Rainbow Hamilton paths in random 1-factorizations of

$$
K_{n}
$$

Tom Kelly
Joint work with Stephen Gould, Daniela Kühn, and Deryk Osthus

LaBRI, Bordeaux

Graphs \& Optimization Seminar
June 26, 2020

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Proper edge-coloring: no two edges of the same color share a vertex.
Rainbow: every edge has a distinct color.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Proper edge-coloring: no two edges of the same color share a vertex.
Rainbow: every edge has a distinct color.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Proper edge-coloring: no two edges of the same color share a vertex.
Rainbow: every edge has a distinct color.

1-factorization: proper edge-coloring where every color is assigned to a perfect matching.

For 1-factorizations, Andersen's Conjecture says there is a rainbow path using all but one vertex and color.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Related rainbow problems:

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Related rainbow problems:
Euler (1782): For which n does there exist a 1-factorization of $K_{n, n}$ that can be decomposed into rainbow perfect matchings? (Ans: $n \notin\{2,6\}$)

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Related rainbow problems:
Euler (1782): For which n does there exist a 1-factorization of $K_{n, n}$ that can be decomposed into rainbow perfect matchings? (Ans: $n \notin\{2,6\}$)
Ryser-Brualdi-Stein conj: Every 1 -factorization of $K_{n, n}$ has a rainbow matching of size $n-1$.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Related rainbow problems:
Euler (1782): For which n does there exist a 1-factorization of $K_{n, n}$ that can be decomposed into rainbow perfect matchings? (Ans: $n \notin\{2,6\}$)
Ryser-Brualdi-Stein conj: Every 1-factorization of $K_{n, n}$ has a rainbow matching of size $n-1$.
Glock-Kühn-Montgomery-Osthus (2020): For large enough n, every 1factorization of K_{n} can be decomposed into isomorphic rainbow spanning trees.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Why proper?

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Why proper?
"Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega\left(n^{2}\right)$.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Why proper?
"Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega\left(n^{2}\right)$.
"Sub-Ramsey": How much "global boundedness" (i.e., each color used bounded number of times) forces a rainbow copy?

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Why proper?
"Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega\left(n^{2}\right)$.
"Sub-Ramsey": How much "global boundedness" (i.e., each color used bounded number of times) forces a rainbow copy?
Conj (Hahn, 1980): Every "globally $n / 2$-bounded" edge-colored K_{n} has a rainbow Hamilton path.
Conj (Hahn-Thomassen, 1986): Every globally ($n / 2-1$)-bounded edgecolored K_{n} has a rainbow Hamilton path.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
Why proper?
"Anti-Ramsey": How many colors force a rainbow copy? For Hamilton path, $\Omega\left(n^{2}\right)$.
"Sub-Ramsey": How much "global boundedness" (i.e., each color used bounded number of times) forces a rainbow copy?
Conj (Hahn, 1980): Every "globally $n / 2$-bounded" edge-colored K_{n} has a rainbow Hamilton path.
Conj (Hahn-Thomassen, 1986): Every globally ($n / 2-1$)-bounded edgecolored K_{n} has a rainbow Hamilton path.
Pokrovskiy-Sudakov (2019): Both are false: \exists globally $n / 2$-bounded edge-colorings of K_{n} with no rainbow ($n-o(\ln n)$)-length path.
Thus, Andersen's Conj does not generalize to "sub-Ramsey" setting.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
What's known:

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
What's known:
Trivial: There is a rainbow path of length $n / 2-1$.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
What's known:
Trivial: There is a rainbow path of length $n / 2-1$.
Gyárfás-Mhalla ('10): Every 1-factorization of K_{n} has a rainbow path of length $2 n / 3+1$.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
What's known:
Trivial: There is a rainbow path of length $n / 2-1$.
Gyárfás-Mhalla ('10): Every 1-factorization of K_{n} has a rainbow path of length $2 n / 3+1$.
Gyárfás-Ruszinkó-Sárközy-Schelp ('11): Every properly edge-colored K_{n} has a rainbow path of length $(4 / 7-o(1) n$.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
What's known:
Trivial: There is a rainbow path of length $n / 2-1$.
Gyárfás-Mhalla ('10): Every 1-factorization of K_{n} has a rainbow path of length $2 n / 3+1$.
Gyárfás-Ruszinkó-Sárközy-Schelp ('11): Every properly edge-colored K_{n} has a rainbow path of length $(4 / 7-o(1) n$.
Gebauer-Mousset (‘12) \& Chen-Li ('15): ... (3/4-o(1))n.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
What's known:
Trivial: There is a rainbow path of length $n / 2-1$.
Gyárfás-Mhalla ('10): Every 1-factorization of K_{n} has a rainbow path of length $2 n / 3+1$.
Gyárfás-Ruszinkó-Sárközy-Schelp ('11): Every properly edge-colored K_{n} has a rainbow path of length $(4 / 7-o(1) n$.
Gebauer-Mousset ('12) \& Chen-Li ('15): ... (3/4-o(1))n.
Alon-Pokrovskiy-Sudakov ('17): $\ldots n-O\left(n^{3 / 4}\right)$.

