
SPECIAL TOPICS IN GRAPH THEORY

MICHELLE DELCOURT

Abstract. This three part lecture series is based primarily on the book Elementary Number

Theory, Group Theory, and Ramanujan Graphs by Davidoff, Sarnak, and Valette. I will

discuss background information and the explicit construction of (p+ 1)-regular Ramanujan

graphs by Lubotzky-Phillips-Sarnak and Margulis, where p is an odd prime.

1. Basic definitions and results

We start with some basic definitions and results in spectral graph theory. LetX = (V,E)

be a graph. The adjacency matrix A of a finite graph X on n vertices is an n by n symmetric

matrix. Therefore, A has n real eigenvalues counting multiplicities

λ0 ≥ λ1 ≥ . . . ≥ λn−1.

Lemma 1. Let X be a finite k-regular graph with n vertices. Then

(1) λ0 = k

(2) |λi| ≤ k for 1 ≤ i ≤ (n− 1)

(3) λ0 has multiplicity 1 if and only if X is connected. [Furthermore, the multiplicity is

equal to the number of components.]

Lemma 2. Let X be a connected, k-regular graph on n vertices. Then the following are

equivalent

(1) λn−1 = −k,

(2) the spectrum of X is symmetrical about 0,

(3) X is bipartite.

Let X = (V,E) be a finite, connected graph on n vertices, and F ⊆ V .

Definition 1. The boundary of F , denoted δF , is the set of edges required to disconnect F

from any vertex in V − F .
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Definition 2. The isoperimetric or expanding constant of X is

h(X) = min

{
|δF |
|F |

: F ⊆ V, 0 < |F | ≤ n

2

}
= inf

{
|δF |

min {|F |, |V − F |}
: F ⊆ V, 0 < |F | < +∞

}
.

Think of X as a network that is transmitting information from vertex to vertex; the ex-

panding constant measures the “quality” of X as a network in some sense. A large expanding

constant means that information is able to propagate well. Consider the complete graph Kn

versus the cycle Cn. For X = Kn, if |F | = k, then |δF | = k(n− k) so |δF ||F | = k(n−k)
k

= n− k

and h(Kn) = n −
[
n
2

]
∼ n

2
; Kn is highly connected and has a large expanding constant

which grows proportionately with the number of vertices. For X = Cn, if |F | is a half cycle,

|δF | = 2 and h(Cn) = 2

[n2 ]
∼ 4

n
; Cn is not highly connected and has a small expanding

constant that tends to 0 as the number of vertices increases.

2. Families of expanders

Definition 3. If {Xm}m≥1 is a family of finite, connected, k-regular graphs with |Vm| → +∞

as m → +∞, then {Xm}m≥1 is a family of expanders if there exists an ε > 0 such that

h(Xm) ≥ ε for all m ≥ 1.

Simply speaking, expander graphs are sparse yet highly connected k-regular graphs.

Because of these nice properties, expander graphs have many applications in engineering

and computer science from network design to cryptography. We would like to explicitly

construct infinite family of expanders. A “good quality” expander has a large spectral gap

λ0(Xm)− λ1(Xm) = k − λ1(Xm)

(this will motivate the definition of a Ramanujan graph) as it measures “high connectedness”.

For an arbitrary graph X = (V,E), consider the functions f : V → C and define Hilbert

spaces,

l2(V ) =

{
f : V → C :

∑
v∈V

|f(v)|2 < +∞

}
and

l2(E) =

{
f : E → C :

∑
e∈E

|f(e)|2 < +∞

}
.
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Theorem 1 (1985 Alon-Milman; 1984 Dodziuk). Let X be a finite, connected k-regular

graph. Then
k − λ1

2
≤ h(X) ≤

√
2k(k − λ1).

Proof. Let X = (V,E) be a finite, connected k-regular graph without loops. Randomly

orient the edges; given an edge e ∈ E, let e+ denote the head and e− denote the tail. The

simplicial coboundary operator is d : l2(V )→ l2(E) if for f ∈ l2(V ) and e ∈ E,

df(e) = f(e+)− f(e−).

Endow l2(V ) and l2(E) with hermitian scalar product; for example,

〈f, g〉 =
∑
x∈V

f(x)g(x).

Then, there is a unique continuous operator, the adjoint operator d∗ : l2(E)→ l2(V ) that is

characterized by 〈df, g〉 = 〈f, d∗g〉 for all f ∈ l2(V ) and g ∈ l2(E).

