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Summary. We study three classes of Lipschitz mappings of the plane: Lipschitz
quotient mappings, ball non-collapsing mappings and locally ball non-collapsing
mappings. For each class, we estimate the maximum cardinality of point preimage
in terms of the ratio of two characteristic constants of the mapping. For Lipschitz
quotients and for Lipschitz locally BNC mappings, we provide a complete scale of
such estimates, while for the intermediate class of BNC mappings the answer is not
complete yet.

1. Let X and Y be metric spaces. The class of Lipschitz mappings f: X — Y
is defined by the condition: f(B,(z)) C Br.(f(z)) for all points z of X and
all positive r (by B,.(z) we denote an open ball of radius r, centered at z).
Here L is a constant depending on the mapping f but not on the point z;
the infimum of all possible such L is called the Lipschitz constant of f.

In a similar way, co-Lipschitz mappings f: X — Y are defined by the
condition f(B,.(z)) D B.-(f(z)), where the positive constant ¢ is indepen-
dent of x and r; the supremum of all such ¢ is called the co-Lipschitz con-
stant of the mapping f. (In some fundamental papers, e.g. [JLPS], the co-
Lipschitz constant of the mapping is defined as infimum over all ¢', such that
f(Bu()) > By (f()))

By definition, a Lipschitz quotient mapping is a mapping that satisfies
both of the above conditions, i.e. is L-Lipschitz and c-co-Lipschitz for some
constants 0 < ¢ < L < o0.

The recently developed theory of Lipschitz quotient mappings between
Banach spaces raised many interesting questions about the properties of these
mappings. Here we are interested in the case when X and Y are finite di-
mensional Banach spaces.

The paper [JLPS] contains far-reaching results for Lipschitz quotient map-
pings f: R2 — R?. In particular, it is proved there that the preimage of each
point under such an f is finite. The question whether the same is true for
Lipschitz quotients f: R” — R™ for n > 3 is still open, although the following
result concerning this was obtained in [M]: There is a p, < 1 such that if
the ratio of co-Lipschitz and Lipschitz constants of such a mapping is greater
than p,,, then the mapping is one-to-one. It was also proved in [M] that the
cardinality of the preimage of a point under a Lipschitz quotient mapping
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of the plane does not exceed the ratio between its Lipschitz constant L and
co-Lipschitz constant ¢ with respect to the Euclidean norm.

In section 2 of the present paper, we generalize this result to the case
of arbitrary norm. One important situation is when the ratio ¢/L is greater
than 1/2, then the mapping is a homeomorphism. In section 3, we discuss
the question whether the bound ¢/L < 1/ max, #f'(z) is tight.

In section 4, we study so-called ball non-collapsing (BNC) mappings. We
say that a mapping f: X — Y is C-ball non-collapsing, if for any = € X and
r > 0 one has

f(Br(T)) ) BCr(y) (*)

for some y € Y. This property generalizes co-Lipschitzness. We will say that
a mapping is C locally BNC, if for any z € X there exists € = (z) > 0 such
that (%) holds for all r < e.

Note that ball non-collapsing mappings can be very far from being co-
Lipschitz: e.g., the mapping F(z,y) = (z, |y|) from R* to itself is 1/2 BNC,
but is not co-Lipschitz (its image is not the whole plane).

The local ball non-collapsing property does not imply in general the global
property, as demonstrated by another plane-folding example: Fi(z,y) =
(z,ly — [y + £]|), where [{] stands for the integer part of ¢. This mapping
is locally 1/2 ball non-collapsing, but is not globally ball non-collapsing for
any constant.

However, it turns out that in particular cases, the local BNC property may
even imply co-Lipschitzness, though with smaller constant: it is easy to show
(see Lemma 4, section 4 that if the Lipschitz constant of a Lipschitz, locally
BNC mapping f is less than twice the BNC constant, then f is a Lipschitz
quotient mapping. For the mappings of the plane this immediately yields
finiteness of point preimages. But we obtain a stronger result. In Theorem 2
we show that such a mapping f is a bi-Lipschitz homeomorphism, that is, the
preimage of each point consists of one point. On the other hand, the above
example of locally BNC mapping F} (z,y) shows that as soon as the ratio of
constants is less than or equal to one half, the locally BNC mapping may
have infinite point preimages.

