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Example (Normed spaces)

1. For p € [1, 0], the pair (R™, | - ||p) is a normed vector space where
IxXllp = (e laklP)/P for p € [1,00),
IX||oo = max{lxx| : k=1,...,n} forp=o0

for x = (ay,...,a,) € R™.

la: if p = 2 then this is our usual distance in R™: ||(aq,...,an)|2 = \/Ia1\2 + 4 an 2.

2. Forp € [1,00), let (P denote the set of all infinite sequences x = (ax)xen, Where ax € R
for each k € N, such that 3, ., |ax[P < oco. If [|x||p := (33, lax|P)1/P then (¢, | - [|,) is
a normed vector space.

For p = oo we let {*° denote the set of all bounded sequences x = (ax)keny € R and for
x € £ define ||X|| := supflax|: k € N}. Then (1, || - ||) is @ normed vector space. We
shall prove this later.

ExampleLetx:(1,%,%,...,%,...).Thenxef“butx%@l.
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3. For a,b € R, we define two different norms on the same vector space Cla, b]:

[l := sup{[f(t)] : t € [a, b]};
£l = P If(t)ldt.

Proof. We check that || - ||; is a norm.

(1) Itis clear that fz [f(t)|dt > 0 for all f € C[a, b].
Assume f € Cla, b] and ||f||; = 0. We want to show that f(t) = 0 for all t. Consider
h(t) = [f(t)]. Assume there exists t € (a,b) such that ¢ = h(t) # 0. Since h takes

only nonnegative values, we get ¢ > 0. By continuity of h
Je>0 Vxe(t—et+e)C(a,b) h(x)>c/2

Ash > 0 we get

t+e

b
OZJ h(x)dx)J' h(x)dx > ce > 0,
a contradiction. This proves h(t) = [f(t)] = 0 for all t € (a,b) thus f = 0 on [a, b]
(by continuity at a and b).
(ii) Let A € R be arbitrary, then [° [Af(t)|dt = [A| [° [f(t)[dt.
(iii) Let f, g € Cla,b], then [|f + g[[s = [ [f(t) + g(t)|dt < f‘;(lf(t)l + Ig(t)\)dt = |Iflls +
felise

We prove that || - ||« is @a norm on C[a, b] in Problem Sheet 1. O
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Case study: The (¥ spaces.

In this section we give a proof that ({P, || - ||,) is a normed vector space for p € [1, co].
We first remark that if x € (? and ||x|,, = 0 then x = 0.

Proposition 2.1 (Minkowski’s inequality). Let x = (ax) and y = (by) be two elements of (P,
where p € [1,0]. Then the sequence (ayx + by) defines an element of {? and

I+ yllp < lIxllp + l[yllp- (2.1)

Proof of Proposition 2.1. Let x = (ax) and y = (by).
When p = o, we have
lak + bxl < lax| + [bx| < [[X]loo + Ylloo
for each k € N and therefore x + y is a bounded sequence (belongs to {*°) and ||x + yl|e =
supyen lak + il < [|x[loo + [[Y[loo-
Suppose now that p € [1,00) and recall x = (ax) and y = (by). Note that if ||x||, = 0 or

lyllp = 0 then x = 0 or y = 0 respectively and (2.1) is trivially satisfied. So we assume that
x|, and |y||, are both nonzero and define

_ lax/ . byl
lIxllp’ yllp

Akl

for each k € N, then

S AL = (3 JaxP)/IIk[Z =1 and

keN keN
> BE=(D 1bulP)/[yll}p = 1.
keN keN

Fix any k € N; we have:

lax + bil? < (law] + [bx[)?

= (“XHpAk + HUHPBk)p

Ixllp lulls P
= (xllp + Iyllp)” Aw+ B)
Py + Tl ™ Tl + Tully

= ([Ixllp + llyllp)? (eeAx + (1 — ) By)P,

where « = ||x||,/(|Ix]lp + |lullp) € (0,1). Since the function h(t) = tP : [0,00) — [0, 0) is
convex it follows that

h(axAx + (1 — «)By) < ah(Ax) + (1 — a)h(By)

and so
lax +brlP < (IIx]lp + yllp)P (xAL + (1 — o) BY).
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Taking the sum over all k € N it follows that

> lai+bul” < (IIxllp + [ullp)P(« 3~ AR+ (1—a) ) BY)

keN keN keN
= (IIxllp +llyllp)Plac- T+ (1 —o) - 1) = ([Ix[[p + [[yllp)P-

1/p
The latter implies that } , . |ax + by [P converges and (ZkeN lax + bk|p> < xllp + llyllp
as required. O
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Remark. Observe that Proposition 2.1 implies that

1. {7 is closed under addition: x,y € (P = x +y € (P. It is easy to check that for A € R
and x € (P the vector Ax also belongs to {P. Therefore, (P is a vector space.
2. (@) [|x]|[p = 0for all x € (P, and if ||x||, = O then x = 0;
(i) ||Ax|lp = AllIx||p for all A € R and x € (P.
(iii) the triangle inequality for || - ||, holds — from Minkowski’s inequality.
Thus || - ||, is a norm on (P.

Proposition 2.2 (Holder’s inequality). Let p,q > 1 be such that 1/p +1/q = 1. Suppose
x = (ay) € P and y = (by) € €9. Then xy = (ayby) € ! and

Iyl < [1x[lpl[yllq- (2.2)

Remark. If p = 1 then condition 1/p +1/q = 1 implies 1/q =0, i.e., q = 0.

Proof. We can assume ||x||, and |[y|q are both nonzero, otherwise both sides of (2.2) are
zero and there is nothing to do.

Case 1l: p = 1 and q = co. Then |axby| < |ax| - [|y[je for every k > 1, therefore, since
the series Z@l lax| converges, the series Zk>1 |axby| converges too (Comparison Test for
series) and

eyl =D larbil < Iyl D laid = [lylloollx]l1-

k>1 k>1
Case 2: p,q € (1, 00). We claim that for all A,B € (0, o)

P q
AB < AT + Y (2.3)

P q
Inequality (2.3) is often referred to as Young’s inequality. If we assume that it is true for

the moment, then we let
lax| [by

= k =
[l [yllq

Ax



