∞, since k ≥ 3.

(A2): Theorem 3.6 immediately implies that Pn is (A, r)-supersaturated.
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(A3): Let W ⊆ Y ⊆ [k]. First, consider the case |W | = 1. Fix a prime q ∈ Pn. If |Y | = 1 then
| SolAPn

(q,W, Y )| ≤ 1. If |Y | ≥ 2, we have

| SolAPn
(q,W, Y )| = O

(
n

logk−1 n

)
(34),(35)

= O

(
|SolAPn

(Y )|
|Pn|

)
= O

(
|SolAPn

(Y )|
| SolAPn

(W )|

)
,(38)

where we used Lemma 2.3 for the first equality and | SolAPn
(W )| ≤ |Pn| for the third.

Now suppose |W | ≥ 2. Since specifying two elements (and their position) of a k-AP

uniquely determines the latter, for any zW ∈ S|W |, we have

|SolAPn
(zW ,W, Y )| ≤ 1

(35)
= O

(
|SolAPn

(Y )|
| SolAPn

(W )|

)
.

Therefore, there exists B ≥ 1 such that (A,Pn) is B-extendable for every n sufficiently
large, as required.

(A4): Let W ⊂ Y ⊆ [k] with |W | = 1. Since |Y | ≥ 2, equation (38) holds. The first two equalities
of (38) immediately imply condition (A4).

(A5): We take Xn = [k] for all n ∈ N. We have |Xn| = k ≥ 3 and pXn(A,Pn) = p̂n. Let
W,W ′ ⊂ [k] with |W | = 2 and |W ′| ≥ 2. As |W ′| ≤ k − 1 we have

|Pn|2

|SolAPn
(W )|

(
pW ′(A,Pn)

p[k](A,Pn)

)|W ′|−1
(34),(35),(36)

= O

logk−2 n

(
n

logk−1 n

) |W ′|−k
k−1

→ 0,

as n → ∞, as required.
(A6): Let W ⊆ [k] with |W | = 2. Then (34) and (35) imply

|Pn|
|SolAPn

(W )|
= O

(
logk−1 n

n

)
→ 0,

as n → ∞, as required.

Since conditions (A1)–(A6) hold, we can apply Lemma 6.8. Note that Pn,p is (A, r)-Rado if and
only if Pn,p is (r, k)-van der Waerden. Thus Lemma 6.8 yields Theorem 2.7. □

Proof of Theorem 5.1. Let r, d ∈ N with r ≥ 2. Let A satisfy the assumptions of Theorem 5.1. We
will verify that the conditions of Lemma 6.33 hold, where we take Sn := [n]d. Note that [n] is a
finite subset of the field Q and mSn(A) = m(A).

(C2): Theorem 3.9 implies that ([n]d)n∈N is (A, r)-supersaturated.
(C3): An immediate consequence of Theorem 3.9 is that there exists some δ > 0 such that the

number of solutions to Ax = 0 in [n]d is at least δnd(k−ℓ), for all n sufficiently large. Since

there are at most nd(k−ℓ) solutions to Ax = 0 in [n]d (by e.g., Lemma 6.16), (A, [n]d) is
δ-rich for n sufficiently large.

(C4): Since A is irredundant, A is irredundant with respect to Qd. Furthermore, by Theorem 3.9,
A is 3-partition regular in [n]d for n sufficiently large. Thus, we can apply Lemma 6.23 with
F := Q and S := [n]d to obtain that (A, [n]d) is abundant for n sufficiently large.

(C1): By (C4), m(A) is well-defined (see Remark 6.28). As A is full rank, considering W =

[k] yields m(A) ≥ k−1
k−1−ℓ > 1. Since (C3) holds, Lemma 6.32 yields p̂n = Θ(n−d/m(A)).

Therefore, we have |[n]d|p̂n → ∞ and p̂n → 0 as n → ∞.
(C5): Note that rankSn(A) > 0 for every n since Sn ̸= {0}. As (C3) and (C4) are satisfied, we

can apply Lemma 6.26. Lemma 6.26 and (C1) imply that (C5) holds.

