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Abstract. Motivated by analogous questions in the setting of Steiner triple systems and Latin
squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combi-
natorial Theory Series B, 2020] recently introduced the notion of graph deficiency. Given a global
spanning property P and a graph G, the deficiency def(G) of the graph G with respect to the
property P is the smallest non-negative integer t such that the join G ∗ Kt has property P. In
particular, Nenadov, Sudakov and Wagner raised the question of determining how many edges an
n-vertex graph G needs to ensure G ∗Kt contains a Kr-factor (for any fixed r ≥ 3). In this paper
we resolve their problem fully. We also give an analogous result which forces G ∗Kt to contain any
fixed bipartite (n + t)-vertex graph of bounded degree and small bandwidth.

1. Introduction

A natural question dating back to the 1970s asks for the order of the smallest complete Steiner
triple system a fixed partial Steiner triple system can be embedded into (see e.g. [3, 12, 13]).
Similarly, there has been interest in establishing the order of the smallest Latin square that a fixed
partial Latin square can be embedded into (see e.g. [5, 6, 13]).

Motivated by these research directions, Nenadov, Sudakov and Wagner [13] introduced the notion
of graph deficiency : for a graph G and integer t ≥ 0, denote by G ∗Kt the join of G and Kt, which
is the graph obtained from G by adding t new vertices and adding all edges incident to at least
one of the new vertices. Given a global spanning property P and a graph G, the deficiency def(G)
of the graph G with respect to the property P is the smallest t ≥ 0 such that the join G ∗Kt has
property P.

Note that the following special type of deficiency problem has been previously studied: given a
graph H and n ∈ N, what is the minimum number of vertices needed to ensure any H-packing on n
vertices (i.e., a collection of edge-disjoint copies of H that together form a graph on n vertices) can
be extended to an H-design (i.e., an H-packing of a complete graph)? See e.g. [7, 8] for background
and results on this problem.

One of the main results in [13] is a bound on def(G) with respect to the Hamiltonicity property
for graphs G of a given density. More precisely, the following result answers the question of how
many edges an n-vertex graph G can have such that G ∗Kt does not contain a Hamilton cycle.

Theorem 1.1 (Nenadov, Sudakov and Wagner [13]). Let n and t be integers and G an n-vertex
graph so that G ∗ Kt does not contain a Hamilton cycle. Then we have the following bounds on
e(G).

• If n+ t is even:

e(G) ≤
(
n

2

)
−


(
t(n− 1)−

(
t
2

))
if t ≤ (n+ 4)/5((n+t+2

2
2

)
− 1
)

if t ≥ (n+ 4)/5.
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• If n+ t is odd:

e(G) ≤
(
n

2

)
−


(
t(n− 1)−

(
t
2

))
if t ≤ (n+ 1)/5(n+t+1

2
2

)
if t ≥ (n+ 1)/5.

These bounds on e(G) are sharp.

Another line of inquiry in [13] concerns the deficiency problem for Kr-factors. Given graphs H
and G, an H-factor in G is a collection of vertex-disjoint copies of H in G that together cover all the
vertices of G. Note that H-factors are also often referred to as perfect H-tilings, perfect H-packings
or perfect H-matchings. The following seminal result of Hajnal and Szemerédi [9] determines the
minimum degree threshold for forcing a Kr-factor in a graph G.

Theorem 1.2 (Hajnal and Szemerédi [9]). Every graph G on n vertices with r|n and whose mini-
mum degree satisfies δ(G) ≥ (1− 1/r)n contains a Kr-factor. Moreover, there are n-vertex graphs
G with δ(G) = (1− 1/r)n− 1 that do not contain a Kr-factor.

More recently, Kühn and Osthus [11] determined, up to an additive constant, the minimum
degree threshold for forcing an H-factor, for any fixed graph H.

The following result of Nenadov, Sudakov and Wagner [13] determines how many edges an n-
vertex graph G needs to guarantee that G ∗Kt contains a K3-factor (provided that t is not too big
compared to n).

Theorem 1.3 (Nenadov, Sudakov and Wagner [13]). There exists n0 ∈ N such that the following
holds. Let n, t ∈ N so that n ≥ n0 and 3|(n + t), and let G be an n-vertex graph such that G ∗Kt

does not contain a K3-factor. If t ≤ n/1000 then

e(G) ≤
(
n

2

)
−
(
k

2

)
−

{
k(n− k) if t is odd

k(n− k − 1) if t is even,

where k := d(t+ 1)/2e. This bound on e(G) is sharp.

