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Abstract. In 1960, Ghouila-Houri proved that every strongly connected directed graph

G on n vertices with minimum degree at least n contains a directed Hamilton cycle. We

asymptotically generalize this result by proving the following: every directed graph G on n

vertices with minimum degree at least (1+o(1))n contains every orientation of a Hamilton

cycle, except for the directed Hamilton cycle in the case when G is not strongly connected.

In fact, this minimum degree condition forces every orientation of a cycle in G of every

possible length, other than perhaps the directed cycles.

1. Introduction

1.1. Hamilton cycles in directed graphs. In this paper we give an asymptotic gener-

alization of one of the cornerstone results in the study of directed graphs, Ghouila-Houri’s

theorem [8]. Throughout, the digraphs we consider do not have loops and we allow at most

one edge in each direction between any pair of vertices. The minimum degree δ(G) of a

digraph G is the minimum number of edges incident to a vertex in G. A directed Hamilton

cycle in an n-vertex digraph is a cycle (v1, v2, . . . , vn, vn+1 = v1) in which every edge vivi+1

(i ∈ [n]) is oriented from vi to vi+1. The notion of a directed Hamilton path is defined

analogously.

Theorem 1.1 (Ghouila-Houri [8]). If G is a strongly connected digraph on n ≥ 2 vertices

with δ(G) ≥ n, then G contains a directed Hamilton cycle.

Ghouila-Houri [8] also determined the minimum degree threshold for forcing a directed

Hamilton path.

Corollary 1.2 (Ghouila-Houri [8]). If G is digraph on n ≥ 2 vertices with δ(G) ≥ n − 1,

then G contains a directed Hamilton path.

Note that the bounds on δ(G) in Theorem 1.1 and Corollary 1.2 are tight as witnessed

by the usual examples of a complete bipartite digraph with parts of sizes ⌈n2 ⌉ − 1 and

⌊n2 ⌋+1, and the disjoint union of two complete digraphs of sizes ⌊n2 ⌋ and ⌈n2 ⌉, respectively.
Moreover, one cannot omit the strong connectivity condition in Theorem 1.1 as there are

n-vertex digraphs G with δ(G) = ⌊3n2 ⌋ − 2 which are not strongly connected and thus do

not contain a directed Hamilton cycle.
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As discussed further below, there has been significant interest in considering other ori-

entations of Hamilton cycles in digraphs. The main result of this paper is the following

asymptotic generalization of Theorem 1.1.

Theorem 1.3. For all η > 0, there exists n0 ∈ N such that if G is a digraph on n ≥ n0

vertices with δ(G) ≥ (1+η)n, then G contains every orientation of a Hamilton cycle, except

for the directed Hamilton cycle in the case when G is not strongly connected.

Theorem 1.3 yields the following simple consequence.

Corollary 1.4. For all η > 0, there exists n0 ∈ N such that if G is a digraph on n ≥ n0

vertices with δ(G) ≥ (1 + η)n, then G contains every orientation of a Hamilton path.

Note that the minimum degree conditions in Theorem 1.3 and Corollary 1.4 are asymp-

totically tight as the examples given after Corollary 1.2 do not contain a Hamilton cycle

(resp. path) of any orientation.

The study of Hamiltonicity in digraphs has a rich history and, as we will now discuss,

Theorem 1.3 can be viewed as an asymptotic generalization of a couple of research strands

in this area. For a wider survey on Hamilton cycles in digraphs, see [14].

Hamilton cycles and paths have been well-studied in tournaments (i.e., orientations of

complete graphs). A simple argument of Rédei [17] shows that every tournament contains a

directed Hamilton path. Motivated by this, in 1971 Grünbaum [10] proved that, other than

three small exceptional tournaments, every tournament contains an anti-directed Hamilton

path.1 Rosenfeld [18] provided a short proof of Grünbaum’s theorem, and also conjectured

that every sufficiently large tournament contains every orientation of a Hamilton path.

More than a decade later, Thomason [21] resolved Rosenfeld’s conjecture. Finally, Havet

and Thomassé [13] strenghtened this result, proving that, other than Grünbaum’s [10] three

exceptional tournaments, every tournament contains every orientation of a Hamilton path.

A classical result of Camion [5] states that a tournament contains a directed Hamilton

cycle if and only if it is strongly connected. Thomassen [22] (for even n ≥ 50) and Rosen-

feld [19] (for even n ≥ 28) proved that every n-vertex tournament contains an anti-directed

Hamilton cycle. The latter also conjectured that every sufficiently large tournament con-

tains every orientation of a Hamilton cycle (except perhaps the directed Hamilton cycle).

After various partial results, this conjecture was proven for all tournaments on at least 68

vertices by Havet [12].

These results therefore provide a natural class of n-vertex digraphs G with δ(G) = n− 1

that contain every orientation of a Hamilton path and Hamilton cycle (except perhaps the

directed Hamilton cycle). On the other hand, Theorem 1.3 and Corollary 1.4 show that

analogues of these statements hold for all sufficiently large digraphs at the expense of a

slightly larger minimum degree condition. It would be interesting to obtain results that

unify these two settings. For example, it may be the case that every sufficiently large n-

vertex digraph with δ(G) ≥ n− 1 contains every orientation of a Hamilton path. This and

related questions are discussed in Section 4.

1A digraph is anti-directed if it does not contain a directed path on 2 edges.
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Seeking to generalize Rosenfeld’s [19] and Thomassen’s [22] work on tournaments, in 1980

Grant [9] asked whether every even order n-vertex digraph G with δ(G) ≥ n − 1 contains

an anti-directed Hamilton cycle. However, Cai [4] produced an example of an n-vertex

digraph G with δ(G) = n that does not contain an anti-directed Hamilton cycle, for every

even n ∈ N. This led the first author and Molla [7, Conjecture 1.7] to refine the conjecture

Grant [9] hinted at: every even order n-vertex digraph G with δ(G) ≥ n + 1 contains an

anti-directed Hamilton cycle. Thus, Theorem 1.3 asymptotically resolves this conjecture.

There has also been interest in the minimum semi-degree threshold for forcing a given

orientation of a Hamilton cycle in a digraph. Given a digraph G, its minimum semi-

degree δ0(G) is the minimum of all the in- and outdegrees of the vertices in G. Ghoulia-

Houri’s theorem implies that every n-vertex digraph G with δ0(G) ≥ n/2 contains a directed

Hamilton cycle; indeed, such a digraph must be strongly connected. Moreover, the bound

on δ0(G) is sharp. Grant [9] gave a minimum semi-degree condition for forcing an anti-

directed Hamilton cycle. After a few further partial results [3, 11, 16], the first author and

Molla [7] proved the following: every sufficiently large even order n-vertex digraph G with

δ0(G) ≥ n/2+ 1 contains an anti-directed Hamilton cycle; in fact, provided G is not one of

two extremal examples, a minimum semi-degree of δ0(G) ≥ n/2 suffices here.

Moving beyond anti-directed Hamilton cycles, we now have a complete picture of the

minimum semi-degree threshold for forcing an arbitrary orientation of a Hamilton cycle. In

1995, Häggkvist and Thomason [11] proved that every sufficiently large n-vertex digraph

G with δ0(G) ≥ n/2 + n5/6 contains every orientation of a Hamilton cycle. Twenty years

later, DeBiasio, Kühn, Molla, Osthus and Taylor [6] provided the following sharp version

of this result.

Theorem 1.5 (DeBiasio, Kühn, Molla, Osthus and Taylor [6]). There exists n0 ∈ N such

that for all n ≥ n0, if G is an n-vertex digraph with δ0(G) ≥ n/2, then G contains every

orientation of a Hamilton cycle that is not anti-directed.

Note that since δ(G) ≥ 2δ0(G), Theorem 1.3 asymptotically generalizes Theorem 1.5. It

would be interesting (though likely very challenging) to prove a sharp version of Theorem 1.3

á la Theorem 1.5; this is discussed further in Section 4.

1.2. Pancylicity. Our work also has implications to cycles of shorter length. An oriented

graph is a digraph with at most one edge between any pair of vertices. An oriented cycle

(resp. oriented path) is an oriented graph whose underlying graph is a cycle (resp. path).

A directed cycle (resp. directed path) is an oriented cycle (resp. path) in which all edges

are oriented in the same direction. The following result is a straightforward consequence

of Theorem 1.3, a lemma of Taylor [20], and a couple of our auxiliary results. We defer its

proof to the appendix.

Theorem 1.6. For all k ∈ N and γ > 0, there exists n0 ∈ N such that the following holds.

If G is a digraph on n ≥ n0 vertices with δ(G) ≥ (1 + 1
k+1 + γ)n, then G contains every

oriented cycle on at most n vertices, except for perhaps the directed cycles on more than

⌈nk ⌉ vertices. Moreover, if G is a digraph on n ≥ 2 vertices with δ(G) ≥ ⌊3n2 ⌋ − 1, then G

contains every oriented cycle of every possible length.
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Note that the moreover part of Theorem 1.6 is actually a simple consequence of a gen-

eralization [1] of Bondy’s pancyclicity theorem [2]. Theorem 1.6 immediately implies the

following pancyclicity-type extension of Theorem 1.3.

Corollary 1.7. For all η > 0, there exists n0 ∈ N such that if G is a digraph on n ≥ n0

vertices with δ(G) ≥ (1 + η)n, then G contains every oriented cycle on at most n vertices,

except perhaps the directed cycles.

