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Example (Normed spaces)

1. For p ∈ [1,∞], the pair (Rn, ‖ · ‖p) is a normed vector space where

{
‖x‖p = (

∑n
k=1 |ak|

p)1/p for p ∈ [1,∞),

‖x‖∞ = max{|xk| : k = 1, . . . ,n} for p = ∞

for x = (a1, ...,an) ∈ R
n.

1a: if p = 2 then this is our usual distance in R
n: ‖(a1, . . . ,an)‖2 =

√

|a1|2 + · · ·+ |an|2.

2. For p ∈ [1,∞), let ℓp denote the set of all infinite sequences x = (ak)k∈N, where ak ∈ R

for each k ∈ N, such that
∑

k>1 |ak|
p < ∞. If ‖x‖p := (

∑∞
k=1 |ak|

p)1/p then (ℓp, ‖ · ‖p) is

a normed vector space.

For p = ∞ we let ℓ∞ denote the set of all bounded sequences x = (ak)k∈N ⊆ R and for

x ∈ ℓ∞ define ‖x‖∞ := sup{|ak| : k ∈ N}. Then (l∞, ‖ · ‖∞) is a normed vector space. We

shall prove this later.

Example Let x = (1, 1
2
, 1

3
, . . . , 1

n
, . . . ). Then x ∈ ℓ∞ but x 6∈ ℓ1.
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3. For a,b ∈ R, we define two different norms on the same vector space C[a,b]:

{
‖f‖∞ := sup{|f(t)| : t ∈ [a,b]};

‖f‖1 :=
∫b
a |f(t)|dt.

Proof. We check that ‖ · ‖1 is a norm.

(i) It is clear that
∫b
a |f(t)|dt > 0 for all f ∈ C[a,b].

Assume f ∈ C[a,b] and ‖f‖1 = 0. We want to show that f(t) = 0 for all t. Consider

h(t) = |f(t)|. Assume there exists t ∈ (a,b) such that c = h(t) 6= 0. Since h takes

only nonnegative values, we get c > 0. By continuity of h

∃ε > 0 ∀x ∈ (t− ε, t+ ε) ⊆ (a,b) h(x) > c/2.

As h > 0 we get

0 =

∫b

a

h(x)dx >

∫t+ε

t−ε

h(x)dx > cε > 0,

a contradiction. This proves h(t) = |f(t)| = 0 for all t ∈ (a,b) thus f ≡ 0 on [a,b]

(by continuity at a and b).

(ii) Let λ ∈ R be arbitrary, then
∫b
a |λf(t)|dt = |λ|

∫b
a |f(t)|dt.

(iii) Let f,g ∈ C[a,b], then ‖f + g‖1 =
∫b
a |f(t) + g(t)|dt 6

∫b
a

(

|f(t)| + |g(t)|
)

dt = ‖f‖1 +

‖g‖1.

We prove that ‖ · ‖∞ is a norm on C[a,b] in Problem Sheet 1.
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Case study: The ℓp spaces.

In this section we give a proof that (ℓp, ‖ · ‖p) is a normed vector space for p ∈ [1,∞].

We first remark that if x ∈ ℓp and ‖x‖p = 0 then x = 0.

Proposition 2.1 (Minkowski’s inequality). Let x = (ak) and y = (bk) be two elements of ℓp,

where p ∈ [1,∞]. Then the sequence (ak + bk) defines an element of ℓp and

‖x+ y‖p 6 ‖x‖p + ‖y‖p. (2.1)

Proof of Proposition 2.1. Let x = (ak) and y = (bk).

When p = ∞, we have

|ak + bk| 6 |ak|+ |bk| 6 ‖x‖∞ + ‖y‖∞

for each k ∈ N and therefore x + y is a bounded sequence (belongs to ℓ∞) and ‖x + y‖∞ =

supk∈N |ak + bk| 6 ‖x‖∞ + ‖y‖∞.

