Rainbow Hamilton paths in random 1-factorizations of K_n

Tom Kelly

Joint work with Stephen Gould, Daniela Kühn, and Deryk Osthus

LaBRI, Bordeaux Graphs & Optimization Seminar June 26, 2020

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Proper edge-coloring: no two edges of the same color share a vertex. **Rainbow:** every edge has a distinct color.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Proper edge-coloring: no two edges of the same color share a vertex. **Rainbow:** every edge has a distinct color.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Proper edge-coloring: no two edges of the same color share a vertex. **Rainbow:** every edge has a distinct color.

1-factorization: proper edge-coloring where every color is assigned to a perfect matching.

For 1-factorizations, Andersen's Conjecture says there is a rainbow path using all but one vertex and color.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Related rainbow problems:

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Related rainbow problems:

Euler (1782): For which *n* does there exist a 1-factorization of $K_{n,n}$ that can be decomposed into rainbow perfect matchings? (Ans: $n \notin \{2, 6\}$)

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Related rainbow problems:

Euler (1782): For which *n* does there exist a 1-factorization of $K_{n,n}$ that can be decomposed into rainbow perfect matchings? (Ans: $n \notin \{2, 6\}$) **Ryser-Brualdi-Stein conj:** Every 1-factorization of $K_{n,n}$ has a rainbow matching of size n - 1.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Related rainbow problems:

- **Euler (1782):** For which *n* does there exist a 1-factorization of $K_{n,n}$ that can be decomposed into rainbow perfect matchings? (Ans: $n \notin \{2, 6\}$)
- **Ryser-Brualdi-Stein conj:** Every 1-factorization of $K_{n,n}$ has a rainbow matching of size n 1.
- **Glock-Kühn-Montgomery-Osthus (2020):** For large enough n, every 1-factorization of K_n can be decomposed into isomorphic rainbow spanning trees.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Why proper?

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Why proper? "Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega(n^2)$.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Why proper?

- "Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega(n^2)$.
- **"Sub-Ramsey":** How much "global boundedness" (i.e., each color used bounded number of times) forces a rainbow copy?

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Why proper?

- "Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega(n^2)$.
- **"Sub-Ramsey":** How much "global boundedness" (i.e., each color used bounded number of times) forces a rainbow copy?
- **Conj (Hahn, 1980):** Every "globally n/2-bounded" edge-colored K_n has a rainbow Hamilton path.
- **Conj (Hahn-Thomassen, 1986):** Every globally (n/2-1)-bounded edge-colored K_n has a rainbow Hamilton path.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Why proper?

- "Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega(n^2)$.
- **"Sub-Ramsey":** How much "global boundedness" (i.e., each color used bounded number of times) forces a rainbow copy?
- **Conj (Hahn, 1980):** Every "globally n/2-bounded" edge-colored K_n has a rainbow Hamilton path.
- **Conj (Hahn-Thomassen, 1986):** Every globally (n/2-1)-bounded edge-colored K_n has a rainbow Hamilton path.
- **Pokrovskiy-Sudakov (2019):** Both are false: \exists globally n/2-bounded edge-colorings of K_n with no rainbow $(n o(\ln n))$ -length path.

Thus, Andersen's Conj does not generalize to "sub-Ramsey" setting.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

What's known:

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

What's known:

Trivial: There is a rainbow path of length n/2 - 1.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

What's known:

Trivial: There is a rainbow path of length n/2 - 1.

Gyárfás-Mhalla ('10): Every 1-factorization of K_n has a rainbow path of length 2n/3 + 1.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

What's known:

Trivial: There is a rainbow path of length n/2 - 1.

- **Gyárfás-Mhalla ('10):** Every 1-factorization of K_n has a rainbow path of length 2n/3 + 1.
- **Gyárfás-Ruszinkó-Sárközy-Schelp ('11):** Every properly edge-colored K_n has a rainbow path of length (4/7 o(1)n).

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

What's known:

Trivial: There is a rainbow path of length n/2 - 1.