Note that Theorem 1.6 (including the moreover part) is best-possible in a strong sense.

Indeed, let k, n ∈ N with n ≥ k + 1. Consider the n-vertex digraph G1 obtained from the

transitive tournament T on k+1 vertices by blowing-up and replacing each vertex of T with

a complete digraph on ⌈ n
k+1⌉ or ⌊ n

k+1⌋ vertices. Now we have δ(G1) = n + ⌊ n
k+1⌋ − 2 and

G1 contains no directed cycle of length more than ⌈ n
k+1⌉. In particular, having δ(G) almost

(1 + 1
k+1)n does not guarantee directed cycles of length more than ⌈ n

k+1⌉; however, as soon
as δ(G) is somewhat bigger than (1 + 1

k+1)n, Theorem 1.6 tells us that G in fact contains

every directed cycle of length up to ⌈nk ⌉. Thus, Theorem 1.6 asymptotically determines

the minimum degree threshold for forcing a directed cycle of a given length in an n-vertex

digraph:

Corollary 1.8. For any k ∈ N and any γ > 0, there exists n0 ∈ N such that the following

holds. Suppose that n ≥ n0 and let C be a directed cycle of length ⌈ n
k+1⌉ < |C| ≤ ⌈nk ⌉. If

G is a digraph on n ≥ n0 vertices with δ(G) ≥ (1 + 1
k+1 + γ)n, then G contains C. On the

other hand, for every n ≥ k+1 there is an n-vertex digraph G1 with δ(G1) = n+ ⌊ n
k+1⌋− 2

that does not contain C.

1.3. Directed 2-factors. Recall that the moreover part of Theorem 1.6 implies that, with-

out the assumption of strong connectivity, the minimum degree threshold for forcing a

directed Hamilton cycle in an n-vertex digraph G is n + ⌊n2 ⌋ − 1. The following observa-

tion generalizes this fact. Note that a directed 2-factor in a digraph G is a collection of

vertex-disjoint directed cycles that together cover all vertices in G.

Observation 1.9. Given any k ∈ N, if G is a digraph on n ≥ 2(k + 1) vertices with

δ(G) ≥ n + ⌊ n
k+1⌋ − 1, then every strongly connected component H of G has more than

⌊ n
k+1⌋ ≥ 2 vertices and satisfies δ(H) ≥ |V (H)| + ⌊ n

k+1⌋ − 1. Consequently, Theorem 1.1

implies that G contains a directed 2-factor with at most k cycles.

Note that the minimum degree condition in Observation 1.9 is tight as witnessed by the

digraph G1 defined after Corollary 1.7.

Organization of the paper. In Section 2 we state and prove one of our key auxiliary re-

sults, Proposition 2.1, which essentially is a ‘robust’ version of Observation 1.9. In Section 3

we then show that the structure obtained from Proposition 2.1 allows one to prove Theo-

rem 1.3. In Section 4, we end the paper with a few concluding remarks and open questions.

Note that we defer the proof Theorem 1.6, as well as Theorem 3.5, to the appendix.

Notation. Throughout, N denotes the set of positive integers (i.e., it does not contain 0).

Let G be a digraph. We define |G| := |V (G)| and e(G) := |E(G)|. Given x ∈ V (G), we

write N+
G (x) for the out-neighborhood of x in G and write N−

G (x) for the in-neighborhood
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of x in G. Thus, |N+
G (x)| = d+G(x) and |N−

G (x)| = d−G(x). Given Y ⊆ V (G) we define

N+
G (x, Y ) := N+

G (x) ∩ Y and N−
G (x, Y ) := N−

G (x) ∩ Y . Set d+G(x, Y ) := |N+
G (x, Y )| and

d−G(x, Y ) := |N−
G (x, Y )|, and let dG(x, Y ) := d+G(x, Y ) + d−G(x, Y ). We define dG(x) :=

dG(x, V (G)).

Given distinct x, y ∈ V (G), we write xy for the edge directed from x to y in G; so xy

and yx are different edges. We say that x sends a double edge to y in G if xy, yx ∈ E(G).

Given subsets A,B ⊆ V (G) (not-necessarily disjoint), let E+
G(A,B) be the set of all

xy ∈ E(G) such that x ∈ A and y ∈ B. We set E−
G(A,B) := E+

G(B,A) and let

EG(X,Y ) := E+
G(X,Y )∪E−

G(X,Y ). Let e+G(X,Y ) := |E+
G(X,Y )|, e−G(X,Y ) := |E−

G(X,Y )|,
and eG(X,Y ) = |EG(X,Y )|.

Given X ⊆ V (G), we write G[X] for the subdigraph of G induced by X. We write G \X
for the subdigraph of G induced by V (G) \X.

Given a digraph G, a sink is a vertex of out-degree 0 and a source is a vertex of in-degree

0. Given an oriented cycle C, a vertex v ∈ V (C) is a switch if it is either a source or a

sink in C. A digraph is strongly connected if, for every ordered pair of distinct vertices

x, y ∈ V (G), there is a directed path from x to y in G.

When we state that a digraph G contains every orientation of a Hamilton cycle, we mean

it contains every oriented cycle on |G| vertices.
Throughout the paper, we omit all floor and ceiling signs whenever these are not crucial.

The constants in the hierarchies used to state our results are chosen from right to left. For

example, if we claim that a result holds whenever 0 < a ≪ b ≪ c ≤ 1, then there are

non-decreasing functions f : (0, 1] → (0, 1] and g : (0, 1] → (0, 1] such that the result holds

for all 0 < a, b, c ≤ 1 with b ≤ f(c) and a ≤ g(b). Note that a ≪ b implies that we may

assume in the proof that, e.g., a < b or a < b2.

2. Partitioning into robust expanders

In this section we will make use of the concept of robust expansion, a notion introduced by

Kühn, Osthus and Treglown [15] that has found applications to a range of graph embedding

problems.

Let 0 < ν ≤ τ < 1/2 and let G be a digraph on n vertices. For S ⊆ V (G), define

RN+
ν (S) := {v ∈ V (G) : d−G(v, S) ≥ νn} to be the ν-robust out-neighborhood of S. We

say that G is a robust (ν, τ)-outexpander if |RN+
ν (S)| ≥ |S| + νn for all S ⊆ V (G) with

τn ≤ |S| ≤ (1− τ)n.

The following structural result can be viewed as a robust version of Observation 1.9.

Proposition 2.1. Let k ∈ N and let 0 < 1/n0 ≪ ν ≪ τ ≪ α ≪ ζ ≪ 1/k. If G is a digraph

on n ≥ n0 vertices with δ(G) ≥ (1 + 1
k+1 + ζ)n, then there exists a partition {V1, . . . , Vt} of

V (G) such that:

(i) for all i ∈ [t], |Vi| ≥ ( 1
k+1 + ζ

2)n, and consequently t ≤ k;

(ii) for all i ∈ [t], G[Vi] is a robust (ν, τ)-outexpander with δ(G[Vi]) ≥ (1+ 1
k+1 +

ζ
2)|Vi|;

(iii) if t ≥ 2, then for all 1 ≤ i < j ≤ t, e−G(Vi, Vj) >
n2

(k+1)2
;

(iv) if t ≥ 2, then
∑

1≤i<j≤t

e+G(Vi, Vj) ≤ α
∑

1≤i<j≤t

|Vi||Vj | ≤ αn2.
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Note that Proposition 2.1 implies that an n-vertex digraph G with δ(G) > (1 + 1
k+1 +

o(1))n is either a robust outexpander (if t = 1) or has structure resembling that of the

example described after Observation 1.9. More precisely, if t ≥ 2 in Proposition 2.1, the

vertex classes Vi are of reasonable size and induce robust outexpanders of large minimum

degree (rather than complete digraphs). Further, the edges between vertex classes are

oriented approximately as in the blow-up of a transitive tournament.

Roughly speaking, Kühn, Osthus and Treglown [15] proved that if a sufficiently large

digraph G is a robust outexpander with linear minimum semi-degree, then G contains a

directed Hamilton cycle. Moreover, Taylor [20] proved that such a digraph G actually

contains every orientation of a Hamilton cycle (see Theorem 3.4 in Section 3).

This latter result is thus very useful when combined with Proposition 2.1. Indeed, given

a digraph as in Theorem 1.3, one may apply Proposition 2.1 (with k ∈ N chosen so that

1/(k + 1) ≤ η/2 say) to obtain the partition {V1, . . . , Vt} of V (G). Given an arbitrary

orientation C of an n-vertex cycle, Taylor’s theorem allows one to find a segment of C in

each G[Vi] covering all of Vi. The challenge therefore is to combine these segments into a

copy of C in G. This will be achieved in Section 3.

Given a digraph G and a partition {X1, X2} of V (G), we say that (X1, X2) is an α-sparse

cut if e+G(X1, X2) ≤ α|X1||X2| and X1, X2 are non-empty. The following lemma says that

if G is a digraph on n vertices with δ(G) > (1+ o(1))n, then there is only one way for G to

fail to be a robust outexpander.

Lemma 2.2. Let 0 < ν, τ, α, η < 1 such that τ < 1/2 and ν ≤ ατη/4, and let G be a

digraph on n vertices with δ(G) ≥ (1 + η)n. If G has no α-sparse cut, then G is a robust

(ν, τ)-outexpander.

