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Finite-dimensional normed vector spaces

Proposition 3.5. Let (X, ‖ · ‖) be an n-dimensional normed vector space for some n ∈ N and

let {e1, . . . , en} be a basis for X. Then there exist constants a,b > 0 such that

a

n∑

i=1

|ai| 6

∥

∥

∥

∥

∥

n∑

i=1

aiei

∥

∥

∥

∥

∥

6 b

n∑

i=1

|ai| (3.4)

for all (a1, . . . ,an) ∈ R
n.

Proof. Note that ‖(a1, . . . ,an)‖1 =
∑n

i=1 |ai| and if ‖(a1, . . . ,an)‖1 = 0 then ai = 0 for all

1 6 i 6 n and (3.4) is satisfied with any a and b. Assume therefore ‖(a1, . . . ,an)‖1 6= 0. By

homogeneity it suffices to show that
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6 b (3.5)

for all (a1, . . . ,an) ∈ R
n with ‖(a1, . . . ,an)‖1 = 1 since for (α1, . . . ,αn) 6=0 inequality (3.4)

follows from (3.5) applied to the renormalised vector (α ′

1, . . . ,α ′

n) given by α ′

i = αi/‖(α1, . . . ,αn)‖1

for each i = 1, . . . ,n.

To prove (3.5), define a mapping

F : K → R; F(a1, . . . ,an) =
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∥
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∥

where

K := {(a1, . . . ,an) ∈ R
n : ‖(a1, . . . ,an)‖1 = 1}.

It is easy to see that K ⊆ R
n is a closed and bounded set. It is therefore compact. We now

show that F(a1, . . . ,an) > 0 for every (a1, . . . ,an) ∈ K. Indeed, since {e1, . . . , en} is a linearly

independent system it follows that

(a1, . . . ,an) ∈ K ⇒
i∑

i=1

aiei 6= 0

and consequently F(a1, . . . ,an) > 0 for all (a1, . . . ,an) ∈ K.

By Proposition 2.3, F is continuous and therefore is bounded above and below and attains

these bounds; i.e. there exist points A,B ∈ K such that

F(A) 6 F(a1, . . . ,an) 6 F(B)

for all (a1, . . . ,an) ∈ K. Denote a = F(A) and b = F(B), then a,b > 0 and (3.5) is satisfied.
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Corollary 3.6. Let X be a finite dimensional vector space, let ‖ · ‖ and ||| · ||| be two norms on

X. Then ‖ · ‖ ≈ ||| · |||.

Proof. Let {e1, . . . , en} be a basis for X. By Proposition 3.5, there are real positive numbers

a,b and a ′,b ′ such that
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Let x ∈ X, find (a1, . . . ,an) such that x =
∑n

i=1 aiei. Therefore,
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hence
a

b ′
|||x||| 6 ‖x‖ 6

b

a ′
|||x||| for all x ∈ X.

Remark. Exercise 4b in PS2 claims that there are two non-equivalent norms on ℓ1: namely,

‖ · ‖1 and ‖ · ‖∞. Then Corollary 3.6 implies that ℓ1 is infinite-dimensional. Finally, as every

ℓp ⊇ ℓ1 for 1 6 p 6 ∞ (exercise 5 PS1), we get that all ℓp are infinite-dimensional.

Corollary 3.7. Let (X, ‖ · ‖) be a finite dimensional normed vector space. Then (X, ‖ · ‖) is a

Banach space.

Proof. Let e1, . . . , en be a basis for X and ‖ · ‖1 be the ℓ1-norm on X: ‖
∑

aiei‖1 :=
∑n

i=1 |ai|.

Since (X, ‖ · ‖1) is a Banach space and any two norms on X are equivalent, we conclude

(using Remark 4 after the definition of equivalent norms) that (X, ‖ · ‖) is a Banach space

too.

Corollary 3.8. Let (X, ‖·‖) be a finite dimensional normed vector space and let Y be a linear

subspace of X. Then Y is closed.

Proof. By Corollary 3.7, (Y, ‖ · ‖) is a Banach space. Thus Y is closed by Proposition 3.4.
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We conclude this section with a brief discussion on compactness.

Definition (Compact set)

Let (X, ‖ · ‖) be a normed vector space and C ⊆ X. Then a set C is said to be compact if for

every family of open sets (Uα)α∈A such that
⋃

α∈A Uα ⊇ C there exists a finite subfamily

(Uαi
)i=1,...,n such that

⋃

16i6n Uαi
⊇ C.

[Every open cover has a finite subcover.]

Theorem (Heine–Borel). Let (X, ‖ · ‖) be a finite dimensional normed vector space and let

C ⊆ X. Then C is compact if and only if C is closed and bounded.

Remark. In general, compact sets in normed vector spaces are necessarily closed and

bounded. However, away from the finite-dimensional case, the converse is not true in gen-

eral. For example, let X = ℓ2, C = {e(n),n > 1}, where e(n) = (e
(n)

1 , e
(n)

2 , . . . ) with

e
(n)

j = δn,j =

{
1 if j = n;

0 otherwise.

It is clear that C is bounded. Moreover, for all n 6= m we have ‖en − em‖2 =
√

2 and so C is

closed (the set of accumulation points of C is empty). However if we let Un = B(e(n),
√

2/3)

be disjoint open balls around vectors e(n), then any finite union U =
⋃N

k=1 Unk
will not

cover the whole C (letting m = max{n1, . . . ,nN} we get that e(m+1) 6∈ U).
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Theorem 3.9. Let (X, ‖ · ‖) be a normed vector space. If C = B(0, 1) is compact then X is

finite dimensional.

Proof. The following proof has not been covered in the lectures

Suppose that C := B(0, 1) is compact. Clearly, C ⊆
⋃

x∈C B(x, 1/2). By the definition of

compactness, there exists a finite subset {x1, . . . , xn} of C such that

C ⊆
n
⋃

i=1

B(xi, 1/2).

Let M be the linear span 〈x1, . . . , xn〉. Then we have

C ⊆ M+ B
(

0,
1

2

)

= M+
1

2
B(0, 1) ⊆ M+

1

2
C,

where for A,B ⊆ X we define A+ B =
{

a+ b | a ∈ A,b ∈ B
}

. Therefore, using the fact that

M is a linear subspace of X, we get

C ⊆ M+
1

2

(

M+
1

2
C
)

= M+
1

4
C.


