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Matchings and edge-coloring

matching: a set of disjoint edges

(proper) edge-coloring: no two edges of same color share a vertex

chromatic index: min # colors used in proper edge-coloring, denoted χ′

χ′(Petersen graph) = 4
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Matchings and edge-coloring

matching: a set of disjoint edges

(proper) edge-coloring: no two edges of same color share a vertex

chromatic index: min # colors used in proper edge-coloring, denoted χ′

χ′(Petersen graph) = 4

Classical graph theory results:

• matchings: Hall (‘35), Tutte (‘47), Edmonds (‘65)

• edge-coloring: Vizing (‘64): χ′ ∈ {∆,∆ + 1}, where ∆ = max degree
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Matchings and edge-coloring

matching: a set of disjoint edges

(proper) edge-coloring: no two edges of same color share a vertex

chromatic index: min # colors used in proper edge-coloring, denoted χ′

χ′(H) = 3

More complex for hypergraphs: e.g.

• 3-dimensional matching: one of Karp’s original NP-complete problems

• block designs ∼= perfect matchings in a highly symmetric hypergraph
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The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.
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The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

An innocent looking problem often gives no hint as to its true
nature. It might be like a ‘marshmallow’, serving as a tasty tidbit
supplying a few moments of fleeting enjoyment. Or it might be
like an ‘acorn’, requiring deep and subtle new insights from which
a mighty oak can develop. –Paul Erdős

One of Erdős’ three favorite problems:

• formulated at a tea party in Boulder, CO.

• Erdős first offered $50 for a solution, raised to $500.
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The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Extremal examples:

Finite projective plane of order k: (k+1)-uniform intersecting linear hy-
pergraph with n = k2 + k + 1 vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with n−
1 size-two edges and one size-(n − 1) edge

Complete graph:
(n

2

)
size-two edges; if χ′ < n, then color classes are

perfect matchings ⇒ n is even
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Dual versions

Erdős-Faber-Lovász conjecture (dual)

If H is an n-uniform, n-edge, linear hypergraph, then the vertices of H can
be n-colored such that every edge contains a vertex of every color.

Hypergraph duality:

• edges → vertices and vertices → edges

• linearity is preserved

• proper edge-coloring ↔ vertex-coloring where no edge contains two
vertices of same color
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Dual versions

Erdős-Faber-Lovász conjecture (dual)

If H is an n-uniform, n-edge, linear hypergraph, then the vertices of H can
be n-colored such that every edge contains a vertex of every color.

Equivalent “set theoretic” formulation:

If A1, . . . ,An are sets of size n such that |Ai ∩ Aj | ≤ 1 ∀{i , j} ∈
([n]

2

)
, then⋃n

i=1 Ai can be colored with n colors so that all colors appear in each Ai .
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Dual versions

Erdős-Faber-Lovász conjecture (“graphic”)

If G is the union of n complete graphs, each on at most n vertices, such
that every pair shares at most one vertex, then χ(G ) ≤ n.

Line graph:

• edges → vertices: edges that share a vertex are adjacent

• proper edge-coloring → proper vertex-coloring (no monochromatic
edge)
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Previous results

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Direct approaches:

Trivial: χ′(H) ≤ 2n − 3 (color greedily, in order of size)

Chang-Lawler (1989): χ′(H) ≤ d3n/2− 2e
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Previous results

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Relaxed parameters:

de Bruijn-Erdős (1948): true for intersecting hypergraphs

Seymour (1982): ∃ a matching of size at least |H|/n
Kahn-Seymour (1992): fractional chromatic index is at most n
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Previous results

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Probabilistic “nibble” approach:

Faber-Harris (2019): EFL is true if |e| ∈ [3, c
√
n] ∀e ∈ H (c � 1)

Kahn (1992): χ′(H) ≤ (1 + o(1))n

Both use “list coloring” generalization (proved by Kahn) of:

Pippenger-Spencer theorem (1989)

If H is a linear hypergraph with bounded edge-sizes and maximum degree
at most ∆, then χ′(H) ≤ ∆ + o(∆).

• implies EFL if |e| ∈ [3, k] ∀e ∈ H and n� k

• implies EFL “asymptotically” if |e| ≤ k ∀e ∈ H and n� k .
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Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic
index at most n.

I.e., we confirm the EFL conjecture for all but finitely many hypergraphs.