Proof. Suppose G has no α-sparse cut, and suppose for a contradiction there exists S ⊆
V (G) with τn ≤ |S| ≤ (1 − τ)n such that |RN+

ν (S)| < |S| + νn. Let A := S \ RN+
ν (S),

B := S ∩RN+
ν (S), C := RN+

ν (S) \ S, and D := V (G) \ (A ∪B ∪ C).

First note that we have

(ατ − ν)n < |C| < |A|+ νn (2.1)

where the upper bound holds by the assumption on S; the lower bound holds because if

|C| ≤ (ατ − ν)n, then we would have

e+G(S,C ∪D) ≤ |S||C|+ νn(n− |S|) =
(

|C|
n− |S|

+
νn

|S|

)
|S|(n− |S|)

≤
(
ατ − ν

τ
+

ν

τ

)
|S|(n− |S|) = α|S|(n− |S|),

a contradiction to the fact that there is no α-sparse cut.

We will obtain a contradiction by counting the sum of the degrees of the vertices in A in

two different ways. We have

|A|(1 + η)n ≤
∑
v∈A

dG(v) =
∑
v∈A

d+G(v,A) +
∑
v∈A

d−G(v,A ∪B) + e+G(A,B) + eG(A,C) + eG(A,D)

=
∑
v∈A

d−G(v,A) +
∑
v∈A

d−G(v,A ∪B) + e+G(A,B) + eG(A,C) + eG(A,D)
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< 2νn|A|+ |A||B|+ 2|A||C|+ |D|(|A|+ νn)

= |A|(|B|+ 2|C|+ |D|+ 2νn) + |D|νn
(2.1)
< |A|(|A|+ |B|+ |C|+ |D|+ 3νn) + |D|νn
= |A|(1 + 3ν)n+ |D|νn.

Thus, (η − 3ν)|A| < ν|D| which, since 2ν ≤ ατ/2 and 3ν ≤ η/2 implies that

ατηn/4 ≤ (ατ − 2ν)(η − 3ν)n
(2.1)
< (η − 3ν)|A| < ν|D| ≤ νn,

a contradiction. □

The next technical lemma allows us to “clean-up” a sparse cut to ensure it has some

additional properties (which will be needed to prove Proposition 2.1).

Lemma 2.3. Let k ∈ N, let 0 < ζ < 1− 1
k+1 , and let 0 < α < ζ

24(k+1) . Let G be a digraph

on n vertices with δ(G) ≥ (1 + 1
k+1 + ζ)n and let X ⊆ V (G) such that

(a) |X| > ( 1
k+1 + ζ

2)n;

(b) δ(G[X]) ≥ (1 + 1
k+1 + ζ − α)|X|;

(c) dG(v,X) ≥ |X|+ ( 1
k+1 + ζ − α)n for all but at most α2n vertices v ∈ X.

If G[X] has an α2-sparse cut, then G[X] has an α-sparse cut (V1, V2) such that for all

i ∈ [2]:

(i) |Vi| > ( 1
k+1 + ζ

2)n;

(ii) δ(G[Vi]) ≥ (1 + 1
k+1 + ζ − 10(k + 1)α)|Vi|;

(iii) dG(v, Vi) ≥ |Vi|+ ( 1
k+1 + ζ − 10(k + 1)α)n for all but at most αn vertices v ∈ Vi.

Note that (i) automatically implies that if X is a set meeting the requirements (a), (b),

(c) and ( 1
k+1 + ζ

2)n < |X| ≤ ( 2
k+1 + ζ)n, then X cannot have an α2-sparse cut.

Proof. Suppose that (X1, X2) is an α2-sparse cut of G[X]. By (a) and (b) we have |Xi| >
2αn for all i ∈ [2]. Indeed, if |Xi| ≤ 2αn, then (b) implies that every vertex v ∈ Xi sends

double edges to at least (1/(k+1)+ ζ−α)|X|−2αn ≥ (1/(k+1)+ ζ−α−2(k+1)α)|X| ≥
|X|/(k + 1) vertices in X3−i; but then e+G(X1, X2) ≥ |X1||X2|/(k + 1) > α2|X1||X2|, a

contradiction as (X1, X2) is an α2-sparse cut of G[X].

In fact, by combining |Xi| > 2αn with (c) we have

|Xi| >
(

1

k + 1
+ ζ − 2α

)
n for all i ∈ [2].

Indeed, if |Xi| ≤ ( 1
k+1 + ζ − 2α)n, then by (c), there are |Xi| − α2n > αn vertices in Xi

that send double edges to at least αn vertices in X3−i, contradicting the fact that (X1, X2)

is an α2-sparse cut.

For all i ∈ [2], let

X ′
i :=

{
v ∈ Xi : dG(v,Xi) ≤ |Xi|+

(
1

k + 1
+ ζ − 9(k + 1)α

)
n

}
.
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We now claim that for all i ∈ [2],

|X ′
i| ≤

α

6(k + 1)
n. (2.2)

Indeed, suppose that |X ′
i| > α

6(k+1)n for some i ∈ [2]. Then by (c), for all but at most α2n

vertices v ∈ X ′
i, we have

dG(v,X3−i) ≥ |X|+
(

1

k + 1
+ ζ − α

)
n−

(
|Xi|+

(
1

k + 1
+ ζ − 9(k + 1)α

)
n

)
≥ |X3−i|+ 8(k + 1)αn,

which implies that

e+G(X1, X2) ≥ (|X ′
i| − α2n) · 8(k + 1)αn >

α

8(k + 1)
n · 8(k + 1)αn = α2n2 ≥ α2|X1||X2|,

contradicting the fact that (X1, X2) is an α2-sparse cut of G[X].

Now set

X ′′
2 :=

{
v ∈ X ′

1 ∪X ′
2 : dG(v,X2 \ (X ′

1 ∪X ′
2)) ≥

(
1 +

1

k + 1
+ ζ − α

)
|X2| −

α

6(k + 1)
n

}
,

and let X ′′
1 := (X ′

1 ∪X ′
2) \X ′′

2 . Note that by (b), (2.2) and the definition of X ′′
1 , we have

that for all v ∈ X ′′
1 ,

dG(v,X1 \ (X ′
1 ∪X ′

2)) ≥
(
1 +

1

k + 1
+ ζ − α

)
|X1| −

α

6(k + 1)
n.

Set V1 := (X1 \X ′
1) ∪X ′′

1 and V2 := (X2 \X ′
2) ∪X ′′

2 . Note that for all i ∈ [2], we have

|Xi| −
α

6(k + 1)
n ≤ |Vi| ≤ |Xi|+

α

6(k + 1)
n. (2.3)

Since |Xi| > ( 1
k+1 + ζ − 2α)n, (2.3) implies that

|Vi| >
(

1

k + 1
+

ζ

2

)
n, (2.4)

and thus (i) is satisfied.

If v ∈ Xi \X ′
i, then by definition of X ′

i, dG(v,Xi) ≥
(
1 + 1

k+1 + ζ − 9(k + 1)α
)
|Xi| and

so by (2.3) we have that dG(v, Vi) ≥
(
1 + 1

k+1 + ζ − 9(k + 1)α
)
|Xi| − α

6(k+1)n. Further, if

v ∈ X ′′
i , then dG(v, Vi) ≥

(
1 + 1

k+1 + ζ − α
)
|Xi| − α

6(k+1)n. Thus, for all i ∈ [2],

δ(G[Vi]) ≥
(
1 +

1

k + 1
+ ζ − 9(k + 1)α

)
|Xi| −

α

6(k + 1)
n

(2.3)

≥
(
1 +

1

k + 1
+ ζ − 9(k + 1)α

)(
|Vi| −

α

6(k + 1)
n

)
− α

6(k + 1)
n

≥
(
1 +

1

k + 1
+ ζ − 9(k + 1)α

)
|Vi| −

α

2(k + 1)
n

(2.4)

≥
(
1 +

1

k + 1
+ ζ − 10(k + 1)α

)
|Vi|,

so (ii) is satisfied.
8



By the definition of X ′
i and (2.2) we have that for all i ∈ [2], all but at most |X ′

1|+ |X ′
2| ≤

α
3(k+1)n < αn vertices v ∈ Vi have

dG(v, Vi)
(2.3)

≥ |Xi|+
(

1

k + 1
+ ζ − 9(k + 1)α

)
n− α

6(k + 1)
n

(2.3)

≥ |Vi|+
(

1

k + 1
+ ζ − 9(k + 1)α

)
n− α

3(k + 1)
n

> |Vi|+
(

1

k + 1
+ ζ − 10(k + 1)α

)
n,

and thus (iii) is satisfied.

Finally, we have that (V1, V2) is an α-sparse cut since

e+G(V1, V2) ≤ e+G(X1, X2) + |X ′′
1 ||X ′′

2 |+ |X1||X ′′
2 |+ |X ′′

1 ||X2|

≤ α2|X1||X2|+
α2

36(k + 1)2
n2 +

α

3(k + 1)
n|X1|+

α

3(k + 1)
n|X2|

≤ 2α2|V1||V2|+ α2|V1||V2|+ 2α|V1||V2|/5 + 2α|V1||V2|/5
≤ α|V1||V2|,

where the penultimate inequality uses (2.3) and (2.4) in the form n < (k + 1)|Vi| and

consequently |Xi| < (1 + α
6 )|Vi| for all i ∈ [2]. □

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Let G be an n-vertex digraph where n ≥ n0 and δ(G) ≥ (1+ 1
k+1+

ζ)n. The proof proceeds by running an iterative procedure to obtain the desired partition

{V1, . . . , Vt} of V (G). Set αb := α2k−b
for 0 ≤ b ≤ k. Note that ν ≪ τ ≪ αb ≪ ζ ≪ 1/k

for any 0 ≤ b ≤ k; this hierarchy will allow us to apply both Lemma 2.2 and Lemma 2.3

throughout the procedure (with αb playing the role of α).