Andersen's Conjecture

Andersen's Conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.
What's known:
Trivial: There is a rainbow path of length $n / 2-1$.
Gyárfás-Mhalla ('10): Every 1-factorization of K_{n} has a rainbow path of length $2 n / 3+1$.
Gyárfás-Ruszinkó-Sárközy-Schelp ('11): Every properly edge-colored K_{n} has a rainbow path of length $(4 / 7-o(1) n$.
Gebauer-Mousset ('12) \& Chen-Li ('15): ... (3/4-o(1))n.
Alon-Pokrovskiy-Sudakov ('17): $\ldots n-O\left(n^{3 / 4}\right)$.
Balogh-Molla ('17): ... $n-O(\log n \sqrt{n})$.

Random 1-factorizations have a rainbow Hamilton path
Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_{n} have a rainbow Hamilton path?

Random 1-factorizations have a rainbow Hamilton path
Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_{n} have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)
As $n \rightarrow \infty$, the proportion of 1-factorizations of K_{n} that have a rainbow Hamilton path tends to one.

Random 1-factorizations have a rainbow Hamilton path
Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_{n} have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)
As $n \rightarrow \infty$, the proportion of 1-factorizations of K_{n} that have a rainbow Hamilton path tends to one.

- I.e., Andersen's Conj holds in a strong sense for "almost all" 1-factorizations.

Random 1-factorizations have a rainbow Hamilton path

Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_{n} have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)
As $n \rightarrow \infty$, the proportion of 1-factorizations of K_{n} that have a rainbow Hamilton path tends to one.

- I.e., Andersen's Conj holds in a strong sense for "almost all" 1-factorizations.
- Equivalently, almost all 1-factorizations of K_{n} have a Hamilton cycle using all colors - confirms strong version of a conjecture of Akbari, Etesami, Mahini, and Mahmoody for almost all 1-factorizations.

Random 1-factorizations have a rainbow Hamilton path

Ferber-Jain-Sudakov ('20): Do "almost all" 1-factorizations of K_{n} have a rainbow Hamilton path? We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)

As $n \rightarrow \infty$, the proportion of 1-factorizations of K_{n} that have a rainbow Hamilton path tends to one.

- I.e., Andersen's Conj holds in a strong sense for "almost all" 1-factorizations.
- Equivalently, almost all 1-factorizations of K_{n} have a Hamilton cycle using all colors - confirms strong version of a conjecture of Akbari, Etesami, Mahini, and Mahmoody for almost all 1-factorizations.

We also prove:

- Almost all 1-factorizations have a rainbow cycle using all the colors.
- For n odd, almost all n-edge colorings have a rainbow Hamilton cycle.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Latin squares correspond to 1-factorizations of $K_{n, n}$.
- Transversals correspond to rainbow perfect matchings.

1	2	3
3	1	2
2	3	1

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Latin squares correspond to 1-factorizations of $K_{n, n}$.
- Transversals correspond to rainbow perfect matchings.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Latin squares correspond to 1-factorizations of $K_{n, n}$.
- Transversals correspond to rainbow perfect matchings.

Ryser-Brualdi-Stein conj: Every LS has a partial transversal of size $n-1$. Kwan (2016+): Almost all Latin squares have a full transversal - "partite analogue" of our result.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

3	1	4	2	5
1	4	2	5	3
4	2	5	3	1
2	5	3	1	4
5	3	1	4	2

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

3	1	4	2	5
1	4	2	5	3
4	2	5	3	1
2	5	3	1	4
5	3	1	4	2

Cor (GKKO): For n odd, almost all symmetric order n Latin squares have a "unicyclic" transversal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

3	1	4	2	5
1	4	2	5	3
4	2	5	3	1
2	5	3	1	4
5	3	1	4	2

Cor (GKKO): For n odd, almost all symmetric order n Latin squares have a "unicyclic" transversal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

3	1	4	2	5
1	4	2	5	3
4	2	5	3	1
2	5	3	1	4
5	3	1	4	2

Cor (GKKO): For n odd, almost all symmetric order n Latin squares have a "unicyclic" transversal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

6	1	3	4	5	2
1	6	2	5	3	4
3	2	6	1	4	5
4	5	1	6	2	3
5	3	4	2	6	1
2	4	5	3	1	6

Cor (GKKO): For n even, almost all symmetric order n Latin squares with "all n 's" on the diagonal have a "nearly unicyclic" transversal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