Define a function δ : V × E → {−1, 0, 1} by

δ(x, e) =


1, if x = e+

−1, if x = e−

0, otherwise,

then for e ∈ E and f ∈ l2(V ) df(e) =
∑

x∈V δ(x, e)f(x) and for x ∈ V and g ∈ l2(E)

d∗g(x) =
∑

e∈E δ(x, e)g(e). Let the combinatorial Laplacian operator be

∆ = d∗d : l2(V )→ l2(V ).

In other words, ∆ = k · Id−A. The combinatorial Laplacian operator has a number of nice

properties. It does not depend on orientation. If f is a function on the vertex set, and∑
x∈V f(x) = 0,

‖df‖22 = 〈df, df〉 = 〈∆f, f〉 ≥ (k − λ1)‖f‖22.

Consider the following special function

f(x) =

|V − F |, if x ∈ F

−|F |, if x ∈ V − F.
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Then
∑

x∈V f(x) = 0 so

‖f‖22 = |F ||V − F |2 + |V − F ||F |2 = |F ||V − F |(|V − F |+ |F |) = |F ||V − F ||V |,

and

df(x) =

0, if e is not a cross edge between F and V − F

±|V |, if e is a cross edge.

Because ‖df‖22 = |δF ||V |2 + 0 = |δF ||V |2,

|V |2|δF | ≥ (k − λ1)|F ||V − F ||V |

and
|δF |
|F |
≥ (k − λ1)

|V − F |
|V |

.

If |F | ≤ |V |
2

, |δF |
F
≥ k−λ1

2
, and then h(X) ≥ k−λ1

2
. The second inequality is much more

complicated see pages 20-23 [4]. �

A family of k-regular graphs is a family of expanders if and only if the spectral gap is

bounded away from zero. The bigger the spectral gap, the better the “the quality” of the

expander.

Theorem 2. Let {Xm}m≥1 be a family of finite, connected k-regular graphs without loops,

such that |Vm| → +∞ as m → +∞. The family {Xm}m≥1 is a family of expanders if and

only if there exists ε > 0 such that k − λ1(Xm) ≥ ε for every m ≥ 1.

For many years, constructing large families of expanders has been an important prob-

lem. Motivated by problems in network theory, in 1972-1973, Pinsker and Margulis worked

on constructions. This work, however, gave no measure of the quality of the expanders.

More recent work does (Gabber-Galil, Widgerson-Zuckerman, etc). Historically, isoperimet-

ric inequalities have been studied in the Riemannian geometry setting and sometimes are

called the Cheeger-Buser inequalities.
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3. Ramanujan Graphs

Theorem 3 (Alon-Boppana). Let {Xm}m≥1 be a family of finite, connected, k-regular graphs

with |Vm| → +∞ as m→ +∞. Then

lim inf
m→+∞

λ1(Xm) ≥ 2
√
k − 1.

Proof. The inequality is actually from the fact that the number of paths of length m from

a vertex v to v in a k-regular graph is at least number of paths from a vertex v to v in a

k-regular tree.

Let X = (V,E) be a k-regular simple graph with |V | possibly infinite. A path of length

r without backtracking is a sequence e = (x0, x1, . . . , xr) of vertices in V such that xi is

adjacent to xi+1 for i = 0, 1, . . . , r − 1 and xi+1 6= xi−1 for i = 1, 2, . . . r − 1. The origin of

e is x0, and the extremity of e is xr. For r ∈ N, matrix Ar is an n by n matrix indexed by

V × V with

(Ar)xy = the number of paths of length r with origin x and extremity y without backtracking.

Define A0 = Id and note that A1 = A, the adjacency matrix of X.

Lemma 3. Both of the following equalities hold:

(1) A2
1 = A2 + k · A0

(2) A1Ar = ArA1 = Ar+1 + (k − 1)Ar−1, for r ≥ 2.

Proof.

(1) For x 6= y ∈ V , (A2
1)x,y counts the number of paths of length 2; there can be no

backtracking. Thus, (A2
1)x,y = (A2)x,y. If x = y, then (A2

1)x,y = k as the degree of x

is k; however, (A2)x,y = 0. Thus (A2
1)x,y = (A2)x,y + k.

(2) (ArA1)x,y is the number of paths (x0 = x, x1, . . . , xr, xr+1 = y) without backtracking

except possibly on the last step. If xr−1 6= y then (x0 = x, x1, . . . , xr, xr+1 = y)

has no backtracking and there are (Ar+1)x,y such paths. If xr−1 = y then there

was backtracking at the last step; there are (k − 1)(Ar−1)x,y such paths. Thus,

ArA1 = Ar+1 + (k − 1)Ar−1; A1Ar = Ar+1 + (k − 1)Ar−1 is left as an exercise.