Gyárfás-Mhalla ('10): Every 1-factorization of K_n has a rainbow path of length 2n/3 + 1.

Gyárfás-Ruszinkó-Sárközy-Schelp ('11): Every properly edge-colored K_n has a rainbow path of length (4/7 - o(1)n).

Gebauer-Mousset ('12) & Chen-Li ('15): ... (3/4 - o(1))n.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

What's known:

Trivial: There is a rainbow path of length n/2 - 1.

Gyárfás-Mhalla ('10): Every 1-factorization of K_n has a rainbow path of length 2n/3 + 1.

Gyárfás-Ruszinkó-Sárközy-Schelp ('11): Every properly edge-colored K_n has a rainbow path of length (4/7 - o(1)n).

Gebauer-Mousset ('12) & Chen-Li ('15): ... (3/4 - o(1))n. Alon-Pokrovskiy-Sudakov ('17): ... $n - O(n^{3/4})$.

Andersen's Conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

What's known:

Trivial: There is a rainbow path of length n/2 - 1.

Gyárfás-Mhalla ('10): Every 1-factorization of K_n has a rainbow path of length 2n/3 + 1.

Gyárfás-Ruszinkó-Sárközy-Schelp ('11): Every properly edge-colored K_n has a rainbow path of length (4/7 - o(1)n).

Gebauer-Mousset ('12) & Chen-Li ('15): ... (3/4 - o(1))n. Alon-Pokrovskiy-Sudakov ('17): ... $n - O(n^{3/4})$. Balogh-Molla ('17): ... $n - O(\log n\sqrt{n})$.

Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_n have a rainbow Hamilton path?

Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_n have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)

As $n \to \infty$, the proportion of 1-factorizations of K_n that have a rainbow Hamilton path tends to one.

Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_n have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)

As $n \to \infty$, the proportion of 1-factorizations of K_n that have a rainbow Hamilton path tends to one.

 I.e., Andersen's Conj holds in a strong sense for "almost all" 1-factorizations.

Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_n have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)

As $n \to \infty$, the proportion of 1-factorizations of K_n that have a rainbow Hamilton path tends to one.

- I.e., Andersen's Conj holds in a strong sense for "almost all" 1-factorizations.
- Equivalently, almost all 1-factorizations of K_n have a Hamilton cycle using all colors confirms strong version of a conjecture of Akbari, Etesami, Mahini, and Mahmoody for almost all 1-factorizations.

Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_n have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)

As $n \to \infty$, the proportion of 1-factorizations of K_n that have a rainbow Hamilton path tends to one.

- I.e., Andersen's Conj holds in a strong sense for "almost all" 1-factorizations.
- Equivalently, almost all 1-factorizations of K_n have a Hamilton cycle using all colors confirms strong version of a conjecture of Akbari, Etesami, Mahini, and Mahmoody for almost all 1-factorizations.

We also prove:

- Almost all 1-factorizations have a rainbow cycle using all the colors.
- For *n* odd, almost all *n*-edge colorings have a rainbow Hamilton cycle.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Latin squares correspond to 1-factorizations of $K_{n,n}$.
 - Transversals correspond to rainbow perfect matchings.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Latin squares correspond to 1-factorizations of $K_{n,n}$.
 - Transversals correspond to rainbow perfect matchings.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Latin squares correspond to 1-factorizations of $K_{n,n}$.
 - Transversals correspond to rainbow perfect matchings.

Ryser-Brualdi-Stein conj: Every LS has a partial transversal of size n-1.
Kwan (2016+): Almost all Latin squares have a full transversal – "partite analogue" of our result.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

3	1	4	2	5
1	4	2	5	3
4	2	5	3	1
2	5	3	1	4
5	3	1	4	2

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

3	1	4	2	5
1	4	2	5	3
4	2	5	3	1
2	5	3	1	4
5	3	1	4	2

Cor (GKKO): For *n* odd, almost all symmetric order *n* Latin squares have a "unicyclic" transversal.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

Cor (GKKO): For *n* odd, almost all symmetric order *n* Latin squares have a "unicyclic" transversal.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