Suppose now that p ∈ [1,∞) and recall x = (ak) and y = (bk). Note that if ‖x‖p = 0 or

‖y‖p = 0 then x = 0 or y = 0 respectively and (2.1) is trivially satisfied. So we assume that

‖x‖p and ‖y‖p are both nonzero and define

Ak :=
|ak|

‖x‖p
, Bk :=

|bk|

‖y‖p

for each k ∈ N, then

∑

k∈N

Ap
k =

(

∑

k∈N

|ak|
p
)

/‖x‖pp = 1 and

∑

k∈N

Bp
k =

(

∑

k∈N

|bk|
p
)

/‖y‖pp = 1.

Fix any k ∈ N; we have:

|ak + bk|
p
6 (|ak|+ |bk|)

p

= (‖x‖pAk + ‖y‖pBk)
p

= (‖x‖p + ‖y‖p)
p
( ‖x‖p
‖x‖p + ‖y‖p

Ak +
‖y‖p

‖x‖p + ‖y‖p
Bk

)p

= (‖x‖p + ‖y‖p)
p(αAk + (1 − α)Bk)

p,

where α = ‖x‖p/(‖x‖p + ‖y‖p) ∈ (0, 1). Since the function h(t) = tp : [0,∞) → [0,∞) is

convex it follows that

h(αAk + (1 − α)Bk) 6 αh(Ak) + (1 − α)h(Bk)

and so

|ak + bk|
p
6 (‖x‖p + ‖y‖p)

p(αAp
k + (1 − α)Bp

k).
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Taking the sum over all k ∈ N it follows that

∑

k∈N

|ak + bk|
p
6 (‖x‖p + ‖y‖p)

p(α
∑

k∈N

Ap
k + (1 − α)

∑

k∈N

Bp
k)

= (‖x‖p + ‖y‖p)
p(α · 1 + (1 − α) · 1) = (‖x‖p + ‖y‖p)

p.

The latter implies that
∑

k∈N
|ak + bk|

p converges and
(∑

k∈N
|ak + bk|

p
)1/p

6 ‖x‖p + ‖y‖p

as required.
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Remark. Observe that Proposition 2.1 implies that

1. ℓp is closed under addition: x,y ∈ ℓp ⇒ x + y ∈ ℓp. It is easy to check that for λ ∈ R

and x ∈ ℓp the vector λx also belongs to ℓp. Therefore, ℓp is a vector space.

2. (i) ‖x‖p > 0 for all x ∈ ℓp, and if ‖x‖p = 0 then x = 0;

(ii) ‖λx‖p = |λ|‖x‖p for all λ ∈ R and x ∈ ℓp.

(iii) the triangle inequality for ‖ · ‖p holds – from Minkowski’s inequality.

Thus ‖ · ‖p is a norm on ℓp.

Proposition 2.2 (Hölder’s inequality). Let p,q > 1 be such that 1/p + 1/q = 1. Suppose

x = (ak) ∈ ℓp and y = (bk) ∈ ℓq. Then xy = (akbk) ∈ ℓ1 and

‖xy‖1 6 ‖x‖p‖y‖q. (2.2)

Remark. If p = 1 then condition 1/p+ 1/q = 1 implies 1/q = 0, i.e., q = ∞.

Proof. We can assume ‖x‖p and ‖y‖q are both nonzero, otherwise both sides of (2.2) are

zero and there is nothing to do.

Case 1: p = 1 and q = ∞. Then |akbk| 6 |ak| · ‖y‖∞ for every k > 1, therefore, since

the series
∑

k>1 |ak| converges, the series
∑

k>1 |akbk| converges too (Comparison Test for

series) and

‖xy‖1 =
∑

k>1

|akbk| 6 ‖y‖∞
∑

k>1

|ak| = ‖y‖∞‖x‖1.

Case 2: p,q ∈ (1,∞). We claim that for all A,B ∈ (0,∞)

AB 6
Ap

p
+

Bq

q
. (2.3)

Inequality (2.3) is often referred to as Young’s inequality. If we assume that it is true for

the moment, then we let

Ak =
|ak|

‖x‖p
, Bk =

|bk|

‖y‖q