As conditions (C1)–(C5) hold, we can apply Lemma 6.33 to obtain Theorem 5.1. □
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Proof of Theorem 5.3. Let r ∈ N with r ≥ 2 and let A and G be as in the statement of Theorem 5.3.
Note that Gn is a finite abelian group. We will verify that the hypothesis of Lemma 6.33 holds,
where we take Sn := Gn. We will repeatedly use the fact that rankGn(AW ) = rankG(AW ) for any
W ⊆ [k]; this follows easily from Definition 6.11. Thus, mGn(A) = mG(A).

(C2): Since G is a finite abelian group with exponent s and A satisfies the s-columns condition,
Theorem 3.8 implies (Gn)n∈N is (A, r)-supersaturated.

(C3): Equation (4) implies (A,Gn) is 1-rich.
(C4): Let W ⊆ [k] with |W | = 2. By assumption, (A,G) is abundant, and so rankG(AW ) =

rankG(A). This implies rankGn(AW ) = rankGn(A). As W is arbitrary, (A,Gn) is abundant.
(C1): By (C4),mGn(A) is well-defined and positive (see Remark 6.28). Since (C3) holds, Lemma 6.32

yields p̂n := p̂(A,Gn) = Θ((|G|n)−1/mGn (A)). As rankGn(A) = rankG(A) > 0 and by using
W = [k], we have mGn(A) ≥ k−1

k−1−rankGn (A) > 1. Therefore we have |G|np̂n → ∞ and

p̂n → 0 as n → ∞.
(C5): Let Z ⊆ [k] and

D(Z) :=
|Z| − 1− rankG(A) + rankG(AZ)

|Z| − 1
.

As (A,Gn) is 1-rich, (7) implies that pZ(A,G
n) = |G|−n·D(Z) for every n ∈ N. Pick X ⊆ [k],

|X| ≥ 2 so that the function D(X) is minimised; additionally choose X so that |X| is as
small as possible under this assumption. It follows that pX(A,Gn) = p̂(A,Gn). For every
|Z| = 2 we have D(Z) = 1, by (C4), while D([k]) < 1 since rankG(A) > 0. Hence, |X| ≥ 3.

Let W ′ ⊂ X with |W ′| ≥ 2. We have

pW ′(A,Gn)

pX(A,Gn)
= (|G|n)−D(W ′)+D(X).

Since X is minimal and there are finitely many subsets Z ⊂ X, there exists ε > 0 such
that we have D(Z)−D(X) ≥ ε for every Z ⊂ X. It follows that

pW ′(A,Gn)

pX(A,Gn)
≤ |G|−εn → 0

as n → ∞.

As conditions (C1)–(C5) hold, we can apply Lemma 6.33 to obtain Theorem 5.3.
□

Proof of Theorem 5.2. Since mZ4(A) = 4/3 when A = (2 2 − 2) (see Example 6.29), to prove the
theorem it suffices to verify that the hypothesis of Theorem 5.3 holds in our setting.

Firstly, Z4 is an abelian group with exponent 4. The matrix A satisfies the 4-columns condition:
the last two entries of A sum to zero and they span the first entry.

Next, we check (A,Z4) is abundant and rankZ4(A) > 0. The total number of solutions to

2x1 + 2x2 − 2x3 = 0 in Z4 is 4 · 4 · 2 = 43−1/2; so rankZ4(A) = 1/2 > 0. For any W ⊆ [3] with

|W | = 2, the equation AWx = 0 in Z4 is the same as 2x = 0 in Z4. We have 2 = 41−1/2 solutions
to 2x = 0 in Z4, thus rankZ4(AW ) = 1/2 = rankZ4(A). In particular, (A,Z4) is abundant. □

Proof of Theorem 5.4. Consider any full rank ℓ × k matrix A with entries from F that satisfies
the hypothesis of the theorem. By Definition 6.12, rankF(A) = rankFn(A). Moreover, as Fn is an
abelian group, one can also define rankFn(A) analogously to Definition 6.11. In particular, both
these notions of rankFn(A) are equivalent. Thus, (4) holds in our setting (with S = Fn).

Similarly, one can define mFn(A) analogously to Definition 6.27. Further, as rankF is the same
as rankFn we have that mFn(A) = mF(A), where the latter parameter was defined in (2).
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As (4) holds, one can check that all the results used to prove Lemma 6.33 extend to this setting
of matrices with entries from F. Thus, the statement of Lemma 6.33 holds for Sn := Fn and full
rank matrices A with entries from F. In particular, the notions of (A, r)-saturated, abundant and
ε-rich can be analogously defined in this setting. (For a formal justification of all of this, see the
PhD thesis of the first author [23].)