By Lemma 2.2, either G is a robust (ν, τ)-outexpander or G has an α0-sparse cut. In the

former case, conditions (i) and (ii) of Proposition 2.1 hold (with t = 1), so we are done.

Thus, suppose G has an α0-sparse cut. By Lemma 2.3, there exists an α1-sparse cut

(V 1
1 , V

1
2 ) of G satisfying conditions (i)–(iii) of the lemma. That is, for i ∈ [2]:

• |V 1
i | > ( 1

k+1 + ζ
2)n;

• δ(G[V 1
i ]) ≥ (1 + 1

k+1 + ζ − 10(k + 1)α1)|V 1
i | ≥ (1 + 1

k+1 + ζ − α2)|V 1
i |;

• dG(v, V
1
i ) ≥ |V 1

i |+ ( 1
k+1 + ζ − 10(k + 1)α1)n ≥ |V 1

i |+ ( 1
k+1 + ζ − α2)n for all but

at most α1n = α2
2n vertices v ∈ V 1

i .

If both G[V 1
1 ] and G[V 1

2 ] are robust (ν, τ)-outexpanders then we set V1 := V 1
1 and V2 := V 1

2

and terminate the procedure. Otherwise, we will continue the iterative procedure as follows.

At each subsequent step of the procedure we will begin with a partition {V b
1 , . . . , V

b
a } of

V (G) such that, for each i ∈ [a]:

(C1) |V b
i | > ( 1

k+1 + ζ
2)n;

(C2) δ(G[V b
i ])| ≥ (1 + 1

k+1 + ζ − αb+1)|V b
i |;

(C3) dG(v, V
b
i ) ≥ |V b

i | + ( 1
k+1 + ζ − αb+1)n for all but at most αbn = α2

b+1n vertices

v ∈ V b
i .

9



We then proceed as follows: For each class V b
i such thatG[V b

i ] is a robust (ν, τ)-outexpander,

we will perform no further partition of V b
i ; that is, V

b
i will be one of the final classes in the

partition {V1, . . . , Vt} of V (G). So in particular, if all classes V b
i have this property then we

terminate the procedure.

Otherwise, for any other class V b
i we will have that G[V b

i ] has an α2
b+1-sparse cut by

Lemma 2.2. We can then apply Lemma 2.3 to X := V b
i to obtain a partition {V b

i,1, V
b
i,2} of

V b
i such that (V b

i,1, V
b
i,2) is an αb+1-sparse cut in G[V b

i ], and so that, for each j ∈ [2]:

• |V b
i,j | > ( 1

k+1 + ζ
2)n;

• δ(G[V b
i,j ]) ≥ (1 + 1

k+1 + ζ − 10(k + 1)αb+1)|V b
i,j | ≥ (1 + 1

k+1 + ζ − αb+2)|V b
i,j |;

• dG(v, V
b
i,j) ≥ |V b

i,j |+ ( 1
k+1 + ζ − 10(k+1)αb+1)n ≥ |V b

i,j |+ ( 1
k+1 + ζ −αb+2)n for all

but at most αb+1n = α2
b+2n vertices v ∈ V b

i,j .

Once we have performed this step for all classes V b
i , by relabeling we obtain a new

partition {V b+1
1 , . . . , V b+1

a′ } of V (G) where a + 1 ≤ a′ ≤ 2a. In particular, we order the

classes so that the first class(es) in this new partition are subsets of V b
1 , the next class(es)

are subsets of V b
2 , and so on. Moreover, if a class V b

i was partitioned in the last step,

then the class V b
i,1 must appear immediately before the class V b

i,2 in the new partition

{V b+1
1 , . . . , V b+1

a′ }. Note that {V b+1
1 , . . . , V b+1

a′ } satisfies (C1)–(C3) (with b+1 and a′ playing

the roles of b and a, respectively). We then continue to the next step of the procedure.

Crucially, this procedure must terminate for some b ≤ k− 1. Indeed, at every step of the

process we either terminate the procedure (if all classes induce robust (ν, τ)-outexpanders),

or create a new partition of V (G) with at least one more partition class than before. By

(C1), we can have at most k classes in {V b
1 , . . . , V

b
a }; this therefore means the procedure

does terminate after at most k − 1 steps. Let {V1, . . . , Vt} denote the partition at the end

of this procedure. Then (C1) implies that Proposition 2.1(i) holds.

Since the procedure only terminates when each class Vi in the partition induces a robust

(ν, τ)-outexpander, together with (C2) this implies that Proposition 2.1(ii) holds.

If t ≥ 2, consider any Vi and Vj where 1 ≤ i < j ≤ t. By the way in which we construct

and order our partitions at every step, it must be the case that there is some b ∈ [k−1] and

V b
i′ , V

b
j′ ⊆ V (G) such that Vi ⊆ V b

i′ ; Vj ⊆ V b
j′ ; (V

b
i′ , V

b
j′) is an αb-sparse cut in G[V b

i′ ∪ V b
j′ ]. As

|Vi|, |Vj | ≥ n/(k + 1) this implies that

e+G(Vi, Vj) ≤ αb · |V b
i′ ||V b

j′ | ≤ αk−1(k + 1)2|Vi||Vj | ≤ α|Vi||Vj |,

which implies that Proposition 2.1(iv) holds.

Finally, if t ≥ 2, suppose for a contradiction that e−G(Vi, Vj) ≤ n2

(k+1)2
for some 1 ≤ i <

j ≤ t. If |Vi| ≤ |Vj |, using Proposition 2.1(iv) we obtain that

|Vi|
(
1 +

1

k + 1
+ ζ

)
n− 2|Vi|2 ≤ eG(Vi, V (G) \ Vi) ≤ |Vi|(n− |Vi| − |Vj |) +

n2

(k + 1)2
+ αn2,

which implies that(
1 +

1

k + 1
+ ζ

)
n ≤ n− |Vj |+ |Vi|+

n2

(k + 1)2|Vi|
+

αn2

|Vi|
<

(
1 +

1

k + 1
+ ζ

)
n,
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a contradiction. Similarly, if |Vj | ≤ |Vi|, we analogously obtain a contradiction by consider-

ing eG(Vj , V (G) \ Vj). Thus, Proposition 2.1(iii) holds. □

3. Embedding the Hamilton cycle

Our main result in this section is the following.

Proposition 3.1. Let 0 < 1/n0 ≪ ρ ≪ ν ≪ τ ≪ η ≪ 1 and let n ≥ n0. If G is an n-vertex

digraph and {V1, . . . , Vt} is a partition of V (G) such that:

(i) for all i ∈ [t], |Vi| ≥ ηn and consequently t ≤ 1
η ;

(ii) for all i ∈ [t], G[Vi] is a robust (ν, τ)-outexpander with δ0(G[Vi]) ≥ η|Vi|;
(iii) if t ≥ 2, then for all 1 ≤ i < j ≤ t, e+G(Vi, Vj) ≥ n

ρ2
,

then G contains every orientation of a Hamilton cycle, except possibly the directed Hamilton

cycle.

Note that Theorem 1.3 follows easily from Propositions 2.1 and 3.1.

Proof of Theorem 1.3. Let η > 0 and define k ∈ N such that 1/(k + 1) ≪ η. Set η′ :=

1/(k + 1) and define additional constants so that

0 < 1/n0 ≪ ρ ≪ ν ≪ τ ≪ α ≪ ζ ≪ η′.

Let G be a digraph on n ≥ n0 vertices with δ(G) ≥ (1 + η)n ≥ (1 + η′ + ζ)n. By applying

Proposition 2.1, and reversing the ordering of the partition of V (G) outputted, we obtain

a partition {V1, . . . , Vt} of V (G) so that:

• for all i ∈ [t], |Vi| ≥ (η′ + ζ
2)n;

• for all i ∈ [t], G[Vi] is a robust (ν, τ)-outexpander with δ(G[Vi]) ≥ (1 + η′ + ζ
2)|Vi|,

and thus δ0(G[Vi]) ≥ η′|Vi|;
• if t ≥ 2, then for all 1 ≤ i < j ≤ t, e+G(Vi, Vj) >

n2

(k+1)2
.

Applying Proposition 3.1 (with η′ playing the role of η) implies that G contains every

orientation of a Hamilton cycle, except for perhaps the directed Hamilton cycle (in the case

when G is not strongly connected). □

Before proceeding with the proof of Proposition 3.1 we need some further notation. A

segment of an oriented cycle C (resp. oriented path P ) is an oriented path that forms an

induced subgraph of C (resp. P ). A directed segment of an oriented cycle or path is a

segment that induces a directed path. Note that we will often write a segment in the form

x1 . . . xℓ to indicate the ordered sequence of vertices this segment contains; this notation

does not tell us anything about how the edges in the segment are oriented. Given a segment

P of an oriented cycle or path C, a non-endpoint vertex v of P is a switch if it is either a

source or a sink in P .

The proof of Proposition 3.1 splits into two cases depending on whether the orientation

of a Hamilton cycle we wish to embed contains a directed segment of order at least βn or

not. The following observation explicitly describes the two cases.