The idea of folding the plane infinitely many times has to be modified
in order to construct an example of a Lipschitz globally BNC mapping of
the plane with infinite point preimage. In section 5 we discuss the modified
construction, but it yields the BNC constant less than (and arbitrarily close
to) one third of the Lipschitz constant. Thus, we do not know exactly how
large the point preimages in the global BNC case can be, when the ratio of
constants is in the interval [1/3,1/2].

2. This section is devoted to Lipschitz quotient mappings. We would like to
prove the following theorem, which is a generalization of a similar result in
[M] to the case of arbitrary norm.
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Theorem 1. If f: (R?,||-]|) = (R?,||-||) is an L-Lipschitz and c-co-Lipschitz

mapping with respect to any norm || - || and
—1
ax # T)=n
max # f () =n,

then ¢/L < 1/n.

Proof. The proof will follow the same scheme as the proof of [M, Theorem 2].
We will only explain the details needed for the argument to work in case of
arbitrary norm. We consider the decomposition f = Poh, where h: R?> — R?
is a homeomorphism and P(z) is a polynomial of one complex variable (see
[JLPS]). Clearly, deg P = max,cp2#f'(z) = n. We may also assume that
f(0) =0 and L = Lip(f) = 1.

Assume ¢ > 1/n, then there exists ¢ > 0 such that ¢; = c¢(1 —¢) > 1/n.

We omit the proof of the following lemma, since it would in fact repeat
the proof of [M, Lemma 1]:

Lemma 1. There exists an R such that for any x with ||z|| > R one has
1f@) > ellzl]. O

Let us show that for large enough 7 the index of the image f(aB,”'H(O))
around zero is equal to n.

Lemma 2. There exists d > 1 such that for any p > d
Ind, f(8BI1(0)) = IndOP(h(aB’\)l-H(o))) .

Proof. Denote the Euclidean norm of z € R? by |z|. By [M, Lemma 3] there
exists such o that Indg f(aBt‘,"(O)) = n, and all preimages of zero under f lie
in B(‘;‘(O). Take d such that ||z]| > d implies || > o, and let p > d. Since the
set B,U'H (0)\ B! (0) does not contain preimages of zero, one has

Indo £ (8B!1(0)) = Indy f (9B} (0)) = n.
O

The last lemma in the proof of Theorem 1 is rather obvious in the Eu-
clidean case, but needs some technical work in the case of arbitrary norm
and the corresponding Hausdorff measure. By the k-dimensional Hausdorff
measure of a Borel set A we mean

Hk(A) = supinf{ Z(diam CJ)k | AcC U Cj, diam Cj < (5}

§>0 = i1

(cf. [F, 2.8.15]). The diameter in this definition is with respect to the metric
given by the norm || - ||. Note that #;, is so normalized that the 1-Hausdorff
measure of a segment [z, y] is equal to ||z — y||.
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Lemma 3. If I': [0,1] — R? is a closed curve with ||[I'(t)|| > r for all t €
[0,1] and Indg I = n, then the length of I' in the sense of the 1-dimensional
Hausdorff measure Hy is at least nH1(0B,(0)).

Proof. In order to prove Lemma 3, it suffices to prove it in the case n = 1,
since a closed curve of index n can be split into n closed curves of index 1.

Note first that there exist convex polygons inscribed in the sphere 0B,.(0)
with perimeter arbitrarily close to H1(9B,(0)).

Indeed, fix positive € and take § > 0 such that for any covering of
0B,.(0) by balls of diameters less than §, the sum of the diameters is at least
H1(0B,(0)) — €. Consider the family of all balls with centers on dB,.(0) and
diameters less than §. By the Besicovitch Covering Theorem (see [F, 2.8.15])
there exists a countable subfamily of disjoint balls {B;}, which covers almost
all of 9B,.(0). Since the remaining part of B, (0) is of H; measure zero, it
can be covered by a collection of balls with diameters less than ¢ and sum of
diameters less than . Therefore, >, diam(B;) > H1(0B,(0)) — 2e.