Cor (GKKO): For *n* odd, almost all symmetric order *n* Latin squares have a "unicyclic" transversal.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

6	1	3	4	5	2
1	6	2	5	3	4
3	2	6	1	4	5
4	5	1	6	2	3
5	3	4	2	6	1
2	4	5	3	1	6

Cor (GKKO): For *n* even, almost all symmetric order *n* Latin squares with "all *n*'s" on the diagonal have a "nearly unicyclic" transversal.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

Cor (GKKO): For *n* even, almost all symmetric order *n* Latin squares with "all *n*'s" on the diagonal have a "nearly unicyclic" transversal.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

4	1	2	5	6	3
1	5	3	4	2	6
2	3	6	1	4	5
5	4	1	6	3	2
6	2	4	3	5	1
3	6	5	2	1	4

Our result does not apply for n even if more than one symbol appears on the diagonal.

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

4	1	2	5	6	3
1	5	3	4	2	6
2	3	6	1	4	5
5	4	1	6	3	2
6	2	4	3	5	1

Our result does not apply for n even if more than one symbol appears on the diagonal.

Latin squares and transversals

- Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
- **Transversal:** A collection of *n* cells, one from each row and column, containing one instance of each symbol.
 - Symmetric Latin squares correspond to *n*-edge-colorings of K_n + a loop at each vertex.
 - Transversals correspond to rainbow 2-factors (including loops).

Our result does not apply for n even if more than one symbol appears on the diagonal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.

Transversal: A collection of *n* cells, one from each row and column, containing one instance of each symbol.

The "big picture"	
Proper edge-coloring of K_n	Latin square
Andersen: rainbow path of length $(n-2)$?	Ryser-Brualdi-Stein: order $n-1$ "partial" transversal?
Balogh-Molla: $n - O(\log n\sqrt{n})$	Keevash-Pokrosvkiy-Sudakov- Yepreman: $n - O(\log n / \log \log n)$
G-K-K-O: Almost all 1-factorizations have rainbow Hamilton path	Kwan: Almost all Latin squares have transversal

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of K_n has a rainbow Ham path whp.

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of K_n has a rainbow Ham path whp.

Definition: An edge-colored graph *G* is robustly rainbow-Hamiltonian (with respect to "flexible" sets V_{flex} and C_{flex} of vtcs and colors) if

(*) for any pair of equal-sized subsets $X \subseteq V_{\text{flex}}$ and $Y \subseteq C_{\text{flex}}$ of size at most $|V_{\text{flex}}|/2$ and $|C_{\text{flex}}|/2$, the graph G - X contains a rainbow Hamilton path not containing a color in Y.

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of K_n has a rainbow Ham path whp.

Definition: An edge-colored graph *G* is robustly rainbow-Hamiltonian (with respect to "flexible" sets V_{flex} and C_{flex} of vtcs and colors) if

(*) for any pair of equal-sized subsets $X \subseteq V_{\text{flex}}$ and $Y \subseteq C_{\text{flex}}$ of size at most $|V_{\text{flex}}|/2$ and $|C_{\text{flex}}|/2$, the graph G - X contains a rainbow Hamilton path not containing a color in Y.

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for absorption.

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of K_n has a rainbow Ham path whp.

Definition: An edge-colored graph *G* is robustly rainbow-Hamiltonian (with respect to "flexible" sets V_{flex} and C_{flex} of vtcs and colors) if

(*) for any pair of equal-sized subsets $X \subseteq V_{\text{flex}}$ and $Y \subseteq C_{\text{flex}}$ of size at most $|V_{\text{flex}}|/2$ and $|C_{\text{flex}}|/2$, the graph G - X contains a rainbow Hamilton path not containing a color in Y.

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:

1: Find rainbow path P vertex- and color-disjoint from G with only o(n) vertices and colors not in G or P.

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of K_n has a rainbow Ham path whp.