Observation 3.2. Let 0 < β ≤ 1 and let C be an oriented cycle on n ≥ 3 vertices. Either

(i) C contains a directed segment on ⌊βn⌋ vertices, or
11



(ii) every segment of C on ⌊βn⌋ vertices contains a switch. □

The next observation will allow us to connect up oriented paths that lie in different vertex

classes in the partition of V (G) in Proposition 3.1.

Observation 3.3. Let ρ > 0, let G be an n-vertex digraph and let X,Y ⊆ V (G) be disjoint

with e+G(X,Y ) ≥ n
ρ . If X ′ := {x ∈ X : d+G(x, Y ) ≥ 1

ρ} and Y ′ := {y ∈ Y : d−G(y,X) ≥ 1
ρ},

then |X ′|, |Y ′| ≥ 1
ρ .

Proof. If say |X ′| < 1
ρ , then we have e+G(X,Y ) < |X ′||Y |+(|X|− |X ′|)1ρ < 1

ρ |Y |+ 1
ρ |X| ≤ n

ρ ,

a contradiction. □

We also need a result that allows us to span each robust outexpander G[Vi] with a

collection of oriented paths (which will then be connected together to form our desired

orientation of a Hamilton cycle in G). This will be derived from a strengthening of the

following theorem of Taylor [20, Theorem 49].

Theorem 3.4 (Taylor [20]). Let 0 < 1/n0 ≪ ν ≪ τ ≪ η < 1 and let G be a digraph on

n ≥ n0 vertices. If G is a robust (ν, τ)-outexpander with δ0(G) ≥ ηn, then G contains every

orientation of a Hamilton cycle.

One can modify the proof of Theorem 3.4 to obtain the following.

Theorem 3.5 (Universally k-linked). Let 0 < 1/n0 ≪ β ≪ ν ≪ τ ≪ η, let k ∈ N with

k ≤ 1/β2, let G be a digraph on n ≥ n0 vertices, and let Q1, . . . , Qk be a collection of oriented

paths with |Qi| =: ℓi ≥ 1/β for all i ∈ [k] such that ℓ1+ · · ·+ ℓk = n. If G is a robust (ν, τ)-

outexpander with δ0(G) ≥ ηn, then for all distinct vertices u1, . . . , uk, v1, . . . , vk ∈ V (G),

there exists a collection of disjoint oriented paths P1, . . . , Pk in G such that for all i ∈ [k],

Pi starts with ui and ends with vi, and Pi is a copy of Qi.

An explanation of how to deduce Theorem 3.5 from Taylor’s work [20] is given in the

appendix.

Finally, we need the following simple observation which is just an easy special case of

Havet and Thomassé’s theorem [13].

Observation 3.6. Let T be a transitive tournament. For all oriented paths Q with |Q| ≤
|T |, there is a copy of Q in T . □

We now proceed to the proof of Proposition 3.1.

Proof of Proposition 3.1. We first choose a constant β so that ρ ≪ β ≪ ν. Let G be an

n-vertex digraph as in the proposition. Note we may assume that t ≥ 2, otherwise the

proposition follows immediately from Theorem 3.4.

Let C be an n-vertex oriented cycle that is not a directed cycle. We will define an

embedding f : V (C) → V (G) of C into G. We will split into cases depending on how C

is oriented. In each case, we will first select the edges used in f that go between different

vertex classes Vi, Vj for each 1 ≤ i < j ≤ t (and possibly a small number of other edges);

we then apply Theorem 3.5 to find collections of oriented paths in each G[Vi] that, together

with the previously selected edges, complete the embedding f .
12



Case 1: There exists a directed segment of C on ⌊βn⌋ vertices. Let ℓ ≥ ⌊βn⌋
denote the number of vertices in the longest directed segment of C. For each j ∈ [t], let

ℓj :=
∑j

i=1 |Vi| and set ℓ0 := 0. Note that ℓt = n.

Subcase 1(a): 0 ≤ n − ℓ ≤ ηn/2. Write C = x1 . . . xnx1 where x1 is a source in C,

xℓ is a sink in C and P := x1 . . . xℓ is a longest directed segment of C. In particular,

x1x2, x1xn ∈ E(C). Let P ′ := xℓ+1 . . . xn be the segment of C from xℓ+1 to xn; note that

P ′ is empty if ℓ = n.

For each j ∈ [t], define Pj := xℓj−1+1 . . . xℓj to be the segment of C that starts at xℓj−1+1

and ends at xℓj . Note that for j ∈ [t− 1], Pj is contained in P and so is a directed segment

of C, whereas Pt contains P ′ (so may not be a directed segment). Note that the edges in

E(C) \ E(P1 ∪ · · · ∪ Pt) are precisely x1xn and xℓjxℓj+1 ∈ E(C) for each j ∈ [t− 1].

We will define f so that Pj is embedded into G[Vj ] for each j ∈ [t]. First, we choose

f(x1) ∈ V1; f(xn) ∈ Vt; f(xℓj ) ∈ Vj and f(xℓj+1) ∈ Vj+1 for each j ∈ [t− 1] so that:

• all selected vertices in this step are distinct;

• f(x1)f(xn) ∈ E(G);

• f(xℓj )f(xℓj+1) ∈ E(G) for each j ∈ [t− 1].

Note that we can select such vertices in G by Observation 3.3.

Next, for each j ∈ [t], we find a copy P ′
j of Pj in G[Vj ] that starts at f(xℓj−1+1) and

ends at f(xℓj ). Indeed, we obtain these oriented paths by applying Theorem 3.5 to each of

G[V1], . . . , G[Vt].

By concatenating the paths P ′
1, . . . , P

′
t and the edges we selected between vertex classes,

we obtain our desired embedding f of C in G.

Subcase 1(b): ηn/2 < n − ℓ ≤ n − ⌊βn⌋. Write C = x1 . . . xnx1 where x1 is a source in

C, xn−ℓ+2 is a sink in C and P := x1xn . . . xn−ℓ+2 is a longest directed segment of C. Let

P ′ := x2 . . . xn−ℓ+1 be the segment of C from x2 to xn−ℓ+1. Note that |P ′| = n− ℓ > ηn/2.

Set D := ⌊ρn⌋ and q := ⌈n−ℓ
D ⌉ < 1/ρ and partition P ′ into segments P ′

1 := x2 . . . xn1 ;

P ′
2 := xn1+1 . . . xn2 ; . . . ; P

′
q := xnq−1+1 . . . xn−ℓ+1 that are chosen to be as equal sized as

possible. In particular, for all i ∈ [q], certainly D/2 ≤ |P ′
i | ≤ D.

Each segment P ′
i will be embedded fully into one of our vertex classes Vj . On the other

hand, P will be embedded across all of the vertex classes V1, . . . , Vt (see Figure 1). Before

we can embed these segments, we need to construct the edges of C that will go between the

vertex classes.

To help with this, we define the auxiliary oriented path Q := w1w2 . . . wq such that for

all i ∈ [q−1], wiwi+1 ∈ E(Q) if xnixni+1 ∈ E(P ′), and wi+1wi ∈ E(Q) if xni+1xni ∈ E(P ′).

For all j ∈ [t], let Uj :=

{
uj1, . . . , u

j

⌊
|Vj |−ρn

D
⌋

}
. Consider an auxiliary transitive tournament

T on vertex set U1 ∪ · · · ∪ Ut such that ujku
j′

k′ ∈ E(T ) if and only if j < j′ or j = j′ and

k < k′. Note that

|T | =
∑
j∈[t]

⌊
|Vj | − ρn

D

⌋
≥

⌈
(1− β/2)n

D

⌉
≥

⌈
n− ℓ

D

⌉
= |Q|.

By Observation 3.6, there is an embedding ϕ of Q into T .
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We now use this auxiliary embedding ϕ as a ‘blueprint’ to determine in which of the classes

V1, . . . , Vt each segment P ′
i will be embedded into: If ϕ(wi) ∈ Uj , then we will eventually

embed P ′
i into Vj . Furthermore if ϕ(wi) ∈ Uj and ϕ(wi+1) ∈ Uj′ and wiwi+1 ∈ E(Q), then

by the way we defined T it must be the case that j ≤ j′. If j < j′, this ensures that we can

use Observation 3.3 to find an edge in G from Vj to Vj′ that will connect f(xni) (the last

vertex of P ′
i ) to f(xni+1) (the first vertex of P ′

i+1); if j = j′ we use that δ0(G[Vj ]) ≥ η|Vj |
to find an edge in G[Vj ] that will connect f(xni) to f(xni+1). One can argue similarly if

wi+1wi ∈ E(Q) (with the roles of j and j′ switched).

x1

xn−`+2
x2

xn1

xn1+1

xn2

xn2+1

xn3

xn3+1

xn−`+1

V1 V2 V3 V4

P

P ′1P ′3 P ′2 P ′4

Figure 1. Case 1(b): An example with q = 4

We now know in which classes we wish to embed each segment P ′
i of P

′. This tells us how

many vertices are ‘left’ in each class Vj that we need to cover using P . In particular, note

that by the way we defined T , there are at least ρn vertices in each class Vj that will not be

used for embedding P ′;2 so these vertices will have to be covered by P . We will embed P so

that it goes through each class V1, . . . , Vt sequentially. That is, x1 will be embedded in V1

and we continue to use vertices in V1 until the correct number of vertices are covered, then

we jump over to V2 (using a single edge between V1 and V2) and repeat this process; finally

xn−ℓ+2 will be embedded into Vt. Before we can embed the whole of P , for each j ∈ [t− 1],

we need to choose the single edge in G that goes between Vj and Vj+1 that will be used in

the embedding of P . We can use Observation 3.3 to select such edges so that they are all

disjoint, and disjoint from all the edges selected previously that will be used to connect up

the segments P ′
i .