1.1. A deficiency result for Kr-factors. Nenadov, Sudakov and Wagner [13] state that ‘the
study of deficiency concept by itself leads to intriguing open problems’. In particular, the first open
problem [13, Section 7] they raise is to extend Theorem 1.3 to the full range of t, and moreover to
resolve the analogous question for Kr-factors in general. In this paper we fully resolve this problem
via the following theorem.

Theorem 1.4. Let n, t, r ∈ Z with n ≥ 2, t ≥ 0 and r ≥ 3 such that t < (r − 1)n and r|(n + t).
Further, let k := d t+1

r−1e and q be the integer remainder when t is divided by r− 1. Let G be a graph
on n vertices such that G ∗Kt does not contain a Kr-factor. Then

e(G) ≤ max

{(
n

2

)
−
(n+t

r + 1

2

)
,

(
n

2

)
−
(
k

2

)
− k(n− k − (r − 2− q))

}
.

When (r−1)|(t+1), the first term is at most the second term precisely when t ≤ (r−1)n−r2
2r2−2r+1

. Note

that Theorem 1.4 considers all interesting values of n and t. Indeed, if t ≥ (r−1)n and r|(n+t), then
G ∗Kt trivially contains a Kr-factor, even if e(G) = 0. Further, in Section 3 we provide extremal
examples that demonstrate that the edge condition in Theorem 1.4 cannot be lowered. Perhaps
surprisingly, the proof of Theorem 1.4 is short, making use of a couple of vertex-modification tricks
(see the proofs of Lemmas 4.1 and 4.2) and Theorem 1.2.

Note that the t = 0 case of Theorem 1.4 determines the edge density threshold for forcing a
Kr-factor in a graph. In fact, this is an old result due to Akiyama and Frankl [1], so our result can
be viewed as a deficiency generalisation of their theorem.
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1.2. A deficiency bandwidth theorem. One of the central results in extremal graph theory is
the so-called Bandwidth theorem due to Böttcher, Schacht and Taraz [2]. A graph H on n vertices
is said to have bandwidth at most b, if there exists a labelling of the vertices of H with the numbers
1, . . . , n such that for every edge ij ∈ E(H) we have |i− j| ≤ b.

Theorem 1.5 (The Bandwidth theorem, Böttcher, Schacht and Taraz [2]). Given any r,∆ ∈ N
and any γ > 0, there exist constants β > 0 and n0 ∈ N such that the following holds. Suppose that
H is an r-chromatic graph on n ≥ n0 vertices with ∆(H) ≤ ∆ and bandwidth at most βn. If G is
a graph on n vertices with

δ(G) ≥
(

1− 1

r
+ γ

)
n,

then G contains a copy of H.

Note that a Kr-factor has bandwidth r− 1; thus, one can view the bandwidth theorem as a vast
asymptotic generalisation of Theorem 1.2.

Following the proof of Theorem 1.1 from [13], and applying a theorem of Knox and the third
author [10], one can easily obtain a deficiency result for embedding bipartite graphs of bounded
degree and small bandwidth.

Theorem 1.6. Given any ∆ ∈ N and ε > 0, there exist constants β > 0 and n0 ∈ N such that the
following holds. Let t ∈ N and n ≥ n0. Let H be a bipartite graph on n+ t vertices with ∆(H) ≤ ∆
and bandwidth at most β(n+ t). Suppose that G is a graph on n vertices such that G ∗Kt does not
contain a copy of H. Then we have the following bound on e(G).

e(G) ≤
(
n

2

)
−


(
t(n− 1)−

(
t
2

)
− εn2

)
if t ≤ n

5((dn+t
2
e+1

2

)
− εn2

)
if t > n

5 .

Observe that the bounds on e(G) in Theorem 1.6 are, up to error terms, exactly the same
as those in Theorem 1.1. Moreover, the extremal examples that show the condition on e(G)
in Theorem 1.1 is sharp also demonstrate that, for many graphs H, the condition on e(G) in
Theorem 1.6 is asymptotically best possible (see Section 3). Notice the statement of Theorem 1.6
is only interesting for t < n− 1. Indeed, if t ≥ n− 1 then even if G has no edges, G ∗Kt contains
all (n+ t)-vertex bipartite graphs H (we just embed the smallest colour class into Kt).

The paper is organised as follows. We introduce some graph theoretic notation in Section 2.
In Section 3 we provide extremal examples for Theorems 1.4 and 1.6. In Section 4 we prove
Theorem 1.4 and then in Section 5 we prove Theorem 1.6. Some concluding remarks are given in
Section 6.