Choose m such that ) . diam(B;) > H1(0B,(0)) — 3¢. The perimeter
of the convex polygon whose vertices are the centers of By, ..., B,, is then
at least Hq1(9B,.(0)) — 3¢, since the balls are disjoint.

Thus it is enough to consider a convex polygon « inside the ball B,.(0)
and to prove that H, (I") > H (7).

Let us note that the #H;-length of a planar curve is at least the || - ||-
distance between its endpoints. This can be shown by replacing the curve
by a broken line of nearly the same #;-length (which may be achieved by a
procedure similar to inscribing a polygon in a sphere as above) and using the
triangle inequality. Therefore, if we replace an arc of a curve by a straight
line segment, we do not make the curve longer (this is similar to the case of
Euclidean norm, except that in some norms a curve may have length equal
to the distance between its endpoints even if it is not a straight line).

Successively replacing arcs of the curve I' by straight line segments con-
taining sides of the polygon 7, we do not increase the H;-length, and in a
finite number of steps will replace I' by ~v. O

To conclude the proof of Theorem 1, note that 1-Lipschitz mappings
do not increase the Hausdorff measure. Therefore the #;-length of I' =
f(0B,(0)) cannot exceed H1(0B,(0)). On the other hand, if p is sufficiently
large, then by Lemma 2, Indg I" = n, and by Lemma 1, ||y|| > ¢;p for any
y € I'. So by Lemma 3 the #H;-length of I" is at least nc1Hq1(0B,(0)). Since
ncy > 1, this is a contradiction which finishes the proof of the theorem. O

3. Having proved such a theorem, one would like to know if the 1/n bounds
are precise. In the case of Euclidean norm the mappings ¢, (re??) = ren®
have the ratio of constants equal to 1/n and maximum cardinality of a point
preimage equal to n. Unfortunately, this does not immediately generalize to
the case of arbitrary norm.
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We are able to construct examples of such mappings in the situation when
the unit ball is a regular polygon (or, of course, its affine equivalent). The £,
norm is then a particular case of this. The idea of construction is as follows.
Let Vp be a vertex of the unit sphere S = {z: ||z|| = 1}. If = is a point on S,
let arg. (z) be the length of the arc of S between Vy and z in the counter-
clockwise direction, measured by the Hausdorff measure H; corresponding to
the metric defined by the norm || - ||. We define v, (rx) = ry, where r > 0,
and y is such a point on S that arg)(y) = narg)(z). One easily checks
that the Lipschitz constant of 1, is equal to n. To check that the co-Lipschitz
constant is equal to 1, one may consider a local inverse of v,, (see Lemma 5
below) and satisfy oneself that this inverse does not increase the || - ||-distance.

We do not know of such examples for other norms, so despite the feeling
that the converse of the theorem holds for any norm (that is, there exist
mappings with maximum of n point preimages and the ratio of constants
equal to 1/n), this question remains open.

4. Now we would like to switch from Lipschitz quotient mappings to more
general locally BNC mappings of R? with the distance defined by an arbitrary
norm || -||. Our next goal will be to obtain a result which links the maximum
cardinality of a point preimage to the ratio of the BNC constant C' and
the Lipschitz constant L of the mapping. This result, which is Theorem 2
below, deals only with the case C'/L > 1/2. Recall that if C//L < 1/2, point
preimages can be infinite (an example is given in Section 1). However, we
know this only for Lipschitz, locally BNC mappings of the plane. See the
next section for a discussion of the case C'/L < 1/2 for Lipschitz, globally
BNC mappings of R2.

We start with a simple lemma for BNC mappings between metric spaces.

Lemma 4. If a mapping [ between two normed spaces X and Y is L-
Lipschitz and is locally C-BNC with C/L > 1/2 then f is ¢ = (2C — L)
co-Lipschitz.