We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

∀δ > 0, ∃σ > 0 such that the following holds for n sufficiently large.
If H is an n-vertex linear hypergraph such that

• ∆(H) ≤ (1− δ)n and

• at most (1− δ)n edges have size (1± δ)
√
n,

then χ′(H) ≤ (1− σ)n.
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Overview of the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic
index at most n.

Phase 1: Color all “large” edges (size ≥ r where r � 1) with ≤ n colors:

• useful to consider line graph

Phase 2: Color “small” edges (with the same colors, avoiding conflicts):

• “nibble” + “absorption” reduces to edge-coloring a graph

Upshot: Reduce to the “right” graph coloring problem in each case.
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Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic
index at most n.

Phase 1: Color all “large” edges (size ≥ r where r � 1) with ≤ n colors:

• useful to consider line graph

Phase 2: Color “small” edges (with the same colors, avoiding conflicts):

• “nibble” + “absorption” reduces to edge-coloring a graph

Upshot: Reduce to the “right” graph coloring problem in each case.
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“Dream proof” for bounded edge-sizes

Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

Proof (dream) of χ′(H) ≤ n:

Using k = bn/2c colors, (partially) color H such that

• all size-3 edges are colored and

• for each vertex, ≥ 1/2 of the graph edges containing it are colored.

Uncolored edges comprise a graph of max degree < n − k . (?)
Finish with Vizing’s theorem!

Low degree: more flexibility High degree: more graph-like
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“Dream proof” for bounded edge-sizes

Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

Proof (dream) of χ′(H) ≤ n:

Using k = bn/2c colors, (partially) color H such that

• all size-3 edges are colored and

• for each vertex, ≥ 1/2 of the graph edges containing it are colored.

Uncolored edges comprise a graph of max degree < n − k . (?)
Finish with Vizing’s theorem!

Approach more amenable to probabilistic method:
Fix 0 < γ � ε� 1, and let U := {v ∈ V (H) : d(v) > (1− ε)n}.
Aim: Using k = (1/2 + γ)n colors, color H such that:

• all size-3 edges are colored;

• for each vertex, nearly half of graph edges containing it are colored;

• every color class covers U (perfect coverage of U).
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Simplified proof for χ′ ≤ n + 1

Randomized “dream” proof strategy

Put each graph edge in a “reservoir” R independently with probability 1/2;

• with high probability ∆(H \ R) ≤ (1/2 + o(1))n, so
χ′(H \ R) ≤ (1/2 + γ)n by the Pippenger-Spencer theorem.

Nibble + absorption: using k = (1/2 + γ)n colors, color some
H′ ⊇ H \ R with perfect coverage of U:

• vertices in U have leftover degree ≤ (n − 1)− n − k ;

• vertices not in U have leftover degree ≤ (1− ε)n/2 + o(n) < n − k .

Thus H \H′ is a graph and ∆(H \H′)n − k , so by Vizing’s thm
χ′(H) ≤ χ′(H′) + χ′(H \H′) ≤ k + (n − k) = n.

Perfect coverage of U := {v ∈ V (H) : d(v) > (1− ε)n} not possible
(e.g. Kn for n odd); Instead, find coloring with nearly perfect coverage:

• every color class covers all but one vertex of U and

• each vertex of U is covered by all but one color class.
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Simplified proof for χ′ ≤ n + 1

Proof (sketch) of χ′ ≤ n + 1

Put each graph edge in a “reservoir” R independently with probability 1/2;

• with high probability ∆(H \ R) ≤ (1/2 + o(1))n, so
χ′(H \ R) ≤ (1/2 + γ)n by the Pippenger-Spencer theorem.

Nibble + absorption: using k = (1/2 + γ)n colors, color some
H′ ⊇ H \ R with nearly perfect coverage of U:

• vertices in U have leftover degree ≤ (n − 1)− (k − 1) ≤ n − k ;

• vertices not in U have leftover degree ≤ (1− ε)n/2 + o(n) < n − k .

Thus H \H′ is a graph and ∆(H \H′) ≤ n − k , so by Vizing’s thm
χ′(H) ≤ χ′(H′) + χ′(H \H′) ≤ k + (n − k + 1) = n + 1.