Also note that if ϕ(w1) ∈ Uj1 , then regardless of the value of j1, we can use Observation 3.3

(or the fact that δ0(G[V1]) ≥ η|V1| if j1 = 1) to find an edge from V1 to Vj1 that will connect

f(x1) to f(x2). Likewise, if ϕ(wq) ∈ Ujq , then regardless of the value of jq we can find an

edge from Vjq to Vt which will connect f(xn−ℓ+1) to f(xn−ℓ+2).

In summary, we now have selected all the edges in G required to connect between the

segments P ′
1, . . . , P

′
q, P , and all edges that will go between different classes in the embedding

of P into G. One can now apply Theorem 3.5 to each induced subgraph G[Vi] to obtain the

embeddings of the segments P ′
1, . . . , P

′
q as well as the remaining edges needed for P . This

therefore completes the embedding f of C into G.

2Specifically, at most ⌊ |Vj |−ρn

D
⌋ of the segments P ′

i (each of which contain at most D vertices) will be

embedded into a class Vj .
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Case 2: Every segment on ⌊βn⌋ vertices contains a switch. Write C = x1x2 . . . xnx1
where x1 is a source in C. In this case we have the following crucial property:

Every segment of C on at least 2βn vertices contains both a source and a sink. (3.1)

Our plan is to partition C into t segments P1, . . . , Pt and construct an embedding f :

V (C) → V (G) of C in G so that for all i ∈ [t − 1], f(Pi) ⊆ Vi ∪ Vi+1 and f(Pt) ⊆ Vt, and

such that for all i ∈ [t], f(Pi) starts and ends in Vi. We now explain the steps we take to

achieve this embedding.

Step 1: Partitioning C into t segments. Set n0 := 0 and nt := n. Let P1 :=

xn0+1 . . . xn1 be the minimal segment in C that starts at xn0+1 = x1 and where xn1xn1+1 ∈
E(C) and |P1| ≥ |V1|; note that as we are in Case 2, P1 exists and |P1| ≤ |V1|+ βn. Since

|V2| ≥ ηn ≫ βn, we have that |P1| is much smaller than |V1|+ |V2|.
Let s ∈ [t−2] and suppose we have chosen segments P1 = xn0+1 . . . xn1 , P2 = xn1+1 . . . xn2 ,

. . . , Ps = xns−1+1 . . . xns such that for all i ∈ [s], Pi is the minimal segment of C that starts at

xni−1+1 such that xnixni+1 ∈ E(C) and |V1|+· · ·+|Vi| ≤ |P1|+· · ·+|Pi| ≤ |V1|+· · ·+|Vi|+βn.

We then choose Ps+1 := xns+1 . . . xns+1 minimally such that xns+1xns+1+1 ∈ E(C) and

|P1|+ · · ·+ |Ps+1| ≥ |V1|+ · · ·+ |Vs+1|; again this is possible as we are in Case 2, and in fact

we have |P1|+ · · ·+ |Ps+1| ≤ |V1|+ · · ·+ |Vs+1|+βn. Finally, we let Pt := xnt−1+1 . . . xnt and

note that by the way the other segments Pi were chosen, we have |Vt| − βn ≤ |Pt| ≤ |Vt|.

Step 2: Setting up the connections and fixing the imbalance. Ideally we would

like to have had that |Pi| = |Vi| for all i ∈ [t]. Then we could embed P1 fully into V1 and

then jump over to V2 and embed P2 there, and so forth, to obtain an embedding of C into

G. However, we have that |Pi| ≤ |Vi| + βn, and in particular there may be a gap between∑s
i=1 |Pi| and

∑s
i=1 |Vi| for some of the s ∈ [t− 1].

As such, in this step we will embed constantly-many segments of C into G in such a

way that along C there is at least a large constant gap between consecutive pairs of such

segments. The goal is to make all of the required connections between Vi and Vi+1 for each

i ∈ [t − 1], while at the same time correcting the gap between
∑s

i=1 |Pi| and
∑s

i=1 |Vi| for
each s ∈ [t− 1].

We begin by using Observation 3.3 to obtain a matching M in G consisting of one edge

v1vn = vn0+1vnt from V1 to Vt, and for all i ∈ [t − 1], one edge vnivni+1 from Vi to Vi+1.

For each i ∈ [t], set f(xni) := vni , and for each i ∈ [t− 1] ∪ {0}, set f(xni+1) := vni+1.

For each s ∈ [t − 1], set ds :=
∑s

j=1 |Pj | −
∑s

j=1 |Vj | ≥ 0. If ds = 0 for all s ∈ [t − 1],

we move on to the next step; so suppose ds > 0 for some s ∈ [t− 1], and consider any such

s. The minimality of Ps combined with the fact that we are in Case 2 implies that xns is

source in C and ds ≤ βn. Let as + 1 < ns be a maximal index such that xas+1 is a sink

in C. Note that P ∗
s := xnsxns−1 . . . xns−ds . . . xas+1 is a directed segment on at most βn

vertices (and on at least ds + 1 vertices).

We now have two subcases that we first describe informally: Either 0 < ds ≤ η
6β and

we are able to fix the imbalance by embedding ds sinks from Ps in Vs+1 (in a way that

will be made precise shortly), or η
6β < ds ≤ βn and we use ⌊ η

12β ⌋ sinks as before, together

with the segment P ∗
s = xnsxns−1 . . . xas+1 to fix the imbalance (roughly by embedding
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xas+ds−⌊ η
12β

⌋ . . . xas+1 in Vs+1, xas in Vs, and xns . . . xas+ds−⌊ η
12β

⌋+1 in Vs). We now make

these subcases precise.

Vs Vs+1

xns xns+1

xk1

xkds

...
...

(a) 0 < ds ≤ η
6β

Vs Vs+1

xas

xas+ds−d′
s

xas+1

xas+ds−d′
s+1

xns
xns+1

xk1

xkd′s

...
...

(b) η
6β < ds ≤ βn

Figure 2. Case 2, Step 2

First suppose that 0 < ds ≤ η
6β . Since |Vs| ≥ ηn, how we defined ns and ns−1, together

with (3.1), implies that ns − ns−1 ≥ ηn − 2βn. Using this with (3.1) ensures that we can

select ds sinks xks1 , . . . , xksds
on Ps where

(D1) ns−1 + 2βn < ks1 < ks2 < · · · < ksds < ns − 2βn;

(D2) xks1 , . . . , xksds
do not lie on the directed segment P ∗

s ;

(D3) for all 1 ≤ i < j ≤ ds we have that ksj − ksi ≥ βn.

In fact, notice (D2) follows immediately from (D1) and the definition of P ∗
s .

We now use Observation 3.3 to find ds disjoint subgraphs Λs
1, . . . ,Λ

s
ds

of G where, for

each i ∈ [ds], V (Λs
i ) =: {vksi−1, vksi+1, vksi } with vksi−1, vksi+1 ∈ Vs and vksi ∈ Vs+1 such

that E(Λs
i ) = {vksi−1vksi , vksi+1vksi } (see Figure 2a). Further, each Λs

i is disjoint from the

matching M we previously selected in G and disjoint from any other Λt
i’s we may have

chosen previously (for t < s). Now for all i ∈ [ds], set f(xksi ) := vksi , f(xksi−1) := vksi−1, and

f(xksi+1) := vksi+1. This ensures that we will embed precisely ds vertices of Ps into Vs+1.

Next suppose that η
6β < ds ≤ βn. Set d′s := ⌊ η

12β ⌋. Analogously to before, select d′s
sinks xks1 , . . . , xksd′s

on Ps satisfying (D1)–(D3). We then use Observation 3.3 to find d′s

disjoint subgraphs Λs
1, . . . ,Λ

s
d′s

of G where, for each i ∈ [d′s], V (Λs
i ) =: {vksi−1, vksi+1, vksi }

with vksi−1, vksi+1 ∈ Vs and vksi ∈ Vs+1 such that E(Λs
i ) = {vksi−1vksi , vksi+1vksi }. Further,

each Λs
i is disjoint from the matching M we previously selected in G and disjoint from any

other Λt
i’s we may have chosen previously (for t < s). Now for all i ∈ [d′s], set f(xksi ) := vksi ,

f(xksi−1) := vksi−1, and f(xksi+1) := vksi+1.

Next we use Observation 3.3 to find disjoint edges vasvas+1 and vas+ds−d′s+1vas+ds−d′s from

Vs to Vs+1 in G (that are disjoint from M and all the Λs
i ). Set f(xas) := vas , f(xas+1) :=

vas+1, f(xas+ds−d′s+1) := vas+ds−d′s+1, and f(xas+ds−d′s) := vas+ds−d′s (see Figure 2b).

Thus, when we finish the embedding f of C into G in Step 3, precisely ds vertices from

Ps will be embedded into Vs+1: d′s vertices playing the roles of the sinks xks1 , . . . , xksd′s
and

the ds − d′s vertices that are in the segment xas+ds−d′s . . . xas+1 of C (which lies fully in
16



P ∗
s ). Note too that, since |P ∗

s | ≥ ds, this segment xas+ds−d′s . . . xas+1 is of distance at least

d′s = ⌊ η
12β ⌋ from xns in C. This property is vital in ensuring we can apply Theorem 3.5 in

Step 3.