Definition: An edge-colored graph *G* is robustly rainbow-Hamiltonian (with respect to "flexible" sets V_{flex} and C_{flex} of vtcs and colors) if

(*) for any pair of equal-sized subsets $X \subseteq V_{\text{flex}}$ and $Y \subseteq C_{\text{flex}}$ of size at most $|V_{\text{flex}}|/2$ and $|C_{\text{flex}}|/2$, the graph G - X contains a rainbow Hamilton path not containing a color in Y.

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:

- 1: Find rainbow path P vertex- and color-disjoint from G with only o(n) vertices and colors not in G or P.
- 2: Extend P to "cover" leftover vertices and colors using flexible sets.

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of K_n has a rainbow Ham path whp.

Definition: An edge-colored graph G is robustly rainbow-Hamiltonian (with respect to "flexible" sets V_{flex} and C_{flex} of vtcs and colors) if

(*) for any pair of equal-sized subsets $X \subseteq V_{\text{flex}}$ and $Y \subseteq C_{\text{flex}}$ of size at most $|V_{\text{flex}}|/2$ and $|C_{\text{flex}}|/2$, the graph G - X contains a rainbow Hamilton path not containing a color in Y.

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:

- 1: Find rainbow path P vertex- and color-disjoint from G with only o(n) vertices and colors not in G or P.
- 2: Extend P to "cover" leftover vertices and colors using flexible sets.
- 3: "Absorb" remaining vertices of G into P using (*).

Aim: Find robustly rainbow-Hamiltonian subgraph *G* in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for absorption.

Three proof stages:

Aim: Find robustly rainbow-Hamiltonian subgraph *G* in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for **absorption**.

Three proof stages:

Designing the absorber: Provide sufficient conditions for robust rainbow-Hamiltonicity – **distributive absorption**.

Aim: Find robustly rainbow-Hamiltonian subgraph *G* in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for absorption.

Three proof stages:

Designing the absorber: Provide sufficient conditions for robust rainbow-Hamiltonicity – **distributive absorption**.

Analyzing random 1-factorization: Prove nice properties of random 1-factorization using "switchings" – useful heuristic: each edge assigned given color independently with probability 1/n.

Aim: Find robustly rainbow-Hamiltonian subgraph *G* in a "random slice" of vtcs and colors with ηn -sized flexible sets ($\eta \ll 1$) to use for absorption.

Three proof stages:

Designing the absorber: Provide sufficient conditions for robust rainbow-Hamiltonicity – **distributive absorption**.

Analyzing random 1-factorization: Prove nice properties of random 1-factorization using "switchings" – useful heuristic: each edge assigned given color independently with probability 1/n.

Building the absorber: Use combination of "greedy" and "nibble" to find robustly rainbow-Hamiltonian subgraph in random slice.

Let v be a vertex and c be a color.

(v, c)-absorbing gadget: Disjoint union of a triangle containing v and
 4-cycle containing a c-edge – with colors "corresponding" as shown –
 "completed" by two rainbow paths.

Let v be a vertex and c be a color.

(v, c)-absorbing gadget: Disjoint union of a triangle containing v and
 4-cycle containing a c-edge – with colors "corresponding" as shown –
 "completed" by two rainbow paths.

Path absorbing v, c: Uses all vertices and colors.

Let v be a vertex and c be a color.

(v, c)-absorbing gadget: Disjoint union of a triangle containing v and
 4-cycle containing a c-edge – with colors "corresponding" as shown –
 "completed" by two rainbow paths.

Path absorbing v, c: Uses all vertices and colors.Path avoiding v, c: Uses all vertices and colors except v and c.

Let v be a vertex and c be a color.

(v, c)-absorbing gadget: Disjoint union of a triangle containing v and
 4-cycle containing a c-edge – with colors "corresponding" as shown –
 "completed" by two rainbow paths.

Path absorbing v, c: Uses all vertices and colors.

Path avoiding v, c: Uses all vertices and colors except v and c.

Convention: "Zigzags" form rainbow path forest "color-disjoint" from any drawn colors.

Use auxiliary bipartite graph H – where one part is vtcs and one part is colors – as a "template" to build absorber from gadgets.