�
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Because (
∞∑
r=0

Art
r

)
(A0 − A1t+ (k − 1)t2A0) = (1− t2)A0,

the generating function for Ar is

∞∑
r=0

Art
r =

(1− t2)
1− A1t+ (k − 1)t2

We would like to eliminate (1− t2) on the Right Hand Side. Let

Tm =
∑

0≤r≤m
2

Am−2r.

Then

∞∑
m=0

Tmt
m =

∞∑
m=0

∑
0≤r≤m

2

Am−2rt
m =

∞∑
r=0

∑
m≥2r

Am−2rt
m

=
∞∑
r=0

t2r
∑
m≥2r

Am−2rt
m−2r =

(
∞∑
r=0

t2r

)(
∞∑
l=0

Alt
l

)

=
1

1− t2
· 1− t2

1− A1t+ (k + 1)t2
=

1

1− A1t+ (k + 1)t2
,

and
∞∑
m=0

Tmt
m =

1

1− A1t+ (k − 1)t2
.

Definition 4. The Chebyshev polynomials of the 2nd kind are defined by expressing

sin(m+ 1)θ

sin θ

as a polynomial of degree m in cos θ,

Um(cos θ) =
sin(m+ 1)θ

sin θ
.

Because U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, . . ., these polynomials satisfy the

recurrence relation

Um+1(x) = 2xUm(x)− Um−1(x)

and the generating function is

∞∑
m=0

Um(x)tm =
1

1− 2xt+ t2
.
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By a change of variables

∞∑
m=0

(k − 1)
m
2 Um

(
x

2
√
k − 1

)
tm =

1

1− xt+ (k − 1)t2
,

and

Tm = (k − 1)
m
2 Um

(
A1

2
√
k − 1

)
.

For the rest of the proof of Theorem 3, see pages 28-34 [4]. �

Definition 5. A finite, connected k-regular graph X is Ramanujan if for every eigenvalue

λ of A, except for ±k, one has

|λ| ≤ 2
√
k − 1.

Some simple examples of Ramanujan graphs are Kn, Kn,n, and the Petersen graph.

When constructing k-regular graphs with large spectral gaps, 2
√
k − 1 serves as the lower

limit on |λ1|. Explicitly constructing an infinite family of k-regular Ramanujan graphs gives

us an infinite family of expanders. In fact, this family is “optimal” from a spectral point of

view.

Theorem 4. For the following values of k, there exist infinite families of k-regular Ramanu-

jan graphs:

(1) k = p+ 1, p an odd prime (1988 Lubotzky-Phillips-Sarnak [6] and 1988 Margulis [7])

(2) k = 2 + 1 = 3 (1992 Chiu [2]),

(3) k = q + 1, q a prime power(1994 Morgenstern [8]).

The main goal of the book is to describe the Ramanujan graphs of Lubotzky-Phillips-

Sarnak and Margulis. While the construction of these Ramanujan graphs is fairly simple,

proving they have the desired properties is not and relies heavily on group theory, modular

forms (analytic functions on the upper half-plane satisfying a certain kind of functional

equation and growth condition), and even the Riemann Hypothesis for curves over finite

fields.

The name “Ramanujan” comes from the constructions’ dependence on Ramanujan’s

conjecture (solved by Eichler in 1954) concerning coefficients of modular forms with weight 2,

a consequence of Weil’s proof of the Riemann hypothesis for curves over a finite field. Eichler

related the eigenvalues of Hecke operators Tm acting on spaces of cusp forms to the zeros of
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zeta functions of modular curves over the fields Fp. Hecke operators are relatives of Ar. For

m prime, varying the space on which the Hecke operators Tm act, we obtain a large family of

Ramanujan graphs. For Tm, m not prime, we are able to associate an “almost Ramanujan”

graph. The Ramanujan property is actually equivalent to the Riemann Hypothesis for these

zeta functions [10].

4. Independence number and chromatic number

Lemma 4. Let X be a finite, connected, k-regular graph on n vertices. Then

α(X) ≤ n

k
max {|λ1|, |λn−1|} .

Proof. If F ⊆ V , |F | = α(X), and Ax,y = 0 for x, y ∈ F , then consider the function f ∈ l2(V )

as before

f(x) =

|V − F |, if x ∈ F

−|F |, if x ∈ V − F.

Then
∑

x∈V f(x) = 0 so

‖f‖22 = |F ||V − F |2 + |V − F ||F |2 = |F ||V − F |(|V − F |+ |F |) = |F ||V − F ||V | ≤ α(X)n2.