2. Notation

Let G be a graph. We define V (G) to be the vertex set of G and E(G) to be the edge set of G.
Let X ⊆ V (G). Then G[X] is the graph induced by X on G and has vertex set X and edge set
E(G[X]) := {xy ∈ E(G) : x, y ∈ X}. For each x ∈ V (G), we define the neighbourhood of x in G to
be NG(x) := {y ∈ V (G) : xy ∈ E(G)} and define dG(x) := |NG(x)|.

We write 0 < a� b� c < 1 to mean that we can choose the constants a, b, c from right to left.
More precisely, there exist non-decreasing functions f : (0, 1] → (0, 1] and g : (0, 1] → (0, 1] such
that for all a ≤ f(b) and b ≤ g(c) our calculations and arguments in our proofs are correct. Larger
hierarchies are defined similarly.
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3. The extremal constructions for Theorem 1.4 and Theorem 1.6

In this section we will give the extremal constructions that match the upper bounds in Theo-
rems 1.4 and 1.6. Firstly, let us consider those for Theorem 1.4.

Definition 3.1. Let n, r, t ∈ Z with r ≥ 3, t ≥ 0 and n ≥ 2 such that t < (r − 1)n and r|(n + t).
Further, let k := d t+1

r−1e and q be the integer remainder when t is divided by r− 1. We define graphs

EX1(n, t, r) and EX2(n, t, r) as follows:

• Let K := Kn and A ⊆ K such that A = Kn+t
r

+1. Define EX1(n, t, r) to be the graph

obtained by removing E(A) from K.
• Consider a set of isolated vertices B where |B| = k and Kn−k, and let C ⊆ V (Kn−k) where
|C| = r− 2− q. Define EX2(n, t, r) to be the graph obtained by taking the disjoint union of
B and Kn−k and adding every edge incident to a vertex in C.

Observe that

e(EX1(n, t, r)) =

(
n

2

)
−
(n+t

r + 1

2

)
and

e(EX2(n, t, r)) =

(
n

2

)
−
(
k

2

)
− k(n− k − (r − 2− q)).

Hence

max

{(
n

2

)
−
(n+t

r + 1

2

)
,

(
n

2

)
−
(
k

2

)
− k(n− k − (r − 2− q))

}
= max {e(EX1(n, t, r)), e(EX2(n, t, r))} .

Next we show that EX1(n, t, r) ∗ Kt and EX2(n, t, r) ∗ Kt do not contain Kr-factors, that is,
they are extremal graphs for Theorem 1.4.

Proposition 3.2. EX1(n, t, r) ∗Kt and EX2(n, t, r) ∗Kt do not contain Kr-factors.

Proof. Firstly, let us consider EX1(n, t, r)∗Kt. For a contradiction, assume that EX1(n, t, r)∗Kt

contains a Kr-factor T . Then each vertex in V (A) belongs to a different copy of Kr in T . This
implies n+t

r = |T | ≥ |V (A)| = n+t
r + 1, a contradiction. Hence EX1(n, t, r) ∗Kt does not contain a

Kr-factor.
Now let us consider EX2(n, t, r)∗Kt. For a contradiction, assume that EX2(n, t, r)∗Kt contains a

Kr-factor T . Then every vertex of B belongs to a different copy of Kr in T . Thus, by construction,
the copies of Kr in T covering B must cover at least⌈

t+ 1

r − 1

⌉
· (r − 1) =

(
t− q
r − 1

+ 1

)
· (r − 1) = t− q + r − 1 > t+ |C|

vertices in the copy of Kt and C, a contradiction. Hence EX2(n, t, r) ∗ Kt does not contain a
Kr-factor. �

We now give the extremal constructions which, excluding error terms, match the upper bounds
given in Theorem 1.6.

Definition 3.3. Let n, t ∈ N such that dn+t2 e < n. We define graphs EX1(n, t) and EX2(n, t) as
follows:

• Let K := Kn and A ⊆ K such that A = Kdn+t
2
e+1. Define EX1(n, t) to be the graph

obtained by removing E(A) from K.
• Define EX2(n, t) to be the disjoint union of a set of t isolated vertices and a clique of size
n− t.
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One can see that the extremal examples in Definition 3.3 have the same construction to those in
Definition 3.1 for r = 2, except that in Definition 3.3 we omit the condition 2|(n+ t) and add the
condition that dn+t2 e < n (in order for EX1(n, t) to be well-defined).