Since mFn(A) = mF(A), to prove the theorem it suffices to show that (C1)–(C5) hold with
respect to Sn = Fn.

(C2): Theorem 3.7 implies that (Fn)n∈N is (A, r)-supersaturated.
(C3): Equation (4) implies that (A,Fn) is 1-rich.
(C4): Theorem 3.3 implies that A is 3-partition regular in Fn \ {0}n (for n sufficiently large).

By assumption A is irredundant with respect to Fn. Arguing precisely as in the proof of
Lemma 6.23, one can conclude that (A,Fn) is abundant for all sufficiently large n.

(C1): As (A,Fn) is abundant for sufficiently large n, (A,F) is abundant. Remark 6.28 implies that
mF(A) is well-defined and positive. As A is full rank, considering W = [k] yields mF(A) ≥
k−1

k−1−ℓ > 1. Since (C3) holds, (the analogue of) Lemma 6.32 yields p̂n = Θ(|Fn|−1/mF(A)).

Therefore we have |Fn|p̂n → ∞ and p̂n → 0 as n → ∞.
(C5): Since (C3) and (C4) are satisfied, we can apply (the analogue of) Lemma 6.26. This together

with (C1) implies that (C5) holds.
□

Proof of Theorem 5.5. Let A be as in the theorem. Recall that as A is an integer matrix, we can
view it as a matrix with entries from F (i.e., an entry aij corresponds to aij · 1F ∈ F). Thus, we
show that the theorem follows directly from Theorem 5.4.

Note that the finite field F of order qk has exponent q (in particular, ⟨1F⟩ ∼= Zq) so the fact that
A satisfies the q-columns condition immediately implies it also satisfies the columns condition over
F. We can therefore apply Theorem 5.4 to obtain the theorem. □

12. Further applications and concluding remarks

We have seen a number of applications of the (simplified) random Rado lemma. Of course, there
are many other potential applications; we give a couple more in the next subsection. In Section 12.2
we consider a resilience result. In the final subsection, we consider some possible future research
directions. All proofs omitted in this section appear in the PhD thesis of the first author [23].

12.1. Further applications of the random Rado lemma. The next result is an analogue of
the random Rado theorem for Zn.

Theorem 12.1. For all irredundant partition regular full rank integer matrices A, and all r ≥ 2,
there exist constants C, c > 0 such that the following holds.

lim
n→∞

P[Zn,p is (A, r)-Rado] =

{
0 if p ≤ cn−1/m(A);

1 if p ≥ Cn−1/m(A).

□

Theorem 12.1 follows from Lemma 6.8,14 though actually the 1-statement of Theorem 12.1 is
also an immediate consequence of Theorem 4.3. The reader may wonder why the parameter m(A)
rather than mZn(A) appears in the statement of Theorem 12.1. In particular, mZn(A) may not
equal m(A) and it can be the case that mZn(A) may not be the same for all values of n. For

14In particular, one cannot apply Lemma 6.33 here as not all choices of A ensure (A,Zn) is abundant; see [23].
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example, for A =
(
2 2 −2

)
and even n we have mZn(A) = 2/(1 + logn 2). However, in this case

we have n−1/mZn (A) = 1√
2
n−1/m(A). More generally, we have that n−1/m(A) = Θ(n−1/mZn (A)) and

so we can use m(A) in the statement of Theorem 12.1 instead of mZn(A).

In general, our machinery ensures that, given any ‘well behaved’ sequence (Sn)n∈N of finite
abelian groups, one can obtain a corresponding random Ramsey-type theorem if one can prove a
supersaturation result. It would therefore be interesting to prove other supersaturation results for
abelian groups à la Theorem 3.8. Furthermore, it is likely that ‘projection’ type arguments such as
in the proof of Theorem 3.9 can be employed to obtain new supersaturation results from existing
results (such as Theorems 3.8 and 3.9).

As noted in Section 3.2, sometimes supersaturation results are easy to obtain, for example, for
matrices A that are translation-invariant. In such cases there are fewer conditions to check in order
to prove a random Ramsey-type result. By applying Lemma 6.33 we obtain the following.

