Published papers and preprints:
- R. Hutchins and O. Maleva,
Equilateral polygons in polygonal norms/Inscribing equilateral polygons in centrally symmetric convex bodies in R2,
- J. Kolar and O. Maleva,
Chain rule for Pointwise Lipschitz functions
- M. Dymond and O. Maleva,
Typical Lipschitz mappings are typically non-differentiable, first version on
arXiv:2111.09644
- R. Hutchins and O. Maleva,
On the structural decomposition of planar Lipschitz quotient mappings (PDF)
Pure and Applied Functional Analysis (PAFA), vol. 8, no. 6, 2023, 1747-1766, see also arXiv:2305.12874
- O. Maleva and C. Villanueva-Segovia, Best constants for Lipschitz quotient mappings in polygonal norms (PDF), Mathematika 67 (2021) 116-144, DOI: 10.1112/mtk.12064 and PDF version
- M. Dymond and O. Maleva, A dichotomy of sets via typical differentiability (PDF),
Forum of Mathematics, Sigma, 2020, Vol. 8 e41, 1-42, DOI: 10.1017/fms.2020.45, see also (arxiv:1909.03487)
- O. Maleva and D. Preiss,
Cone unrectifiable sets and non-differentiability of Lipschitz functions (PDF), Israel Journal of Mathematics, 232 (2019), no. 1, 75–108, DOI: 10.1007/s11856-019-1863-9, see also
arxiv:1709.04233
- O. Maleva and D. Preiss,
Directional Upper Derivatives and the
Chain Rule Formula for Locally Lipschitz
Functions on Banach Spaces, (PDF),
Trans. Amer. Math. Soc., 368 (2016), No. 7, 4685-4730
- M. Dymond and O. Maleva, Differentiability inside sets with upper Minkowski dimension one,
Michigan Math. J., 65 (2016), no. 3, 613-636, DOI: 10.1307/mmj/1472066151, see also
arxiv:1305.3154.
- M. Dore and O. Maleva, A universal differentiability set in Banach spaces with separable dual (PDF),
Journal of Functional Analysis 261 issue 6 (2011),
1674-1710,
DOI: 10.1016/j.jfa.2011.05.016, see also arxiv:1103.5094
- M. Dore and O. Maleva, A compact universal differentiability set with
Hausdorff dimension one (PDF), Israel Journal of Mathematics,
191 (2012), no. 2, 889-900, DOI: 10.1007/s11856-012-0014-3,
see also on arxiv:1004.2151
- M. Dore and O. Maleva, A compact null set containing
a differentiability point of every Lipschitz function (PDF), Mathematische
Annalen, no. 3, vol. 351 (2011), 633-663,
DOI 10.1007/s00208-010-0613-4,
see also on arxiv:0804.4576
- J. Duda and O. Maleva, Metric derived numbers and continuous metric
differentiability via homeomorphisms
(PDF), Banach Spaces and their Applications
in Analysis, 307-330, de Gruyter Proceedings in Mathematics (2007)
- O. Maleva, Unavoidable sigma-porous sets
(PDF),
J. London Math. Soc., 76, no. 2 (2007), 467-478, doi:10.1112/jlms/jdm059
- G. Kun, O. Maleva and A. Mathe, Metric characterization of pure
unrectifiability
(PDF),
Real Analysis Exchange, 31, no. 1 (2005-2006), 195-214
- O. Maleva, On Lipschitz ball non collapsing functions and uniform
co-Lipschitz mappings of the plane
(PDF),
Abstract and Applied Analysis, 5 (2005), 543-562.
- O. Maleva, Components of Level Sets of uniform co-Lipschitz functions on
the plane
(PDF),
Proc. Amer. Math. Soc. 133 (2005), 841-850.
- O. Maleva, Point preimages under ball non-collapsing mappings
(PDF),
Geometric aspects of functional analysis, Lecture Notes in Math. 1087
(2003), 148 -- 157.
- O. Maleva, Lipschitz quotient mappings with good ratio of constants
(PDF),
Mathematika 49 (2002), parts 1/2, nos. 97/98, 159--165.
- O. Maleva, A pathological example of a uniform quotient mapping between
euclidean spaces
(PDF), Israel Journal of
Mathematics, 123 (2001), 211 -- 220.