Observe that e(EX1(n, t)) and e(EX2(n, t)) asymptotically match the upper bounds given in
Theorem 1.6. Indeed,

e(EX1(n, t)) =

(
n

2

)
−
(
dn+t2 e+ 1

2

)
and e(EX2(n, t)) =

(
n

2

)
−
(
t(n− 1)−

(
t

2

))
.

We conclude this section by showing that EX1(n, t) ∗ Kt and EX2(n, t) ∗ Kt do not contain
certain (n+ t)-vertex bipartite graphs H.

Definition 3.4. Let H1 be the class of bipartite graphs H on n+ t vertices with largest independent
set of size dn+t2 e. Let H2 be the class of bipartite graphs H on n + t vertices which do not have a
tripartition (A,B,C) of V (H) such that |A| = n − t, |B| = |C| = t and every vertex in C is only
adjacent to vertices in B.

For example, the Hamilton cycle (when n + t is even), the disjoint union of an isolated vertex
and a cycle on n+ t− 1 vertices (when n+ t is odd) and Ks,s-factors (for any fixed s ∈ N) belong
to H1; the Hamilton cycle (when n+ t is even), Ks,s-factors (for any fixed s ∈ N so that s does not
divide t) and any bipartite graph with minimum degree at least t+ 1 belong to H2.

Proposition 3.5. EX1(n, t) ∗Kt does not contain any graph in H1 and EX2(n, t) ∗Kt does not
contain any graph in H2.

Proof. Firstly, let us consider EX1(n, t) ∗ Kt. Since EX1(n, t) contains an independent set of
size dn+t2 e+ 1, any bipartite graph from H1 cannot be in EX1(n, t).

Now let us consider EX2(n, t) ∗Kt. Since EX2(n, t) has a set of t isolated vertices and |Kt| = t,
we require that any bipartite graph H spanning EX2(n, t) ∗Kt must have a tripartition (A,B,C)
of V (H) such that |A| = n − t, |B| = |C| = t and every vertex in C is only adjacent to vertices
in B, where B = V (Kt) and C is the set of t isolated vertices in EX2(n, t). Hence EX2(n, t) ∗Kt

does not contain any graph in H2. �

4. Proof of Theorem 1.4

The proof of Theorem 1.4 follows an inductive argument on the number of vertices n of G.
Given a graph G such that G ∗Kt does not contain a Kr-factor, we apply an appropriate vertex-
modification procedure which, roughly speaking, allows us to assume G is locally isomorphic to
one of the two extremal examples. This allows us to remove such local structure from G and apply
induction.

The vertex-modification procedures are described by the following two structural lemmas re-
garding graphs G with the property that G ∗Kt does not contain a Kr-factor. Lemma 4.1 allows
us to assume that the degree of a vertex is either n − 1 (which is the degree of all vertices in
V (EX1(n, t, r)) \A and C ⊂ V (EX2(n, t, r))) or at most n− 1− d t+1

r−1e (which is the degree of all

vertices in V (EX2(n, t, r)) \ (B ∪ C)). Lemma 4.2 allows us to assume that either each edge of G
belongs to some r-clique or there is a vertex with degree n− 1.

Lemma 4.1. Let t ≥ 0, r ≥ 3 and G be a graph on n vertices such that e(G) is maximal with
respect to the property that G ∗Kt does not contain a Kr-factor. Then for every vertex v ∈ V (G)
either dG(v) = n− 1 or dG(v) ≤ n− 1− d t+1

r−1e.
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Proof. Suppose there exists a vertex v ∈ V (G) such that

n− 1−
⌈
t+ 1

r − 1

⌉
< dG(v) < n− 1.

Let G′ be the graph obtained from G by adding every possible edge incident to v, that is, dG′(v) =
n− 1. Since e(G) is maximal with respect to G ∗Kt not containing a Kr-factor, we must have that
G′ ∗Kt contains a Kr-factor T ′. Using T ′, we will now construct a Kr-factor T in G ∗Kt, giving
us a contradiction.

Let Kv be the copy of Kr in T ′ covering v. If Kv ⊆ G ∗Kt then we can take T := T ′. Hence
assume Kv * G ∗Kt. If there exists a copy K ′ of Kr in T ′ that lies entirely in Kt, then, for any
u ∈ V (K ′), we can take

T :=
(
T ′ \ {Kv,K ′}

)
∪ {(G ∗Kt)[{u} ∪ (V (Kv) \ {v})], (G ∗Kt)[{v} ∪

(
V (K ′) \ {u}

)
]}.