Theorem 12.2. Let (Sn)n∈N be a sequence of finite abelian groups and A be an integer matrix that
is translation-invariant with respect to Sn for all sufficiently large n ∈ N. If (C1), (C4) and (C5)
are satisfied then there exist constants C, c > 0 such that the following holds.

lim
n→∞

P[Sn,p is (A, r)-Rado] =

{
0 if p ≤ cn−1/mSn (A);

1 if p ≥ Cn−1/mSn (A).

□

12.2. Resilience in the primes. The following is an immediate consequence of Theorem 2.1.

Lemma 12.3. Let r ≥ 1 and k ≥ 3. Given any γ > 0 there exist n0, ε > 0 such that for all n ≥ n0,
the following holds. Suppose X ⊆ Pn with |X| ≥ γ|Pn|. Then for any r-colouring of X there are

at least εn2/ logk n monochromatic k-APs in X. □

Using Lemma 12.3 one can obtain the following resilience-type result.

Theorem 12.4. Let r ≥ 1, k ≥ 3 and δ > 0. There exists a constant C > 0 such that if p ≥
Cn−1/(k−1) log n, then w.h.p. Pn,p has the property that for any subset X ⊆ Pn,p with |X| ≥ δ|Pn,p|,
whenever X is r-coloured, there is a monochromatic k-AP. □

By setting r = 1 in Theorem 12.4, we obtain a sharpening of Theorem 2.4, since the property
considered is that of being (δ, k)-Szemerédi. For r ≥ 2, Theorem 12.4 strengthens the 1-statement of
Theorem 2.7 as it states that w.h.p. not only can we find a monochromatic k-AP in Pn,p whenever
r-coloured, but we can afford to delete a (1 − δ)-proportion of Pn,p and still guarantee such a
monochromatic k-AP.

The proof of Theorem 12.4 is an easy adaption of the proof of the 1-statement of Theorem 7.7,
using ideas from the proof of a resilience-type result in [32].

12.3. Further directions and examples. Another direction in which one can generalise the
random Rado lemma is by removing the requirement of matrices having integer entries. Given a
matrix A with entries in a ring R one can ask whether a finite colouring of an R-module yields
a monochromatic solution to Ax = 0 or not. If one can in fact prove a suitable supersaturation
result, then our machinery could yield a random Ramsey-type theorem for this setting. Theorem 5.4
already provides one such result in this direction.

Condition (P5) in the statement of Theorem 7.7 arises as an artifact of our proof. It would
be interesting to investigate possible relaxations of this condition; this could in turn lead to a
relaxation of condition (A5) from Lemma 6.8.

Condition (C4) in Theorem 6.33 states that (A,Sn) is abundant for every sufficiently large n ∈ N.
This property is used to verify, e.g., (A5) when deducing Lemma 6.33 from Lemma 6.8. However,
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(as briefly touched upon when discussing Theorem 12.1) just because a sequence (Sn)n∈N of finite
abelian groups does not satisfy (C4) does not necessarily mean one cannot apply Lemma 6.8 instead.

The following is another example of this. Let A :=
(
2 −2 63 65

)
and Sn := Zn

128 for every
n ∈ N. The pair (A,Sn) is not abundant since rankSn(A) = 1, whereas rankSn(A{1,2}) = 6/7, so
we cannot apply Lemma 6.33. However, conditions (A1)–(A6) do hold for (Sn)n∈N and A, and so
we can apply Lemma 6.8 to deduce the following theorem.

Theorem 12.5. Let A =
(
2 −2 63 65

)
and r ≥ 2. There exist constants c, C > 0 such that

lim
n→∞

P[(Z128)
n
p is (A, r)-Rado] =

{
0 if p ≤ c 128−2n/3;

1 if p ≥ C 128−2n/3.

□

Conversely, consider B :=
(
4 −4 63 65

)
. The sequence (Sn)n∈N is (B, r)-supersaturated for

every r ∈ N: this follows from Theorem 3.8, as Z128 is an abelian group with exponent 128 and B
satisfies the 128-columns condition as 4 − 4 + 63 + 65 ≡ 0 (mod 128). However, we cannot apply
Lemma 6.8, as condition (A5) does not hold. Indeed, it is easy to check that, for W ⊆ [4],

|SolBSn
(W )| =


|Sn|3 if |W | = [4];

|Sn||W |−2/7 if {3, 4} ⊆ W ̸= [4];

|Sn||W | otherwise.

