<u>Gideon Schechtman</u> (Weizmann Institute of Science, Israel) Title: A quantitative version of the commutator theorem for zero trace matrices

Abstract: As is well known, a complex $m \times m$ matrix A is a commutator (i.e., there are matrices B and C of the same dimensions as A such that A = [B, C] = BC - CB) if and only if A has zero trace. In such a situation clearly $||A|| \leq 2||B|| ||C||$ where ||D|| denotes the norm of D as an operator from ℓ_2^m to itself.

Does the converse hold? That is, if A has zero trace are there $m \times m$ matrices B and C such that A = [B, C] and $||B|| ||C|| \le K ||A||$ for some absolute constant K? If not, what is the behavior of the best K as a function of m?

I'll present some new insight, due to Johnson, Ozawa and myself concerning this question.