Hence assume no such copy of Kr in T ′ exists. Since Kv * G ∗Kt and no copy of Kr in T ′ lies
entirely in Kt, the number of copies of Kr in T ′ which cover some vertex of {v}∪V (Kt) in G′∗Kt is

at least d t+1
r−1e. But dG(v) > n−1−d t+1

r−1e, hence there exists a copy K̂ of Kr in T ′ which intersects

{v}∪V (Kt) and whose vertices are all neighbours of v in G∗Kt or v itself. Now, if v ∈ V (K̂), then

Kv = K̂ ⊆ G ∗Kt, a contradiction to our previous assumption. Hence V (K̂) ∩ V (Kt) 6= ∅ and, for

any u ∈ V (K̂) ∩ V (Kt), we can take

T := (T ′ \ {Kv, K̂}) ∪ {(G ∗Kt)[{u} ∪ (V (Kv) \ {v})], (G ∗Kt)[{v} ∪ (V (K̂) \ {u})]}.
�

Lemma 4.2. Let t ≥ 0, r ≥ 3. Let G be a graph on n vertices such that G ∗Kt does not contain
a Kr-factor and suppose G contains an edge which is not contained in any copy of Kr in G. Then
there exists a graph G′ on n vertices such that G′ ∗Kt does not contain a Kr-factor, e(G) ≤ e(G′)
and G′ has a vertex of degree n− 1.

Proof. Let xy be an edge in G which is not contained in any copy of Kr. Let Q be a clique of
maximal size containing xy and set ` := |V (Q)|. Observe that every vertex in G has at most `− 1
neighbours in Q as otherwise xy would lie in an (`+ 1)-clique. Thus∑

v∈V (Q)

dG(v) ≤ n(`− 1).

Let G′ be the graph obtained by deleting all edges between x and vertices in V (G) \ V (Q) and,
subsequently, adding any missing edge incident to any vertex in V (Q) \ {x}. Note that Q is still
an `-clique in G′ and ∑

v∈V (Q)

dG′(v) = n(`− 1).

Hence e(G) ≤ e(G′). Also, G′ is a graph on n vertices and dG′(y) = n− 1. It remains to show that
G′ ∗ Kt does not contain a Kr-factor. Suppose, for a contradiction, that G′ ∗ Kt does contain a
Kr-factor T ′. We will now use T ′ to construct a new Kr-factor T in G′ ∗Kt which does not contain
any edge vw where v ∈ V (Q) and w ∈ V (G′) \ V (Q). Such a Kr-factor T is also a Kr-factor in
G ∗Kt, giving us a contradiction.

Suppose that the copy Kx of Kr in T ′ covering x has exactly s vertices in Kt. Then Kx has
exactly r − s vertices in Q. Thus there are ` − r + s remaining vertices in V (Q) \ V (Kx). Note
that `− r + s ≤ s, hence there is an injection f : V (Q) \ V (Kx)→ V (Kx) ∩ V (Kt). We construct
our Kr-factor T as follows: for every copy of Kr in T ′ intersecting Q other than Kx, we substitute
all vertices lying in its intersection with Q with their images under f . Finally, we take the copy
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of Kr formed by the `-clique Q and the s − (` − r + s) = r − ` vertices in V (Kx) ∩ V (Kt) which
do not appear in the image of f . Observe that T does not use any edge vw where v ∈ V (Q) and
w ∈ V (G) \ V (Q), and we are done. �

Before proceeding to the proof of Theorem 1.4, we prove the following technical lemma.

Lemma 4.3. Let n, t, r ∈ N such that the following holds: n, r ≥ 3; r − 1 divides t + 1; r divides
n+ t; t+ 1 < (r − 1)(n− 1). If

(1) e(EX1(n− 1, t+ 1, r)) < e(EX2(n− 1, t+ 1, r))1

then

(2) e(EX2(n− 1, t+ 1, r)) + (n− 1) ≤ e(EX2(n, t, r)).

Proof. Let k := t+1
r−1 . Since r − 1 divides t + 1, we can compute e(EX2(n, t, r)) and e(EX2(n−

1, t+ 1, r)) explicitly:

e(EX2(n, t, r)) =

(
n

2

)
−
(
k

2

)
− k(n− k),

e(EX2(n− 1, t+ 1, r)) =

(
n− 1

2

)
−
(
k + 1

2

)
− (k + 1)(n− k − r).

It follows that

e(EX2(n, t, r))− e(EX2(n− 1, t+ 1, r)) = (n− 1) + k + (n− k − r)− kr.