For x ∈ F , let

(Af)(x) =
∑
y/∈F

Ax,yf(y) = −|F |
∑
y/∈F

Ax,y = −|F |
∑
y∈V

Ax,y = −kα(X).

‖Af‖22 ≥
∑
x∈F

(Af)(x)2 = α(X) · (−kα(X))2 = k2α(X)3.

Claim 1.

‖Af‖2 ≤ max {|λ1|, |λn−1|} ‖f‖2

Proof. See page 37 [4]. �

Using the lower bound for ‖Af‖2 and upper bound for ‖f‖2

kα(X)
3
2 ≤ max {|λ1|, |λn−1|} · n · α(X)

1
2 and

α(X) ≤ n

k
max {|λ1|, |λn−1|} .

�
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Corollary 1. Let X be a finite, connected, k-regular graph on n vertices, without loops.

Then

χ(X) ≥ k

max {|λ1|, |λn−1|}
.

If X is a non-bipartite Ramanujan graph, then

χ(X) ≥ k

2
√
k − 1

∼
√
k

2
.

Proof. This is clear as n ≤ α(X)χ(X). �

5. Projective linear groups

The Ramanujan graphs Xp,q are associated with finite groups PGL2(q) and PSL2(q).

For K a field, the general linear group GL2(K) is the group of invertible 2 by 2 matrices

with coefficients in K, and special linear group SL2(K) is the subgroup of matrices with

determinate 1. The projective linear group PGL2(q), aka the projective general linear group

is the quotient of GL2(K) by its center:

PGL2(K) = GL2(K)/Z(GL2(K)) = GL2(K)/K×.

Similarly, the projective special linear group PSL2(K) is the quotient of SL2(K) by its

center:

PSL2(K) = SL2(K)/Z(SL2(K)) = SL2(K)/
{
a ∈ K× : a2 = 1

}
.

If K = Fq, then we write GL2(q), SL2(q), PGL2(q), PSL2(q) for short. We are able to

embed both PGL2(K) and PSL2(K) into the group of permutations of the projective line

over K,

P 1(K) = K ∪ {∞} .

For every

M =

a b

c d

 ∈ GL2(K),

we may associate the Möbius transformation ϕM : P 1(K)→ P 1(K) defined by

ϕM(z) =
az + b

cz + d
.
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Set ϕM(−d
c
) =∞ and

ϕM(∞) =


a
c
, if c 6= 0

∞, if c = 0.

This is a group homomorphism

ϕ : GL2(K)→ SymP 1(K)

where ϕ(M) = ϕM .

6. Explicit Construction

Theorem 5 (Lagrange’s Four Square Theorem). Any natural number n can be represented

as the sum of four integer squares

n = a20 + a21 + a22 + a23.

Jacobi gives an exact formula for the number of representations of n.

Definition 6. Let G be a group and S be a finite, nonempty subset of G. The Cayley graph

G(G, S) is the graph with vertex set V = G, and edge set

E = {{x, y} : x, y ∈ G,∃s ∈ S s.t. y = x · s} .

If q ≡ 1 (mod 4), then -1 is a square in Fq. If p 6= q are primes with p, q ≡ 1 (mod 4)

and u ∈ Z such that u2 ≡ −1 (mod q), then by Jacobi’s Theorem there are 8(p+1) solutions

v = (a, b, c, d) with a2 + b2 + c2 + d2 = p. To each v, associate the matrix

V =

 a+ ub c+ ud

−c+ ud a− ub

 .

There are p + 1 solutions with a > 0 and odd and b, c, d even. We have S, the set of

p + 1 corresponding matrices in G = PGL2(q). The Cayley graphs G(G,S) are the desired

Ramanujan graphs. By varying q we are able to get an infinite family of (p + 1)-regular

Ramanujan graphs Xp,q.
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The original paper of Lubotzky, Phillips, and Sarnak gives two constructions of the

Ramanujan graphs Xp,q. One is based on quaternion algebra and the other describes Xp,q

as a Cayley graph of PGL2(q) or PSL2(q). The isomorphism of these two constructions

depends on the Hardy-Littlewood theory of quadratic forms. The first construction produces

connected graphs by construction, and the second provides information about the number

of vertices.

7. Open problems

• For pn, p prime, there have been infinite families of (pn + 1)-regular Ramanujan

graphs constructed. Extend the results of Morgenstern by explicitly constructing an

infinite family of k-regular Ramanujan graphs for all k ≥ 3. The smallest open value

is currently k = 7.

• The only known constructions of infinite families of Ramanujan graphs involve re-

sults from number theory or algebraic geometry. Find a combinatorial approach to

explicitly constructing an infinite families of Ramanujan graphs instead.
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