A proof of the Erdős-Faber-Lovász conjecture

Tom Kelly

Joint work with Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus

Tutte Colloquium University of Waterloo April 16, 2021

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

Classical graph theory results:

- matchings: Hall ('35), Tutte ('47), Edmonds ('65)
- edge-coloring: Vizing ('64): $\chi' \in \{\Delta, \Delta+1\}$, where $\Delta = \max$ degree

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

- 3-dimensional matching: one of Karp's original NP-complete problems
- block designs \cong perfect matchings in a highly symmetric hypergraph

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

- 3-dimensional matching: one of Karp's original NP-complete problems
- block designs \cong perfect matchings in a highly symmetric hypergraph

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

- 3-dimensional matching: one of Karp's original NP-complete problems
- block designs \cong perfect matchings in a highly symmetric hypergraph

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

- 3-dimensional matching: one of Karp's original NP-complete problems
- block designs \cong perfect matchings in a highly symmetric hypergraph

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

An innocent looking problem often gives no hint as to its true nature. It might be like a 'marshmallow', serving as a tasty tidbit supplying a few moments of fleeting enjoyment. Or it might be like an 'acorn', requiring deep and subtle new insights from which a mighty oak can develop. —Paul Erdős

One of Erdős' three favorite problems:

- formulated at a tea party in Boulder, CO.
- Erdős first offered \$50 for a solution, raised to \$500.

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Extremal examples:

Finite projective plane of order *k*: (k+1)-uniform intersecting linear hypergraph with $n = k^2 + k + 1$ vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with n-1 size-two edges and one size-(n-1) edge

Complete graph: $\binom{n}{2}$ size-two edges; if $\chi' < n$, then color classes are perfect matchings $\Rightarrow n$ is even

Erdős-Faber-Lovász conjecture (dual)

If \mathcal{H} is an *n*-uniform, *n*-edge, linear hypergraph, then the vertices of \mathcal{H} can be *n*-colored such that every edge contains a vertex of every color.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved
- proper edge-coloring \leftrightarrow vertex-coloring where no edge contains two vertices of same color

Erdős-Faber-Lovász conjecture (dual)

If \mathcal{H} is an *n*-uniform, *n*-edge, linear hypergraph, then the vertices of \mathcal{H} can be *n*-colored such that every edge contains a vertex of every color.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved
- proper edge-coloring \leftrightarrow vertex-coloring where no edge contains two vertices of same color

Erdős-Faber-Lovász conjecture (dual)

If \mathcal{H} is an *n*-uniform, *n*-edge, linear hypergraph, then the vertices of \mathcal{H} can be *n*-colored such that every edge contains a vertex of every color.

Equivalent "set theoretic" formulation:

If A_1, \ldots, A_n are sets of size *n* such that $|A_i \cap A_j| \le 1 \quad \forall \{i, j\} \in {\binom{[n]}{2}}$, then $\bigcup_{i=1}^n A_i$ can be colored with *n* colors so that all colors appear in each A_i .

Erdős-Faber-Lovász conjecture ("graphic")

If G is the union of n complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi(G) \leq n$.

Line graph:

- edges \rightarrow vertices: edges that share a vertex are adjacent
- \bullet proper edge-coloring \rightarrow proper vertex-coloring (no monochromatic edge)

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Direct approaches:

Trivial: $\chi'(\mathcal{H}) \leq 2n - 3$ (color greedily, in order of size) Chang-Lawler (1989): $\chi'(\mathcal{H}) \leq \lceil 3n/2 - 2 \rceil$

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Relaxed parameters:

de Bruijn-Erdős (1948): true for intersecting hypergraphs Seymour (1982): \exists a matching of size at least $|\mathcal{H}|/n$ Kahn-Seymour (1992): fractional chromatic index is at most n

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Probabilistic "nibble" approach: **Faber-Harris (2019):** EFL is true if $|e| \in [3, c\sqrt{n}] \quad \forall e \in \mathcal{H} \ (c \ll 1)$ **Kahn (1992):** $\chi'(\mathcal{H}) \leq (1 + o(1))n$

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Probabilistic "nibble" approach:

Faber-Harris (2019): EFL is true if $|e| \in [3, c\sqrt{n}] \quad \forall e \in \mathcal{H} \ (c \ll 1)$ Kahn (1992): $\chi'(\mathcal{H}) \leq (1 + o(1))n$

Both use "list coloring" generalization (proved by Kahn) of:

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes and maximum degree at most Δ , then $\chi'(\mathcal{H}) \leq \Delta + o(\Delta)$.