Step 3: Finishing the embedding. At this point we have embedded only a constant

number of segments of C with the key property that between any two already embedded

segments of C, there is at least a large constant gap (at least d′s = ⌊ η
12β ⌋) between the

ends of the segments. In particular, this is ensured by (D1), (D3), and (in the case when
η
6β < ds ≤ βn) by the choice of the segment xas+ds−d′s . . . xas+1 of P

∗
s that we have chosen to

be embedded into Vs+1. For each i ∈ [t], let V ′
i be the subset of Vi obtained by deleting all

middle (sink) vertices in the subgraphs Λs
j of G obtained in Step 2. Note that |Vi \V ′

i | ≤
η
6β ;

thus, each G[V ′
i ] is a robust (ν/2, 2τ)-outexpander with δ0(G[V ′

i ]) ≥ ηn/2. Therefore,

to finish the embedding f , we apply Theorem 3.5 to each G[V ′
i ] to embed the remaining

segments of C into the appropriate places. □

4. Concluding remarks

In this paper we have asymptotically determined the minimum degree threshold for forc-

ing an arbitrary orientation of a Hamilton cycle in a digraph (Theorem 1.3). It would be

interesting to obtain an exact version of this result.

Problem 4.1. If G is a sufficiently large n-vertex digraph with δ(G) ≥ n+ 1, then does G

contain every orientation of a Hamilton cycle (except for the directed Hamilton cycle when

G is not strongly connected)?

Recall that one cannot lower the minimum degree condition in Problem 4.1 for anti-

directed Hamilton cycles [4]. However, it would be interesting to know if a minimum degree

of δ(G) ≥ n is already enough to force every orientation of a Hamilton cycle, other than

the directed and anti-directed ones.

As mentioned in the introduction, a positive answer to the following problem would

provide a common generalization of Havet and Thomassé’s tournament theorem [13] and

Corollary 1.2.

Problem 4.2. If G is a sufficiently large n-vertex digraph with δ(G) ≥ n− 1, then does G

contain every orientation of a Hamilton path?

From the perspective of obtaining results that unify the minimum degree setting and

the setting of tournaments, it may also be interesting to find a characterization of all

those (strongly connected) n-vertex digraphs with δ(G) ≥ n− 1 that do not contain every

orientation of a Hamilton cycle.

Finally, we note that Proposition 2.1 provided crucial structure that we exploited in the

proof of Theorem 1.3. This tool is likely to have several further applications; we will explore

this in future work.
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5. Appendix: Proofs of Theorems 1.6 and 3.5

5.1. Deriving Theorem 3.5. In this subsection we prove Theorem 3.5. Before this, we

introduce the main results used to obtain Theorem 3.5.
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The following lemma of Taylor [20] allows us to find any not too short, not too long

oriented path between any pair of vertices in a robust outexpander.3

Lemma 5.1 (Taylor [20]). Let 0 < 1/n0 ≪ ν ≤ τ ≪ η ≪ 1, let n ≥ n0, and let ⌈2/ν3⌉ ≤
k ≤ ν3n/4. If G is an n-vertex digraph with δ0(G) ≥ ηn such that G is a robust (ν, τ)-

outexpander, then for all distinct x, y ∈ V (G) and all oriented paths P of length k, there is

a copy of P in G that starts at x and ends at y.

Lemma 5.1 will allow us to find all the required short oriented paths in the proof of

Theorem 3.5. The next two results will enable us to construct the longer oriented paths.

The first of these results generalizes [20, Lemma 60].

Lemma 5.2 (Splitting robust expanders). Let 0 < 1/n0 ≪ ν ′ ≪ ε ≪ ν ≪ τ ≪ τ ′ ≪ η and

let n ≥ n0 be an integer. Let m0,m1, . . . ,mt ∈ N∪ {0} such that for all i ∈ [t], mi ≥ ε1/3n;

m0 ≤ ε1/4n; m0+m1+· · ·+mt = n. Suppose that G is an n-vertex digraph with δ0(G) ≥ ηn

and G is a robust (ν, τ)-outexpander. If W0 ⊆ V (G) is any set of m0 vertices, then there is

a partition {W0,W1, . . . ,Wt} of V (G) such that for all i ∈ [t]:

• |Wi| = mi and G[Wi] is a robust (ν ′, τ ′)-outexpander;

• d+G(x,Wi), d
−
G(x,Wi) ≥ ηmi/4 for every x ∈ V (G).

Lemma 60 in [20] yields the W0 = ∅, t = 2 case of the lemma. In fact, the argument

there can easily be tweaked to prove Lemma 5.2. As such, we only provide a detailed proof

sketch.

Sketch proof of Lemma 5.2. Define an additional constant d so that

0 < 1/n0 ≪ ν ′ ≪ ε ≪ d ≪ ν ≪ τ ≪ τ ′ ≪ η.

LetG be a digraph on n ≥ n0 vertices as in the statement of the lemma. LetG′ := G\W0 and

set n′ := |G′|. As |W0| ≤ ε1/4n, G′ is a robust (ν/2, 2τ)-outexpander with δ0(G′) ≥ ηn′/2.

Apply the regularity lemma for digraphs to G′ with parameters ε, d (see, e.g., [20,

Lemma 39] for the version of the regularity lemma that we use). We therefore obtain a

partition of V (G′) into clusters V1, . . . , Vk of the same size m and an exceptional set V0,

with |V0| ≤ εn′. Crucially, for every distinct i, j ∈ [k], (Vi, Vj) forms an ε-regular pair in G′

of density either 0 or at least d.

We now randomly partition V (G′) into classes W1, . . . ,Wt where |Wi| = mi for all i ∈ [t].

By Chernoff’s bound for the hypergeometric distribution, with high probability, for each i ∈
[t] and x ∈ V (G) we have d+G(x,Wi), d

−
G(x,Wi) ≥ ηmi/4. Moreover, with high probability,

for each i ∈ [t] and j ∈ [k], we have

|Wi ∩ Vj | ≥ (1− ε)m · mi

n
≥ ε1/2m.

For each i ∈ [t] and j ∈ [k] ∪ {0}, set V i
j := Wi ∩ Vj . Thus, V i

0 , V
i
1 , . . . , V

i
k is a partition of

Wi. Moreover, as |V i
j | ≥ ε1/2m for each j ∈ [k], we have the following property:

(P1) If (Vj1 , Vj2) forms an ε-regular pair of density at least d in G′, then (V i
j1
, V i

j2
) forms

an ε1/2-regular pair of density at least d− ε in G′[Wi].

3Formally one applies Proposition 48 and Lemma 58 from [20] to obtain Lemma 5.1.

19



In particular, (P1) implies that the reduced digraph Ri of G′[Wi] is the same as the re-

duced digraph R of G′. As G′ is a robust (ν/2, 2τ)-outexpander with δ0(G′) ≥ ηn′/2, [20,

Lemma 50] implies that R is a robust (ν/4, 4τ)-outexpander with δ0(R) ≥ ηk/4.

Finally, as argued at the end of the proof of Lemma 60 in [20], since the reduced digraph

Ri = R of G′[Wi] is a robust (ν/4, 4τ)-outexpander, this implies that G′[Wi] = G[Wi] is a

robust (ν ′, τ ′)-outexpander. Indeed, if one considers any set S ⊆ Wi where τ ′mi ≤ |S| ≤
(1− τ ′)mi, S must intersect many V i

1 , . . . , V
i
k significantly (certainly more than τk of these

classes). Let Q be the set of such significantly intersected V i
j . In particular, we have that the

robust outneighborhood RN+
ν/4(Q) of Q in Ri satisfies |RN+

ν/4(Q)| ≥ |Q|+νk/4. Moreover,

most vertices in each class V i
j ∈ RN+

ν/4(Q) lie in the ν ′-robust out-neighborhood RN+
ν′ (S) of

S in G[Wi]. A simple calculation now implies that |RN+
ν′ (S)| ≥ |S|+ ν ′mi, as desired. □

We also require the following generalization of Theorem 3.4.

Theorem 5.3 (Universally Hamilton connected). Let 0 < 1/n0 ≪ ν ≪ τ ≪ η and let G be

a digraph on n ≥ n0 vertices. If δ0(G) ≥ ηn and G is a robust (ν, τ)-outexpander, then for

all distinct x, y ∈ V (G) and any oriented path P on n vertices, there exists a copy of P in

G that starts at x and ends at y.

This result is easily derived from the following version of Theorem 3.4.

Theorem 5.4. Let 0 < 1/n0 ≪ ν ≪ τ ≪ η and let G be a digraph on n ≥ n0 vertices.

Suppose that δ0(G) ≥ ηn and G is a robust (ν, τ)-outexpander. Let C be any oriented cycle

on n vertices and fix xC ∈ V (C). Given any vG ∈ V (G), there is a copy of C in G in which

xC is embedded onto vG. □

Note that the proof of Theorem 3.4 in [20] immediately yields Theorem 5.4. Indeed,

in this proof, when embedding an n-vertex oriented cycle C, segments Qi of the cycle are

embedded greedily (see Step 4 in the proof of Theorem 3.4 in [20, Theorem 49]). Thus, we

may line things up so that one of the Qi contains xC (roughly in the middle of Qi). We

then (via Lemma 5.1) greedily construct a copy of Qi in G that embeds xC onto vG.