Rearranging this, one obtains that (2) holds precisely when

t ≤ n− r − n

r
=: g(n, r).

Further, one can calculate that e(EX2(n− 1, t+ 1, r)) ≤ e(EX1(n− 1, t+ 1, r)) precisely when

(3) f1(n, r) :=
n(r − 1)

(2r2 − 2r + 1)
− r ≤ t ≤ n(r − 1)− r2 =: f2(n, r).

Since (1) holds, we have that (3) implies that t < f1(n, r) or t > f2(n, r). Observe that f1(n, r) ≤
g(n, r). Thus, if t < f1(n, r) then t < g(n, r) and the claim holds.

Suppose t > f2(n, r). We will show that in this case the hypothesis of the lemma cannot actually
hold. In particular, under the assumptions that r− 1 divides t+ 1, r divides n+ t and t > f2(n, r),
EX2(n− 1, t+ 1, r) is undefined. Indeed, for a contradiction let us assume that EX2(n− 1, t+ 1, r)
is well-defined in this case, thus the inequality t+ 1 < (r − 1)(n− 1) must hold. By assumption, t
satisfies the following modular equations:

(4) t ≡ −1 (mod r − 1) and t ≡ −n (mod r).

For n and r fixed, the solution of (4) is unique modulo r(r−1) by the Chinese Remainder Theorem,
since r and r − 1 are coprime. Note that t′ = (r − 1)(n − 1) − 1 is a solution of (4), hence
t = (r − 1)(n− 1)− 1− kr(r − 1) for some integer k. The constraint t+ 1 < (r − 1)(n− 1) forces
k ≥ 1, hence

t ≤ (r − 1)(n− 1)− 1− r(r − 1) = n(r − 1)− r2 = f2(n, r).

This contradicts the assumption that t > f2(n, r). �

1Note that EX1(n − 1, t + 1, r), EX2(n − 1, t + 1, r) and EX2(n, t, r) are well-defined since the assumptions in
Definition 3.1 are satisfied.
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Proof of Theorem 1.4. We prove Theorem 1.4 by induction on n. If n = 2 then e(G) ∈ {0, 1}.
Since t < 2(r − 1) and r|(n+ t), we must have t = r − 2. If e(G) = 1 then G ∗Kt is a copy of Kr,
contradicting our choice of G. Thus e(G) = 0. Observe that k = d t+1

r−1e = 1 and q = r − 2. Thus

max

{(
n

2

)
−
(n+t

r + 1

2

)
,

(
n

2

)
−
(
k

2

)
− k(n− k − (r − 2− q))

}
= max{0, 0} = 0.

Thus Theorem 1.4 holds for n = 2.
For the inductive step, we may assume without loss of generality that G is a graph on n vertices

such that e(G) is maximal with respect to the property that G ∗Kt does not contain a Kr-factor.

Case (i): G contains an isolated vertex v. If t < r− 2, then one could add a single edge to v and
G would still not contain a Kr-factor, contradicting our choice of G. Hence t ≥ r− 2. If t = r− 2,
then k = d t+1

r−1e = 1 and q = r − 2. Hence

max

{(
n

2

)
−
(n+t

r + 1

2

)
,

(
n

2

)
−
(
k

2

)
− k(n− k − (r − 2− q))

}
= max

{(
n

2

)
−
(n−2

r + 2

2

)
,

(
n− 1

2

)}
.

Since G contains at least one isolated vertex,

e(G) ≤
(
n− 1

2

)
≤ max

{(
n

2

)
−
(n−2

r + 2

2

)
,

(
n− 1

2

)}
,

and we are done. If t ≥ r − 1, consider the graph G′ obtained by deleting v from G. Since G ∗Kt

does not contain a Kr-factor, G′ ∗ Kt−r+1 does not contain a Kr-factor. Thus, by our inductive
hypothesis

e(G′) ≤ max{e(EX1(n− 1, t− r + 1, r)), e(EX2(n− 1, t− r + 1, r))}.
It follows from e(G) = e(G′) and e(EXi(n − 1, t − r + 1, r)) ≤ e(EXi(n, t, r))

2 for i = 1, 2 that
e(G) ≤ max{e(EX1(n, t, r)), e(EX2(n, t, r))}.