- implies EFL if $|e| \in [3, k] \ \forall e \in \mathcal{H}$ and $n \gg k$
- implies EFL "asymptotically" if $|e| \le k \ \forall e \in \mathcal{H}$ and $n \gg k$.

Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

I.e., we confirm the EFL conjecture for all but finitely many hypergraphs.

Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

I.e., we confirm the EFL conjecture for all but finitely many hypergraphs. We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

 $\forall \delta > 0$, $\exists \sigma > 0$ such that the following holds for n sufficiently large. If \mathcal{H} is an n-vertex linear hypergraph such that

• $\Delta(\mathcal{H}) \leq (1-\delta)n$ and

• at most
$$(1-\delta)n$$
 edges have size $(1\pm\delta)\sqrt{n}$,

then $\chi'(\mathcal{H}) \leq (1 - \sigma)n$.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

• useful to consider line graph

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

• useful to consider line graph

Phase 2: Color "small" edges (with the same colors, avoiding conflicts):

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

• useful to consider line graph

Phase 2: Color "small" edges (with the same colors, avoiding conflicts):

• "nibble" + "absorption" reduces to edge-coloring a graph

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

• useful to consider line graph

Phase 2: Color "small" edges (with the same colors, avoiding conflicts):

• "nibble" + "absorption" reduces to edge-coloring a graph

Upshot: Reduce to the "right" **graph** coloring problem in each case.

"Dream proof" for bounded edge-sizes

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

Proof (dream) of $\chi'(\mathcal{H}) \leq n$:

Using $k = \lfloor n/2 \rfloor$ colors, (partially) color \mathcal{H} such that

- all size-3 edges are colored and
- for each vertex, $\geq 1/2$ of the graph edges containing it are colored.

Uncolored edges comprise a **graph** of max degree < n - k. Finish with Vizing's theorem!

Low degree: more flexibility

High degree: more graph-like

(*)

"Dream proof" for bounded edge-sizes

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

Proof (dream) of $\chi'(\mathcal{H}) \leq n$:

Using $k = \lfloor n/2 \rfloor$ colors, (partially) color \mathcal{H} such that

- all size-3 edges are colored and
- for each vertex, $\geq 1/2$ of the graph edges containing it are colored.

Uncolored edges comprise a **graph** of max degree < n - k. Finish with Vizing's theorem!

Approach more amenable to probabilistic method: Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$. Aim: Using $k = (1/2 + \gamma)n$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- every color class covers U (perfect coverage of U).

 (\star)

Randomized "dream" proof strategy

Put each graph edge in a "reservoir" R independently with probability 1/2;

- with high probability $\Delta(\mathcal{H}\setminus R) \leq (1/2+o(1))n$, so
 - $\chi'(\mathcal{H}\setminus R) \leq (1/2+\gamma)n$ by the Pippenger-Spencer theorem.

Randomized "dream" proof strategy

Put each graph edge in a "reservoir" R independently with probability 1/2;

- with high probability $\Delta(\mathcal{H}\setminus R) \leq (1/2+o(1))n$, so
 - $\chi'(\mathcal{H} \setminus R) \leq (1/2 + \gamma)n$ by the Pippenger-Spencer theorem.