We now explain how Theorem 5.4 implies Theorem 5.3.

Proof of Theorem 5.3. Let G and P be as in the statement of the theorem. Write P =

v1 . . . vn. We will define an auxiliary digraph G∗ whose precise construction depends on the

orientations of the edges incident to v1 and vn in P . For instance, suppose that |N+
P (v1)| =

|N+
P (vn)| = 1 (and |N−

P (v1)| = |N−
P (vn)| = 0); the other cases can be handled analogously.

Construct the digraph G∗ from G by deleting x and y and adding a vertex vxy so that

(i) N−
G∗(vxy) := N+

G (x) \ {y} and (ii) N+
G∗(vxy) := N+

G (y) \ {x}. Note that G∗ is a robust

(ν/2, 2τ)-outexpander with δ0(G∗) ≥ η|G′|/2.
Let C be the oriented cycle obtained from P by deleting its startpoint v1 and its endpoint

vn, and adding a new vertex v1,n that receives an edge from v2 and sends out an edge to

vn−1. By Theorem 5.4 there is a copy of C in G∗ in which v1,n is embedded onto vxy. The

definition of N+
G∗(vxy) and N−

G∗(vxy) now ensures that this copy of C corresponds to a copy

of P in G that starts at x and ends at y, as desired. □

With the above results at hand, we can now easily prove Theorem 3.5.
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Proof of Theorem 3.5. Define additional constants so that

0 < 1/n0 ≪ ν ′ ≪ ε ≪ β ≪ ν ≪ τ ≪ τ ′ ≪ η.

Let n ≥ n0 and let G, Q1, . . . , Qk, u1, . . . , uk, v1, . . . , vk be as defined in the statement of

the theorem.

Since β ≪ ν, certainly |Qi| ≥ 1/β ≥ ⌈2/ν3⌉. In particular, we can repeatedly apply

Lemma 5.1 to obtain the required copy Pi of Qi for each path Qi with |Qi| ≤ ε1/4n.

(Formally, whenever constructing such a Pi, one should first delete all the other oriented

paths Pj constructed before, as well as all of u1, . . . , uk, v1, . . . , vk other than ui and vi, and

then apply Lemma 5.1 to the resulting subgraph of G. This ensures all the oriented paths

Pj are disjoint.)

For each oriented path Pi already constructed, delete its vertices from G; let G′ be the

resulting induced subgraph ofG. Note that at most 1
β2 ·ε1/4n ≤ ε1/5n vertices ofG have been

deleted. Thus, G′ is a robust (ν/2, 2τ)-outexpander with δ0(G) ≥ η|G′|/2. By relabeling if

necessary, we may assume that we still need to construct the copies of Q1, . . . , Qt in G for

some t ≤ 1/β2, and now |Qi| ≥ ε1/4n for all i ∈ [t].

Set W0 := {u1, . . . , ut, v1, . . . , vt}; so certainly, m0 := |W0| ≤ ε1/4|G′|. For each i ∈ [t],

define mi := |Qi| − 2 ≥ ε1/4n − 2 ≥ ε1/3|G′|. Thus, we can apply Lemma 5.2 to obtain a

partition {W0,W1, . . . ,Wt} of V (G′) such that for all i ∈ [t]:

• |Wi| = mi and G′[Wi] is a robust (ν ′, τ ′)-outexpander;

• d+G′(x,Wi), d
−
G′(x,Wi) ≥ ηmi/8 for every x ∈ V (G′).

Next add ui, vi to Wi for each i ∈ [t]. We now have that G′[Wi] is a robust (ν ′/2, 2τ ′)-

outexpander with δ0(G′[Wi]) ≥ η|Wi|/10 (for each i ∈ [t]). Finally, Theorem 5.3 implies

that in each G′[Wi] we have the desired copy Pi of Qi that starts at ui and ends at vi. This

completes the proof. □

5.2. Proof of Theorem 1.6. In this subsection we prove Theorem 1.6. For this, we will

use the following strengthening of Lemma 5.1.

Lemma 5.5. Let 0 < 1/n0 ≪ ν ≪ τ ≪ η ≪ 1. Let n ≥ n0 and let ⌈2/ν3⌉ < k ≤ n. If G

is an n-vertex digraph with δ0(G) ≥ ηn such that G is a robust (ν, τ)-outexpander, then for

all distinct x, y ∈ V (G) and all oriented paths P on k vertices, there is a copy of P in G

that starts at x and ends at y.

Proof. Define additional constants so that

0 < 1/n0 ≪ ν ′ ≪ ε ≪ ν ≪ τ ≪ τ ′ ≪ η.

Let n ≥ n0 and define G, P , x, y as in the statement of the lemma.

If ⌈2/ν3⌉ < |P | ≤ ν3n/4, then we are immediately done by Lemma 5.1. So suppose that

|P | > ν3n/4.

If ν3n/4 < |P | < (1 − ε1/3)n, set W0 := {x, y}; m0 := |W0| = 2; m1 := |P | − 2 ≥ ε1/3n;

m2 := n−|P | ≥ ε1/3n. Now we apply Lemma 5.2 to obtain sets W1,W2 ⊆ V (G). Add x and

y to W1; we have that G[W1] is a robust (ν ′/2, 2τ ′)-outexpander with δ0(G[W1]) ≥ η|W1|/5.
Note that |W1| = |P |. Theorem 5.3 now implies that G[W1] contains a copy of P that starts

at x and ends at y.
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Finally, if |P | ≥ (1 − ε1/3)n, consider any induced subgraph G′ of G on |P | vertices
that contains x and y. Then G′ is a robust (ν/2, 2τ)-outexpander with δ0(G′) ≥ η|G′|/2.
Theorem 5.3 implies that G′ contains a copy of P that starts at x and ends at y, as

desired. □

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Define additional constants so that

0 < 1/n0 ≪ ν ≪ τ ≪ α ≪ ζ ≪ γ, 1/k.

Let n ≥ n0 and let G be an n-vertex digraph as in the statement of the theorem. Let C

be an oriented cycle on at most n vertices that is not a directed cycle of length more than

⌈n/k⌉. We will prove that G contains C. We split into three cases.

Case 1: |C| ≤ 1/ν4. Consider the (undirected) graph G∗ on vertex set V (G) where x and

y are adjacent in G∗ precisely if both xy and yx are edges in G. Note that δ(G∗) ≥ γn.

Thus, e.g., the Kővári–Sós–Turán theorem implies that G∗ contains every even length cycle

of order up to 1/ν4. Hence, G contains every oriented cycle of even length up to 1/ν4.

We are therefore done unless |C| is odd. However, in this case our argument above implies

that G contains a copy C ′ of the ‘double edge’ cycle on |C| − 1 vertices. Let x and y be

two neighboring vertices along C ′. As δ(G) ≥ (1 + γ)n, either d+G(x) + d−G(y) ≥ (1 + γ)n or

d−G(x) + d+G(y) ≥ (1 + γ)n. Without loss of generality we may assume the former holds. So

there is some z ∈ N+
G (x)∩N−

G (y)∩ (V (G) \V (C ′)). Since every oriented cycle of odd order

contains a vertex of in- and outdegree 1, adding z to C ′ immediately yields a copy of C, as

desired.

Case 2: 1/ν4 < |C| ≤ ⌈n/k⌉. In this case we apply Proposition 2.1 to obtain a partition

{V1, . . . , Vt} of V (G) into at most k classes. In particular, for one of these classes Vi we

have that:

• |Vi| ≥ ⌈n/k⌉;
• G[Vi] is a robust (ν, τ)-outexpander with δ(G[Vi]) ≥ (1 + 1

k+1 + ζ
2)|Vi|.

Lemma 5.5 implies that G[Vi] contains a copy of C, as desired.

Case 3: |C| > ⌈n/k⌉ and C is not a directed cycle. Randomly select a subset X of

V (G) of size |C|. Chernoff’s bound for the hypergeometric distribution implies that, with

high probability, δ(G[X]) ≥ (1 + γ/2)|X|. Theorem 1.3 implies that G[X] contains a copy

of C.

We now prove the moreover part of the theorem. Given n ≥ 2, consider an n-vertex

digraph G with δ(G) ≥ ⌊3n2 ⌋ − 1. As before, let G∗ be the (undirected) graph on V (G)

where x and y are adjacent in G∗ precisely if both xy and yx are edges in G. Note that

δ(G∗) ≥ ⌊n2 ⌋ and thus [1, Theorem 2.3] implies that (a) G∗ is pancyclic (i.e., contains a

cycle of every possible length) or (b) G∗ satisfies one of the following conditions:

(i) G∗ is the union of two complete graphs K(n+1)/2 that share a single vertex;

(ii) there is a partition A,B of V (G) such that |A| = (n + 1)/2, A is an independent

set in G∗ and there are all possible edges between A and B in G∗;
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(iii) G∗ is a copy of the complete bipartite graph with n/2 vertices in each of its vertex

classes A and B;

(iv) G∗ is a copy of the cycle C5 on 5 vertices.

If (a) holds then clearly G contains every oriented cycle of every possible length. If (ii)

or (iii) hold then as δ(G) ≥ ⌊3n2 ⌋ − 1, there is an edge in G[A]; this edge, together with

the structure obtained from G∗, ensures G contains every oriented cycle of every possible

length. Similarly, if (i) or (iv) hold then there is an edge present in G that is not a double

edge. One can then easily use this edge with the structure from G∗ to show that G contains

every oriented cycle of every possible length. □
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