Case (ii): G contains a vertex of degree n− 1. Consider the graph G′ obtained by deleting such
a vertex from G. Note that G ∗Kt = G′ ∗Kt+1. If t+ 1 ≥ (r − 1)(n− 1), then trivially G′ ∗Kt+1

contains a Kr-factor, a contradiction. So we must have that t + 1 < (r − 1)(n − 1) and hence by
induction

e(G′) ≤ max{e(EX1(n− 1, t+ 1, r)), e(EX2(n− 1, t+ 1, r))}.
Observe that e(G) = e(G′) + n− 1. We aim to show that

(5) e(G) ≤ max{e(EX1(n, t, r)), e(EX2(n, t, r))}.
If e(G′) ≤ e(EX1(n− 1, t+ 1, r) then

e(G ∗Kt) = e(G′ ∗Kt+1) ≤ e(EX1(n− 1, t+ 1, r) ∗Kt+1) = e(EX1(n, t, r) ∗Kt)

and thus
e(G) ≤ e(EX1(n, t, r)).

Similarly, if e(G′) ≤ e(EX2(n− 1, t+ 1, r) and r − 1 does not divide t+ 1 then

e(G ∗Kt) = e(G′ ∗Kt+1) ≤ e(EX2(n− 1, t+ 1, r) ∗Kt+1) = e(EX2(n, t, r) ∗Kt)

and thus
e(G) ≤ e(EX2(n, t, r)).

2This holds since EXi(n − 1, t − r + 1, r) can be obtained by removing an appropriate vertex from EXi(n, t, r),
for i = 1, 2.
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It remains to check that (5) holds in the case when (r − 1)|(t+ 1) and

e(EX1(n− 1, t+ 1, r)) < e(EX2(n− 1, t+ 1, r)).

In this case Lemma 4.3 implies that

e(G) = e(G′) + n− 1 ≤ e(EX2(n− 1, t+ 1, r)) + (n− 1) ≤ e(EX2(n, t, r)),

as desired.

Case (iii): G contains no vertex of degree 0 or n−1. If G contains an edge which is not contained
in any copy of Kr, then by Lemma 4.2 there exists a graph G′ on n vertices such that G′ ∗Kt does
not contain a Kr-factor, e(G) ≤ e(G′) and G′ has a vertex of degree n − 1. The argument from
Case (ii) then implies that e(G) ≤ e(G′) ≤ max{e(EX1(n, t, r)), e(EX2(n, t, r))}.

We may therefore assume every edge of G is contained in some copy of Kr. Moreover, as no
vertex in G has degree 0, every vertex in G is contained in a copy of Kr. Let w be a vertex of
smallest degree in G. If dG(w) ≥ n− n+t

r then

δ(G ∗Kt) ≥ n−
n+ t

r
+ t =

r − 1

r
(n+ t).

Hence by Theorem 1.2, we have that G ∗Kt contains a Kr-factor, a contradiction.
Thus dG(w) < n − n+t

r . Let K be a copy of Kr in G containing w. Consider the graph G′

obtained by removing K and all its vertices from G. Then G′ ∗Kt does not contain a Kr-factor;
this implies that t < (r − 1)(n− r). Hence, by our inductive hypothesis, we have

e(G′) ≤ max{e(EX1(n− r, t, r)), e(EX2(n− r, t, r))}.

If e(G′) ≤ e(EX1(n − r, t, r)) then dG(w) < n − n+t
r implies e(G) ≤ e(EX1(n, t, r)), as desired:

this follows from the fact that EX1(n − r, t, r) can be obtained by removing a clique Q of size
r from EX1(n, t, r) where Q has one vertex of degree n − n+t

r − 1. By Lemma 4.1, we have

that ∆(G) ≤ n − 1 − d t+1
r−1e since we assumed G contains no vertices of degree n − 1 and e(G)

is maximal with respect to the property that G ∗ Kt does not contain a Kr-factor. Thus, if
e(G′) ≤ e(EX2(n − r, t, r)) then applying this observation yields that e(G) ≤ e(EX2(n, t, r)),
as desired: similarly as before, this follows from the fact that EX2(n − r, t, r) can be obtained by
removing a clique Q of size r from EX2(n, t, r) where all vertices in Q have degree n−1−d t+1

r−1e. �

5. Proof of Theorem 1.6

In the proof of Theorem 1.6 we will make use of the following theorem of Knox and Treglown [10].

Theorem 5.1 (Knox and Treglown [10]). Given any ∆ ∈ N and any γ > 0, there exists constants
β > 0 and n0 ∈ N such that the following holds. Suppose that H is a bipartite graph on n ≥ n0
vertices with ∆(H) ≤ ∆ and bandwidth at most βn. Let G be a graph on n vertices with degree
sequence d1 ≤ · · · ≤ dn. If

di ≥ i+ γn for all i < n/2

then G contains a copy of H.