Nibble + absorption: using $k = (1/2 + \gamma)n$ colors, color some $\mathcal{H}' \supseteq \mathcal{H} \setminus R$ with **perfect coverage** of U:

• vertices in U have leftover degree $\leq (n-1) - k < n - k$;

• vertices not in U have leftover degree $\leq (1 - \varepsilon)n/2 + o(n) < n - k$. Thus $\mathcal{H} \setminus \mathcal{H}'$ is a graph and $\Delta(\mathcal{H} \setminus \mathcal{H}') < n - k$, so by Vizing's thm $\chi'(\mathcal{H}) \leq \chi'(\mathcal{H}') + \chi'(\mathcal{H} \setminus \mathcal{H}') \leq k + (n - k) = n$.

Randomized "dream" proof strategy

Put each graph edge in a "reservoir" R independently with probability 1/2;

- with high probability $\Delta(\mathcal{H}\setminus R) \leq (1/2+o(1))n$, so
 - $\chi'(\mathcal{H}\setminus R) \leq (1/2+\gamma)n$ by the Pippenger-Spencer theorem.

Nibble + absorption: using $k = (1/2 + \gamma)n$ colors, color some $\mathcal{H}' \supseteq \mathcal{H} \setminus R$ with **perfect coverage** of U:

• vertices in U have leftover degree $\leq (n-1) - k < n - k$;

• vertices not in U have leftover degree $\leq (1 - \varepsilon)n/2 + o(n) < n - k$. Thus $\mathcal{H} \setminus \mathcal{H}'$ is a graph and $\Delta(\mathcal{H} \setminus \mathcal{H}') < n - k$, so by Vizing's thm $\chi'(\mathcal{H}) \leq \chi'(\mathcal{H}') + \chi'(\mathcal{H} \setminus \mathcal{H}') \leq k + (n - k) = n$.

Perfect coverage of $U := \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ not possible (e.g. K_n for n odd); Instead, find coloring with **nearly perfect coverage**:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

Proof (sketch) of $\chi' \leq n+1$

Put each graph edge in a "reservoir" R independently with probability 1/2;

- with high probability $\Delta(\mathcal{H}\setminus R) \leq (1/2+o(1))n$, so
 - $\chi'(\mathcal{H}\setminus R) \leq (1/2+\gamma)n$ by the Pippenger-Spencer theorem.

Nibble + absorption: using $k = (1/2 + \gamma)n$ colors, color some $\mathcal{H}' \supseteq \mathcal{H} \setminus R$ with **nearly perfect coverage** of U:

• vertices in U have leftover degree $\leq (n-1) - (k-1) \leq n-k$;

• vertices not in U have leftover degree $\leq (1 - \varepsilon)n/2 + o(n) < n - k$. Thus $\mathcal{H} \setminus \mathcal{H}'$ is a graph and $\Delta(\mathcal{H} \setminus \mathcal{H}') \leq n - k$, so by Vizing's thm $\chi'(\mathcal{H}) \leq \chi'(\mathcal{H}') + \chi'(\mathcal{H} \setminus \mathcal{H}') \leq k + (n - k + 1) = n + 1$.

Perfect coverage of $U := \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ not possible (e.g. K_n for n odd); Instead, find coloring with **nearly perfect coverage**:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until $(1 - \gamma)n$ vertices are covered.

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until $(1 - \gamma)n$ vertices are covered.

•
$$U = \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until $(1 - \gamma)n$ vertices are covered.

9/12

•
$$U = \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until $(1 - \gamma)n$ vertices are covered.

•
$$U = \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until $(1 - \gamma)n$ vertices are covered.

9/12

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $H \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in R covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

If |U| is small, use "crossing" edges

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $H \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in R covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $H \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in R covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in R covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $H \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in *R* covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $\mathcal{H} \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in R covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

If |U| is small, use "crossing" edges, o/w use "internal" edges.

9/12

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $H \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in R covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2 Nibble: One-by-one, randomly select each color class in $H \setminus R$, in small

"bites", until $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Using Hall's theorem, find matching in R covering all but at most one vertex of U. \Rightarrow nearly perfect coverage

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$. **Trivial:** $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \le n + o(n)$ edges of size at least |e| intersect e.