H-absorber: $\forall e = vc \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Use auxiliary bipartite graph H – where one part is vtcs and one part is colors – as a "template" to build absorber from gadgets.

H-absorber: $\forall e = vc \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Use auxiliary bipartite graph H – where one part is vtcs and one part is colors – as a "template" to build absorber from gadgets.

H-absorber: $\forall e = vc \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Use auxiliary bipartite graph H – where one part is vtcs and one part is colors – as a "template" to build absorber from gadgets.

H-absorber: $\forall e = vc \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Use auxiliary bipartite graph H – where one part is vtcs and one part is colors – as a "template" to build absorber from gadgets.

H-absorber: $\forall e = vc \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Robustly matchable bipartite graphs

H bipartite with bipartition (A, B), where |A| = |B|.

Robustly matchable bipartite graph (RMBG): *H* is robustly matchable with respect to "flexible sets" $A_{\text{flex}} \subseteq A$ and $B_{\text{flex}} \subseteq B$ if

(*)' for any pair of equal-sized subsets $X \subseteq A_{\text{flex}}$ and $Y \subseteq B_{\text{flex}}$ of size at most $|A_{\text{flex}}|/2$ and $|B_{\text{flex}}|/2$, $H - (X \cup Y)$ has a perfect matching.

Distributive absorption: If *H* is robustly matchable, then an *H*-absorber is robustly rainbow-Hamiltonian wrt the same flexible sets.

Robustly matchable bipartite graphs

H bipartite with bipartition (A, B), where |A| = |B|.

Robustly matchable bipartite graph (RMBG): *H* is robustly matchable with respect to "flexible sets" $A_{\text{flex}} \subseteq A$ and $B_{\text{flex}} \subseteq B$ if

- (*)' for any pair of equal-sized subsets $X \subseteq A_{\text{flex}}$ and $Y \subseteq B_{\text{flex}}$ of size at most $|A_{\text{flex}}|/2$ and $|B_{\text{flex}}|/2$, $H (X \cup Y)$ has a perfect matching.
- **Distributive absorption:** If *H* is robustly matchable, then an *H*-absorber is robustly rainbow-Hamiltonian wrt the same flexible sets.
- **Lemma (Montgomery '18):** For m large, \exists RMBGs with 7m vertices, flexible sets of size m, and max degree at most 256.

Robustly matchable bipartite graphs

H bipartite with bipartition (A, B), where |A| = |B|.

Robustly matchable bipartite graph (RMBG): *H* is robustly matchable with respect to "flexible sets" $A_{\text{flex}} \subseteq A$ and $B_{\text{flex}} \subseteq B$ if

- (*)' for any pair of equal-sized subsets $X \subseteq A_{\text{flex}}$ and $Y \subseteq B_{\text{flex}}$ of size at most $|A_{\text{flex}}|/2$ and $|B_{\text{flex}}|/2$, $H (X \cup Y)$ has a perfect matching.
- **Distributive absorption:** If *H* is robustly matchable, then an *H*-absorber is robustly rainbow-Hamiltonian wrt the same flexible sets.
- **Lemma (Montgomery '18):** For m large, \exists RMBGs with 7m vertices, flexible sets of size m, and max degree at most 256.

Our absorber is an *H*-absorber where *H* is one of these RMBGs, with $m = \eta n$.

Randomly slice μn vtcs and colors ($\eta \ll \mu \ll 1$) – let H be RMBG.

Complete/connect gadgets to obtain *H*-absorber...

Complete/connect gadgets to obtain H-absorber... but too much leftover.

Instead, find rainbow matching w/ almost all unused vtcs and cols in slice.

Complete/connect to obtain H-absorber and simultaneously a "tail".

Find almost spanning rainbow path outside slice (leftover $\ell \ll m$).

Tom Kelly

"Cover" unused vtcs and colors with flexible vtcs and colors.

Absorb!

Tom Kelly

Rainbow Hamilton paths in a random 1-factorization of K_n