Perfect coverage of U := {v ∈ V (H) : d(v) > (1− ε)n} not possible
(e.g. Kn for n odd); Instead, find coloring with nearly perfect coverage:

• every color class covers all but one vertex of U and

• each vertex of U is covered by all but one color class.
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Nibble + absorption
• U = {v ∈ V (H) : d(v) > (1− ε)n} (0 < γ � ε� 1)
• R = random “reservoir” – graph edges included with prob 1/2

Nibble: One-by-one, randomly select each color class in H \ R, in small
“bites”, until (1− γ)n vertices are covered.

Vertices uncovered ≈ independently with probability γ
Absorption: Using Hall’s theorem, find matching in R covering all but at

most one vertex of U. ⇒ nearly perfect coverage
If |U| is small, use “crossing” edges

×

×

U
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Vertices uncovered ≈ independently with probability γ
Absorption: Using Hall’s theorem, find matching in R covering all but at

most one vertex of U. ⇒ nearly perfect coverage
If |U| is small, use “crossing” edges, o/w use “internal” edges.

× ×

U
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Large edges: reordering

Let H be a linear hypergraph such that |e| ≥ r ∀e ∈ H, where r � 1.

Trivial: ∀e ∈ H, at most |e|(n− |e|)/(|e| − 1) ≤ n + o(n) edges of size at
least |e| intersect e.

I.e. d�(e) ≤ n + o(n) ∀e ∈ H if � is a
size-monotone decreasing ordering of the line graph.

Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

|e|

n − |e|
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size-monotone decreasing ordering of the line graph.

Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

−→−→ e

“forward degree”: d�(e)

If reordering “finishes’, then d�(e) < n ∀e ∈ H, so χ′(H) ≤ n.

Reordering lemma (informal)

If reordering “gets stuck”, then there is a highly structured W ⊆ H.
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Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

−→−→ ef

d� < n
If reordering “finishes’, then d�(e) < n ∀e ∈ H, so χ′(H) ≤ n.

Reordering lemma (informal)
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Proof when all edges are large

For 0 < δ � 1 and ζ < 1: (1/r � δ)

• W covers (1− δ)
(n

2

)
pairs of vertices, and |e| ∼ (1− ζ)

√
n ∀e ∈ W.

• If e ∈ H2, then d�(e) < n.

• If e ∈ H1, then |e| ≥ (1− ζ)
√
n

H1 W H2−→ −→

Tom Kelly A proof of the Erdős-Faber-Lovász conjecture 11 / 12



Proof when all edges are large

For 0 < δ � 1 and ζ < 1: (1/r � δ)

• W covers (1− δ)
(n

2

)
pairs of vertices, and |e| ∼ (1− ζ)

√
n ∀e ∈ W.

• If e ∈ H2, then d�(e) < n.

• If e ∈ H1, then |e| ≥ (1− ζ)
√
n

H1 W H2−→ −→

Case 1: ζ <
√
δ (W ≈ projective plane)

Proof (sketch)

Find |H1 ∪W| − n pairs of disjoint edges in H1 ∪W:

• assign edges of each pair the same color;

• assign remaining edges (of H1 ∪W) distinct colors.
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Proof when all edges are large

For 0 < δ � 1 and ζ < 1: (1/r � δ)

• W covers (1− δ)
(n

2

)
pairs of vertices, and |e| ∼ (1− ζ)

√
n ∀e ∈ W.

• If e ∈ H2, then d�(e) < n.

• If e ∈ H1, then |e| ≥ (1− ζ)
√
n

H1 W H2−→ −→

Case 2: ζ ≥
√
δ (“non-extremal case”)

Proof (sketch)

Line graph of W has max degree ≤ (1 + o(1))n and is locally sparse,
i.e. ≤ (1− ζ/2)

(n
2

)
edges in the neighborhood of every vertex:

• randomly color W; thm of Molloy & Reed ⇒ χ′(W) ≤ (1− 2−10ζ)n;

Apply “reordering” argument to edges preceding W:

• If e ∈ H1, then d�(e) ≤ 2−10ζn − 1⇒ χ′(H1) ≤ 2−10ζn.
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Open problems

Conjecture (Berge ‘89, Füredi ‘86, Meyniel (unpublished))

If H is a linear hypergraph, then χ′(H) ≤ maxv∈V (H) |
⋃

e3v e|.

• common generalization of Vizing’s theorem and EFL

maxv |
⋃

e3v e| = 5 ∆(“shadow”) + 1 = 5

List Berge-Füredi-Meyniel? common generalization of both:
not known for graphs – also implies “weak” list coloring conjecture

Thanks for listening!
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