Proof. Consider any point  and radius R < e(z), where e(z) is from the defi-
nition (x) of local BNC property of the mapping f. There exists a point y such
that Bogr(y) C fBr(z) C Brr(f(z)). Then the distance dist(y, f(x)) does
not exceed (L — C)R < CR. Now since B¢ g_dist(y, (=) (f(2)) is contained in
Ber(y), we conclude that the mapping f is locally C — (L — C') = (2C — L)
co-Lipschitz. This implies that f is globally (2C' — L) co-Lipschitz. For a proof
that local co-Lipschitzness at every point implies global co-Lipschitzness see,
for example, [C, Section 4]. O

We proved in Theorem 1 that for an L-Lipschitz and c-co-Lipschitz mapping
from the plane to itself, the cardinality of a point preimage is not greater
than L/c. We thus have a

Corollary. If f: R? — R? is L-Lipschitz and C locally BNC with C/L > 12
then



6 O. Maleva

—1 L
max #f(7) < 5ot

The bound on the right blows up when C/L is larger than but close to
1/2. Our aim now is to improve the bound to the best possible one, that is,
to prove that a C locally BNC and L-Lipschitz mapping with C/L > 1/2 is
in fact a homeomorphism, i.e. the preimage of each point is a single point.

We will need several lemmas.

Lemma 5 (Local invertibility of a Lipschitz quotient mapping). Let f: R? —
R? be a Lipschitz quotient mapping. There exists a finite subset A of R? such
that if 2 is a connected simply connected open domain which does not in-
tersect with A, then for any point x such that y = f(x) € (2 there exists a
mapping ¢ = ¢p,: 2 — R which satisfies ¢p(y) = x and fo ¢ = Idg. This
mapping ¢ is open and is locally 1/c-Lipschitz, where ¢ is the co-Lipschitz
constant of f.

Proof. By [JLPS] any such f is a composition P o h of a polynomial P with
a homeomorphism h. Let A be the finite set {P(z) | P'(z) = 0}. If 2 is a
connected simply connected open domain which does not intersect with A,
then the polynomial P has a unique inverse, which is an analytic function
p defined on (2 such that p(y) = h(z). Define ¢ = h~! o p. It is clear that
6(y) = z and f o ¢ = Idg.

Since ¢ is a composition of a homeomorphism h~! and an analytic func-
tion p, whose derivative p'(w) = P,(pl(w)) is nonzero, we conclude that ¢ is
open.

Suppose w € 2 and r > 0 is so small that B..(w) C {2 and B,(¢(w)) C
¢(£2). Then co-Lipschitzness of f implies that ¢B..(w) C B.(¢(w)) , so ¢ is
locally ¢~!-Lipschitz, where ¢ is the co-Lipschitz constant of f. O

Lemma 6. Assume that a mapping f between two finite dimensional normed
spaces X and Y is C locally BNC and is differentiable at a point a. Then
for any € > 0 there exists r = r(¢,a) such that fB,(a) D Bio_.),(f(a)) for
pT

Proof. Let d, f be the differential of f at a, so that f(a+h) = f(a)+(d.f)h+
o(h). We will show now that (d,f)B1(0) D Bc(0). Then for every e > 0 one
can find 7 such that [|o(h)|| < €||h|| for ||h|| < r. Tt follows that for p < r the
image fB,(a) contains the ball centered at f(a) of radius Cp—ep = p(C —¢).

Assume Cy = minjz = ||dof(2)|| < C. Then (d.f)B1(0) 2 Be,14¢)(0)
for every € > 0 (thus, in particular, (d,f)B1(0) 7 Bc(0)).

It follows that (daf)B1(0) 2 Be,(1+4¢) () for any z € (daf)B:1(0) and € >
0. Indeed, assuming (d, f)B1(0) D Bg(z) one gets (d.f)B1(0) D —Bg(z) =
Bgr(—x) and thus

(da f)B1(0) D conv(Bg(z), Br(—z)) D Bgr(0).
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Take 7 such that ||o(h)|] < 07201 [|h]| for ||A|| < 7. Then for any p < r one
has
fBP(a) C Y= f(a) + p(da f)B1(0) + BPC;CI (0).

The latter does not contain a ball of radius greater than %p (the proof of
this uses that (d.f)B:(0) is convex), and in particular we conclude that X
(and therefore fB,(a)) does not contain a ball of radius Cp, in contradiction

to the local C-BNC property of f. O

In what follows we will assume that f(0) = 0.