It immediately follows that, for |W | ≥ 2,

pW (B,Sn) =

(
|SolBSn

(W )|
|Sn|

)− 1
|W |−1

=


|Sn|−2/3 if |W | = [4];

|Sn|−(|W |−9/7)/(|W |−1) if {3, 4} ⊆ W ̸= [4];

|Sn|−1 otherwise.

Note that if (Xn)n∈N is a sequence such that Xn ⊆ [4] and pXn(B,Sn) = Ω(p̂(B,Sn)), then Xn = [4]
for all sufficiently large n ∈ N. In this case, for Wn := {3, 4} ⊂ [4] we have

|Sn|2

| SolBSn
(Wn)|

(
pWn(B,Sn)

p[4](B,Sn)

)
= |Sn|5/21 = (128)5n/21 ̸→ 0

as n → ∞. So (Sn)n∈N is not compatible with respect to B.
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[37] N. Kamčev, A Liebenau and N. Morrison, On uncommon systems of equations, Israel J. Math., to appear.
[38] Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey properties involving cycles, Random

Structures & Algorithms 11(3) (1997), 245–276.
[39] D. Král’, O. Serra and L. Vena, On the removal lemma for linear systems over abelian groups, Eur. J. Comb.

34 (2) (2013), 248–259.
[40] E. Kuperwasser, W. Samotij and Y. Wigderson, On the Kohayakawa–Kreuter conjecture, arXiv:2307.16611.

53



[41] A. Liebenau, L. Mattos, W. Mendonça and J. Skokan, Asymmetric Ramsey properties of random graphs involving
cliques and cycles, Random Structures & Algorithms 62(4) (2023), 1035–1055.
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Appendix A

A.1. Proof of Lemma 10.1. Recall Lemma 10.1 is the sieve result we used in the proof of
Lemma 2.3 in Section 10. Lemma 10.1 is a corollary of the following result from [60].

Lemma 12.6 ([60, Theorem 32]). Let t and C be fixed natural numbers and let n ∈ N with n ≥ 2.
For each prime number p ≤

√
n, let Ep be the union of ω(p) residue classes modulo p, where

ω(p) = t for all p ≥ C, and ω(p) < p for all p. Then for any ε > 0, one has

|[n] \
⋃

p prime
p≤

√
n

Ep| ≤ (2tt! + ε)S
n

logt n

whenever n is sufficiently large depending on k,C, ε, and where S is the singular series

S :=
∏

prime p

(
1− 1

p

)−t(
1− ω(p)

p

)
.

We now explain how to deduce Lemma 10.1 from Lemma 12.6.

Proof of Lemma 10.1. Let k ∈ N with k ≥ 2 and let q be a prime number. For each prime p ≥ k
with p ̸= q, let Ep be the union of k − 1 residue classes modulo p. We want to prove that
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|E(n)| = O(n/ logk−1 n) where

E(n) := [n] \
⋃

p ̸= q prime
k≤p≤

√
n

Ep.

Fix C := k, t := k − 1, ε := 1 and pick n ∈ N sufficiently large so that Lemma 12.6 holds. For
every prime p < k, let ω(p) := 0 and Ep := ∅. We have

E(n) = [n] \
⋃

p ̸= q prime
p≤

√
n

Ep.

Note that if q < k then Eq = ∅ by definition. In this case set E′(n) := E(n) \ Eq = E(n).
If q ≥ k, let Eq be the union of k − 1 residue classes modulo q that maximises |E′(n)| where

E′(n) := E(n) \ Eq = [n] \
⋃

p prime
p≤

√
n

Ep.

Since the residue classes modulo q induce a partition of E(n), by the maximality of Eq we obtain

|E′(n)| = |E(n) \ Eq| ≥
(
1− k − 1

q

)
|E(n)| ≥ 1

k
|E(n)|.

Applying Lemma 12.6 with respect to parameters t, C, ε and the Ep’s, we obtain |E′(n)| ≤
Tn/ logk−1 n where T is a constant depending uniquely on k. Thus, |E(n)| ≤ kTn/ logk−1 n and

so indeed |E(n)| = O(n/ logk−1 n), as required. □

A.2. Proof of Theorem 2.2. The proof of Theorem 2.2 is an easy application of the second
moment method and it is nearly identical to the analogous proof for arithmetic progressions in the
integers (see [36, Example 3.2]). We include it here for completeness.