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$. **Trivial:** $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \le n + o(n)$ edges of size at least |e| intersect e. I.e. $d^{\preceq}(e) \le n + o(n) \ \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$.

Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \leq n + o(n)$ edges of size at least |e| intersect e. I.e. $d^{\preceq}(e) \leq n + o(n) \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Reordering: Let *e* be the last edge with $d^{\leq}(e) \geq n$. If *f* intersects *e* and < n edges preceding *e* intersect *f*, then move *f* immediately after *e*.

If reordering "finishes', then $d^{\preceq}(e) < n \ \forall e \in \mathcal{H}$, so $\chi'(\mathcal{H}) \leq n$.

Reordering lemma (informal)

If reordering "gets stuck", then there is a highly structured $\mathcal{W}\subseteq\mathcal{H}.$

Proof when all edges are large

 $\begin{array}{l} \text{For } 0 < \delta \ll 1 \text{ and } \zeta < 1 \text{:} \\ \bullet \ \mathcal{W} \text{ covers } (1 - \delta) \binom{n}{2} \text{ pairs of vertices, and } |e| \sim (1 - \zeta) \sqrt{n} \ \forall e \in \mathcal{W}. \\ \bullet \ \text{If } e \in \mathcal{H}_2, \text{ then } d^{\preceq}(e) < n. \\ \bullet \ \text{If } e \in \mathcal{H}_1, \text{ then } |e| \geq (1 - \zeta) \sqrt{n} \end{array}$

Proof when all edges are large

For $0 < \delta \ll 1$ and $\zeta < 1$:			$(1/r\ll\delta)$
• $\mathcal W$ covers $(1-\delta){n \choose 2}$ pairs of vertices, and $ e \sim (1-\zeta)\sqrt{n} \; orall e \in \mathcal W.$			
• If $e \in \mathcal{H}_2$, then $d^{\preceq}(e) < n$.			
• If $e \in \mathcal{H}_1$, then $ e \geq (1-\zeta)\sqrt{n}$			
\mathcal{H}_1	$\rightarrow W$	\rightarrow	\mathcal{H}_2

Proof (sketch)

Find $|\mathcal{H}_1 \cup \mathcal{W}| - n$ pairs of disjoint edges in $\mathcal{H}_1 \cup \mathcal{W}$:

- assign edges of each pair the same color;
- assign remaining edges (of $\mathcal{H}_1 \cup \mathcal{W}$) distinct colors.

Proof when all edges are large

For $0 < \delta \ll 1$ and $\zeta < 1$: • \mathcal{W} covers $(1 - \delta)\binom{n}{2}$ pairs of vertices, and $|e| \sim (1 - \zeta)\sqrt{n} \ \forall e \in \mathcal{W}$. • If $e \in \mathcal{H}_2$, then $d^{\preceq}(e) < n$. • If $e \in \mathcal{H}_1$, then $|e| \ge (1 - \zeta)\sqrt{n}$ $\mathcal{H}_1 \longrightarrow \mathcal{W} \longrightarrow \mathcal{H}_2$

Case 2: $\zeta \ge \sqrt{\delta}$ ("non-extremal case")

Proof (sketch)

Line graph of \mathcal{W} has max degree $\leq (1 + o(1))n$ and is locally sparse, i.e. $\leq (1 - \zeta/2)\binom{n}{2}$ edges in the neighborhood of every vertex:

• randomly color \mathcal{W} ; thm of Molloy & Reed $\Rightarrow \chi'(\mathcal{W}) \leq (1 - 2^{-10}\zeta)n$; Apply "reordering" argument to edges preceding \mathcal{W} :

• If $e \in \mathcal{H}_1$, then $d^{\preceq}(e) \leq 2^{-10}\zeta n - 1 \Rightarrow \chi'(\mathcal{H}_1) \leq 2^{-10}\zeta n$.

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

List Berge-Füredi-Meyniel? common generalization of both: not known for graphs – also implies "weak" list coloring conjecture

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

List Berge-Füredi-Meyniel? common generalization of both: not known for graphs – also implies "weak" list coloring conjecture

Thanks for listening!