The next key lemma is an analogue of Lemma 1 for Lipschitz quotient
mappings, but in the case of BNC mappings the proof becomes technically
more complicated.

Lemma 7. If a mapping f : R2 — R? is L-Lipschitz and is locally C-BNC
with C/L > 1/2 and f(0) = 0, then for any C' < C there exists R > 0 such
that ||f(x)]| > C'llz|| for any [lz]] > R. Consequently, fB.(0) > Ber,(0) for
all r > R.

Proof. Assume L = 1, set M = 14+maxy(.)—¢ ||z|| and consider R = 4M /(C —
C"). Assume that there exists a point zo such that ||zo]] = » > R and
|| f(z0)]] < C'r. There exists € > 0 such that for all y € U(zo,e) = {y: ||y|| =
[[zoll and [ly — wol| < &} one has ||f(y)[| < C"r.
Note that there exists x1 € U(xzg,e) and €' > 0 such that U(zy,e’) C
U(xo,€) and
2= UyeU(a1,¢) (07 2f(y))

is such a domain as was described in Lemma 5 (i.e., {2 does not contain
P(z) such that P'(z) = 0). Here (0,a) is the straight line interval between
0 and a in R2. Let ¢ = Buy fay) 2 12 R? be the mapping from Lemma 5.
Note that ¢(f2), being open, contains an open neighbourhood of z1, so there
exists €1 : 0 < g1 < €', such that U(z1,e1) C ¢(£2). Then ¢f(y) = y for any
y € U(z1,e1), since ¢|, is a 1-1 mapping.

Since ¢ is locally Lipschitz, and is defined in an open cone, ¢(0) is also
well-defined.

In what follows, we are going to use both the Lebesgue measure £, and
the Hausdorff measure Hj, for £ = 1,2. Recall that in R* the measure £y
coincides with H; on Borel sets. But the measure H;, is defined also in spaces
of dimension different from k; if ¢ is a Lipschitz mapping and A is such a set
that Hy(A) = 0, then Hy(¢(A4)) = 0. In particular, if A is a Borel set in R
such that £;(A) =0, and +): R¥ — R* is Lipschitz, then £ ((A)) = 0.

We know that f is Lo-almost everywhere differentiable on ¢(f2). Let
D = {t € ¢(£2) | f is differentiable at t}. Since Ha(4(f2) \ D) = 0 and f
is Lipschitz, we conclude that the set 2\ f(D) is also of £, measure zero.
Then by Fubini’s theorem there exists a point y in U(z1,e1), such that al-
most every point of the interval (0,2f(y)) with respect to £ measure is
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in f(D). Now consider the restriction of ¢ onto the segment [0, f(y)]. This
restriction is a Lipschitz mapping from [0, f(y)] to R?; therefore H;-almost
every point of the curve v = ¢([0, f(y)]) is in D, that is f is H;-almost ev-
erywhere differentiable on . Let B = D N+ be the set of points on v where
f is differentiable.

Since cgc’ < C, by Lemma 6 for each differentiability point z € B there
exists 7. > 0 such that fB,(z) D B,(ct+cr)2(f(2)) for any p <.

Let H1(7) be the 1-Hausdorff measure of 7. There exists 7 > 0 such that
if almost all of v is covered by balls of diameter at most 7, then the sum of
diameters of the balls is at least 71 (7) — 4 (we defined M in the beginning
of the proof). Without loss of generality we may assume that 7 < M /2.

Consider F = {B,(z) | z € B, p < min{r.,7/2}}. By the Besicovitch
Covering Theorem (see [F, 2.8.15]) there exists a countable disjoint subcol-
lection Fy of F, which covers almost all of B, therefore almost all of v, with
respect to the measure H;. Then

M
Z diam B > H(y) — -5
BeFy

On the other hand the f-image of ealch ball B € Fy contains a ball with
center on [0, f(y)] and of radius (B) “£<-. Note that Fi={B,c+cr)2(f(2)) |