Proof of Theorem 2.2. LetX be the number of k-APs inPn,p. By Theorem 2.1 there are Θ(n2/ logk n)

k-APs in Pn and so we have E(X) = Θ(pkn2/ logk n). If p = o(n−2/k log n) then E(X) = o(1). By
Markov’s inequality, P(X ≥ 1) ≤ E(X) = o(1) and in particular P(X = 0) = 1− o(1), as required.

For the 1-statement, pick an arbitrary ordering of the k-APs in Pn and let Xi be the indicator
variable for the ith k-AP to appear in Pn,p. Formally,

Xi =

{
1 if the ith k-AP lies in Pn,p and

0 otherwise.

Now we bound the number of pairs of k-APs in Pn that share exactly one element: first fix a prime
q ∈ Pn (O(n/ log n) choices) and then pick two k-APs in Pn that contain q (O(n2/ log2k−2 n) choices

by Lemma 2.3). Thus, there are O(n3/ log2k−1 n) such pairs. Furthermore, there are O(n2/ logk n)
pairs of k-APs in Pn that share at least two elements (since a k-AP is uniquely determined by two
elements and their positions within the k-AP).

Note that X =
∑
i
Xi. It follows that

Var(X) =
∑
i,j

Cov(Xi, Xj) ≤
∑
i,j

E(XiXj) = O

(
n3

log2k−1 n
p2k−1 +

k∑
t=2

n2

logk n
p2k−t

)
,
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where here the sums are only for i, j (including i = j) such that the ith and jth k-APs in Pn

intersect. Chebyshev’s inequality yields

P(X = 0) ≤ Var(X)

E(X)2
= O

(
log n

np
+

k∑
t=2

logk n

n2pt

)
.

If p = ω(n−2/k log n) the RHS of the equality above is o(1) and so P(X = 0) = o(1), as required.
□

A.3. Deducing the 1-statement of the random Ramsey theorem from Theorem 7.7. In
this section we show that Theorem 7.7 implies the 1-statement of Theorem 4.1.

Let H be as in the statement of Theorem 4.1. Write E(H) = {h1, . . . , he(H)} and let r ≥ 2.
Without loss of generality we may assume that H has no isolated vertices. For n ∈ N, let Hn be
the e(H)-uniform ordered hypergraph with vertex set V (Hn) := E(Kn) where an ordered e(H)-

tuple (e1, . . . , ee(H)) ∈ (E(Kn))
e(H) is an edge of Hn if and only if there is an injective graph

homomorphism g : H → Kn such that g(hi) = ei for every i ∈ [e(H)]; in other words, there is a
copy of H in Kn with edges e1, . . . , ee(H) where ei plays the role of hi for every i ∈ [e(H)].

For brevity, we write H := Hn. For W ⊆ [e(H)], let HW be the subgraph of H spanned by the
set of edges {hi : i ∈ W} ⊆ E(H); so HW contains no isolated vertices. Recall that the restriction
HW of H was defined just after Remark 7.5.

Claim 12.7. We have e(HW ) = Θ(nv(HW )) for every W ⊆ [e(H)].

Proof of the claim. Say W = {t1, . . . , t|W |} where t1 < · · · < t|W |. Then, provided n ≥ v(H), an

ordered |W |-tuple (e1, . . . , e|W |) ∈ (E(Kn))
|W | is an edge of HW if and only if there is an injective

graph homomorphism g : HW → Kn such that g(hti) = ei for every i ∈ [|W |]. There are Θ
(
nv(HW )

)
such homomorphisms. Conversely, at most 2|W | injective homomorphisms g : HW → Kn correspond
to the same edge in HW .15 Hence e(HW ) = Θ

(
nv(HW )

)
, as claimed.

■

We can now compute p̂(H). We have v(H) = e(Kn) =
(
n
2

)
. This and Claim 12.7 yield

(39) fn,W =

(
e(HW )

v(H)

)− 1
|W |−1

= Θ

(nv(HW )

n2

)− 1
e(HW )−1

 = Θ

(
n
− v(HW )−2

e(HW )−1

)
.