In fact, Knox and Treglown proved a more general result for robust expanders (see [10, Theo-
rem 1.8]). We use Theorem 5.1 in a similar way to how Chvátal’s theorem [4] is used in the proof
of Theorem 1.1 in [13].

Proof. Let ∆ ∈ N and ε > 0. Define γ > 0 such that γ � ε, 1/∆. Apply Theorem 5.1 with ∆
and γ to produce constants β > 0 and n0 ∈ N such that

0 <
1

n0
� β � γ � ε,

1

∆
.
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Let t ∈ N, n ≥ n0 and H be an (n+ t)-vertex graph as in the statement of the theorem. Suppose
that G is a graph on n vertices such that G ∗Kt does not contain H. Let m(G) denote the number
of missing edges in G, that is, m(G) :=

(
n
2

)
− e(G). Then proving Theorem 1.6 is equivalent to

proving the following bound on m(G):

m(G) ≥

t(n− 1)−
(
t
2

)
− εn2 if t ≤ n

5(dn+t
2
e+1

2

)
− εn2 if t > n

5 .
(6)

Let G′ := G ∗Kt and label the vertices of G′ as v1, . . . , vn+t such that dG′(vi) := di is the degree
of vertex vi and d1 ≤ d2 ≤ . . . ≤ dn+t. Since G′ does not contain H as a subgraph, it does not
satisfy the degree sequence condition of Theorem 5.1. Moreover, δ(G′) ≥ t, hence there must exist
t− γ(n+ t) < i ≤ d(n+ t)/2e − 1 such that di < i+ γ(n+ t). From d1 ≤ . . . ≤ di < i+ γ(n+ t) we
deduce that the number of edges missing from G′ is at least

m(G′) ≥
i∑

j=1

(n+ t− 1− dj)−
(
i

2

)
> i(n+ t− 1− i− γ(n+ t))−

(
i

2

)

≥ i((1− 2γ)(n+ t)− i)−
(
i

2

)
=: f(i).(7)

Set u := d(n + t)/2e − 1. Now f(i) is a quadractic in i and d2(f(i))
di2

< 0. Also, note that
m(G) = m(G′). Hence, as t− γ(n+ t) < i ≤ u, we have from (7) that

(8) m(G) ≥ min{f(t− γ(n+ t)), f(u)}.

One can calculate that

(9) f(t− γ(n+ t)) ≤ f(u) if and only if t ≤


n−2γn+8

5+2γ if n+ t is even

n−2γn+5
5+2γ if n+ t is odd.

As 1
n � γ � ε we have

(10) f(t− γ(n+ t)) ≥ t(n− 1)−
(
t

2

)
− εn2

and

(11) f(u) ≥
(
dn+t2 e+ 1

2

)
− εn2

2
.

Moreover, for n−2γn+5
5+2γ ≤ t ≤ n

5 we have

(12) f(u) ≥
(
dn+t2 e+ 1

2

)
− εn2

2
≥ t(n− 1)−

(
t

2

)
− εn2.

Regardless of the parity of n+ t, using (8)–(12) we conclude that (6) holds. �
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6. Concluding remarks

In this paper we resolved the deficiency problem for Kr-factors. For a general fixed graph H, it
would be interesting to prove deficiency results regarding H-factors. As a starting point for this
problem we pose the following question. Let α(H) denote the size of the largest independent set
in H.

Question 6.1. Let K := Kn and A ⊆ K such that A = Kα(H)(n+t)
|H| +1

. Define EXH(n, t) to be

the graph obtained by removing E(A) from K. Does there exist a constant c := c(H) > 0 such
that if t ≥ cn and G is an n-vertex graph so that G ∗ Kt does not contain an H-factor then
e(G) ≤ e(EXH(n, t)) + o(n2)?

Note that Theorem 1.6 answers this question in the affirmative e.g. for H = Ks,s (for fixed
s ∈ N). On the other hand, at least for some H one cannot remove the o(n2) term in Question 6.1
completely. Indeed, let H = K1,s where s ≥ 2 and consider the n-vertex graph EX ′H(n, t) obtained
from EXH(n, t) by adding a maximal matching in V (A). It is easy to see that EX ′H(n, t) ∗ Kt

does not contain a K1,s-factor. This example suggests it might be rather challenging to resolve the
H-factor deficiency problem completely for all graphs H.

It would also be interesting to prove bandwidth deficiency results in the vein of Theorem 1.6 for
non-bipartite graphs H.
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