2
B,(z) € Fo} is a family of nonintersecting balls with centers on the interval
[0, f(y)], therefore

! !
€O S damB= Y diam B < ()l + 2
2
BeFo BeF1
Thus
M\ C+C' c+C c+cC
1wl 2 (0 - 5 ) S5 - > ue - S5

Note also that Hq(y) > ||y||—1|¢(0)|| > r—M (see the explanation in the proof
of Lemma 3), so ||f(y)|| > (r—2M)O+TO’. But we assumed that || f(y)]| < C'r,
So one gets

c+cC
C'r > te, 2M,
or, equivalently, 2M > O;CIT, which contradicts r > R = 047—”#, a
Theorem 2. Let R? be equipped with an arbitrary norm || -||. If f: B2 — R?

is an L-Lipschitz and C locally ball non-collapsing mapping with C/L > 1/2,
then

#f (@) =1
for any point © € R?.
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Proof. By Lemma 4, such a mapping f is a Lipschitz quotient mapping. Let
n = max,cp2 #f 1(x). We may assume f(0) = 0.

Fix any C', such that L/2 < C' < C. Then by Lemma 7 there exists R
such that ||f(z)|| > C'||z| for all ||z|| > R. By Lemma 2, there exists r > R
such that |Indg f(0B,(0))| = n.

Then by Lemma 4 the H;-length of f(9B,(0)) is at least nC'H1 (9B, (0)),
which is strictly greater than 2%, (9B,.(0)). But since f is L-Lipschitz, the
length of f(8B,(0)) is at most LH1(8B,(0)). Hence & < L, therefore n = 1.
This finishes the proof of the theorem. 0O

5. The last question we would like to discuss here is what happens when a
globally BNC mapping has a ratio of constants less than or equal to 1/2. The
plane folding example, F'(z,y) = (z, |y|), where C/L = 1/2, shows that such
a mapping neither has to be co-Lipschitz, nor is necessarily 1-1. However, the
mapping in this example has point preimages of finite maximum cardinality 2.

On the other hand a mapping with ratio C/L less than 1/3 may have
infinite point preimages. An example to this end is the following. For an
interval I = [a,b] in R' define the “hat function” h;(z) by 252 — |z — 2£2|.
Now let the mapping (4 : R' — R, where A > 1, be defined by

T, ifz <0,
Calz) = (71)kh[A—k7A—k+1](.7:), if A=F <z < Aik+1, k a positive integer,
xz-—1, if x > 1.

Obviously, (4 is a 1-Lipschitz function. One can check that (4 is BNC with
constant C' = %. Then the function f(z,y) = (x,a(y)) is a Lipschitz
and BNC mapping of the plane, with infinite point preimages, and the ratio
of constants less than but arbitrarily close to 1/3 (at least with respect to a
norm || - [| for which [|(z,y)|| = [|(z, —y)I|)-

Note that a point preimage under a Lipschitz BNC mapping may even be
uncountable. For example, if

E-pa\ | <3k+173k+2>

3n 3m
k,n>0

is a Cantor set on [0, 1], the mapping g(x) = dist(z, F) is 1-Lipschitz and is
globally BNC, whose zeros set is E.

We also have a proof that in 1-dimensional space the bound of 1/3 cannot
be improved (that is, if a Lipschitz and BNC mapping has infinite point
preimages, then the ratio of constants C'/L is strictly less than 1/3). Thus, we
have no definite results concerning point preimages under Lipschitz globally
BNC mappings of the plane whose ratio of constants is between 1/3 and 1/2.

Let us summarize the results concerning the estimates of the maximum
cardinality of the preimage of a point under the three classes of Lipschitz
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mappings of the plane. Let L be the Lipschitz constant of a mapping. If a
mapping is Lipschitz quotient with co-Lipschitz constant ¢, the preimage of a
point consists of at most L /¢ points. If a mapping is (globally) BNC with BNC
constant C, then in the case C'/L > 1/2 a point preimage is a single point, in
the case C'/L < 1/3 it can be infinite, and in the case 1/3 < C/L < 1/2 we
have no definite answer. And if a mapping is locally BNC with BNC constant
C, the complete answer is as follows. If C'/L > 1/2, a point preimage is a
single point, and in the case C/L < 1/2 a point preimage can be infinite.
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