Note that e(HW )−1
v(HW )−2 = d2(HW ) when |W | ≥ 2. Thus, we have

(40) max
W⊆[k]

|W |≥2

e(HW )− 1

v(HW )− 2
≤ max

H′⊆H
d2(H

′) = m2(H).

By assumption, H contains a connected component K with at least two edges. We have d2(K) =
e(K)−1
v(K)−2 ≥ 1 since K is connected. Suppose the value of m2(H) is achieved by H ′ ⊆ H. Then H ′

contains at least two edges, since d2(H
′) ≥ d2(K) ≥ 1. Furthermore, H ′ has no isolated vertices.

Indeed, deleting an isolated vertex from H ′ would yield a subgraph H ′′ of H with d2(H
′′) > d2(H

′),
a contradiction. Set W := {i : hi ∈ E(H ′)}. Since H ′ has no isolated vertices, it follows that HW =

15More precisely, there are exactly 2a injective homomorphisms g : HW → Kn that corresponds to the same edge
in HW , where a is the number of isolated edges in H which lie in HW .
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H ′. Furthermore, |W | ≥ 2 since H ′ has at least two edges. We have d2(HW ) = d2(H
′) = m2(H),

and so equality holds in (40). That is,

max
W⊆[k]

|W |≥2

e(HW )− 1

v(HW )− 2
= m2(H).

Using the equality above, taking the maximum over all W ⊆ [e(H)] of size at least 2 in (39) yields

p̂(H) = Θ
(
n
− 1

m2(H)

)
.

Next, we verify conditions (P1)–(P4).

(P1): Recall we proved that m2(H) ≥ 1. This inequality implies n
− 1

m2(H) → 0 and n
2− 1

m2(H) → ∞
as n → ∞. In particular, p̂(H) → 0 and p̂(H)v(H) → ∞ as n → ∞.

(P2): By Ramsey’s theorem, there exists an m ∈ N such that any r-edge-colouring of Km yields
a monochromatic copy of H. For n ≥ m, pick an r-edge-colouring of Kn. Every subset
of V (Kn) of size m contains a monochromatic copy of H, and each copy of H belongs to(n−v(H)
m−v(H)

)
subsets of V (Kn) of size m. Thus, the number of monochromatic copies of H in

Kn is at least (
n
m

)(n−v(H)
m−v(H)

) ≥
( n

m

)v(H)
.

Equivalently, given any r-colouring of the vertices of H, there are at least (n/m)v(H)

monochromatic edges in H. By Claim 12.7 we have e(H) = e(H[e(H)]) = Θ(nv(H)). To-
gether, this implies that the sequence of ordered hypergraphs (Hn)n∈N is r-supersaturated.

(P3): Let W ⊆ Y ⊆ [e(H)]. Given (e1, . . . , e|W |) ∈ HW , there are at most nv(HY )−v(HW ) edges
in HY that restrict to (e1, . . . , e|W |). This is because each such edge corresponds to an
injective graph homomorphism g : HY → Kn with g(hi) = ei for every i ∈ W . For all
such homomorphisms, the images of the edges in E(HW ) are fixed, and we have at most

nv(HY )−v(HW ) choices for the image of V (HY ) \ V (HW ). Thus,

∆W (HY ) ≤ nv(HY )−v(HW ).

By Claim 12.7, we have e(HW ) = Θ(nv(HW )) and e(HY ) = Θ(nv(HY )). Combining this with
the previous inequality yields

∆W (HY ) ≤ Θ

(
e(HY )

e(HW )

)
,

and so condition (P3) holds.
(P4): Let W ⊂ Y ⊆ [e(H)] with |W | = 1. Note that E(HW ) = V (H). This combined with

condition (P3) gives

∆W (HY ) ≤ Θ

(
e(HY )

e(HW )

)
= Θ

(
e(HY )

v(HW )

)
,

and so condition (P4) holds.

Since conditions (P1)–(P4) hold, by Theorem 7.7 we obtain the following 1-statement. There
exists some C > 0 such that

lim
n→∞

P
[
Hv

n,q is r-Ramsey
]
= 1 if q ≥ Cn

− 1
m2(H) .

This is equivalent to

lim
n→∞

P [Gn,p is (H, r)-Ramsey] = 1 if p ≥ Cn
− 1

m2(H) ,
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which is precisely the 1-statement of Theorem 4.1.
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