6	1	3	4	5	2
1	6	2	5	3	4
3	2	6	1	4	5
4	5	1	6	2	3
5	3	4	2	6	1
2	4	5	3	1	6

Cor (GKKO): For n even, almost all symmetric order n Latin squares with "all n 's" on the diagonal have a "nearly unicyclic" transversal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

4	1	2	5	6	3
1	5	3	4	2	6
2	3	6	1	4	5
5	4	1	6	3	2
6	2	4	3	5	1
3	6	5	2	1	4

Our result does not apply for n even if more than one symbol appears on the diagonal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

4	1	2	5	6	3
1	5	3	4	2	6
2	3	6	1	4	5
5	4	1	6	3	2
6	2	4	3	5	1
3	6	5	2	1	4

Our result does not apply for n even if more than one symbol appears on the diagonal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

- Symmetric Latin squares correspond to n-edge-colorings of $K_{n}+$ a loop at each vertex.
- Transversals correspond to rainbow 2-factors (including loops).

4	1	2	5	6	3
1	5	3	4	2	6
2	3	6	1	4	5
5	4	1	6	3	2
6	2	4	3	5	1
3	6	5	2	1	4

Our result does not apply for n even if more than one symbol appears on the diagonal.

Latin squares and transversals

Latin square: An $n \times n$ array of n symbols such that each row and each column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column, containing one instance of each symbol.

The "big picture"

Proper edge-coloring of K_{n}	Latin square
Andersen: rainbow path of length $(n-2) ?$	Ryser-Brualdi-Stein: order $n-1$ "partial" transversal?
Balogh-Molla: $n-O(\log n \sqrt{n})$	Keevash-Pokrosvkiy-Sudakov- Yepreman: $n-O(\log n / \log \log n)$
G-K-K-O: Almost all 1-factorizations have rainbow Hamilton path	Kwan: Almost all Latin squares have transversal

Proof strategy

Theorem (Gould, K., Kühn, Osthus, 2020++)
A (uniform) random 1-factorization of K_{n} has a rainbow Ham path whp.

Proof strategy

Theorem (Gould, K., Kühn, Osthus, 2020++)
A (uniform) random 1-factorization of K_{n} has a rainbow Ham path whp.
Definition: An edge-colored graph G is robustly rainbow-Hamiltonian (with respect to "flexible" sets $V_{\text {flex }}$ and $C_{\text {flex }}$ of vtcs and colors) if (\star) for any pair of equal-sized subsets $X \subseteq V_{\text {flex }}$ and $Y \subseteq C_{\text {flex }}$ of size at most $\left|V_{\text {flex }}\right| / 2$ and $\left|C_{\text {flex }}\right| / 2$, the graph $G-X$ contains a rainbow Hamilton path not containing a color in Y.

Proof strategy

Theorem (Gould, K., Kühn, Osthus, 2020++)
A (uniform) random 1-factorization of K_{n} has a rainbow Ham path whp.
Definition: An edge-colored graph G is robustly rainbow-Hamiltonian (with respect to "flexible" sets $V_{\text {flex }}$ and $C_{\text {flex }}$ of vtcs and colors) if (\star) for any pair of equal-sized subsets $X \subseteq V_{\text {flex }}$ and $Y \subseteq C_{\text {flex }}$ of size at most $\left|V_{\text {flex }}\right| / 2$ and $\left|C_{\text {flex }}\right| / 2$, the graph $G-X$ contains a rainbow Hamilton path not containing a color in Y.
Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Proof strategy

Theorem (Gould, K., Kühn, Osthus, 2020++)
A (uniform) random 1-factorization of K_{n} has a rainbow Ham path whp.
Definition: An edge-colored graph G is robustly rainbow-Hamiltonian (with respect to "flexible" sets $V_{\text {flex }}$ and $C_{\text {flex }}$ of vtcs and colors) if (\star) for any pair of equal-sized subsets $X \subseteq V_{\text {flex }}$ and $Y \subseteq C_{\text {flex }}$ of size at most $\left|V_{\text {flex }}\right| / 2$ and $\left|C_{\text {flex }}\right| / 2$, the graph $G-X$ contains a rainbow Hamilton path not containing a color in Y.
Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:
1: Find rainbow path P vertex- and color-disjoint from G with only $o(n)$ vertices and colors not in G or P.

Proof strategy

Theorem (Gould, K., Kühn, Osthus, 2020++)
A (uniform) random 1-factorization of K_{n} has a rainbow Ham path whp.
Definition: An edge-colored graph G is robustly rainbow-Hamiltonian (with respect to "flexible" sets $V_{\text {flex }}$ and $C_{\text {flex }}$ of vtcs and colors) if (\star) for any pair of equal-sized subsets $X \subseteq V_{\text {flex }}$ and $Y \subseteq C_{\text {flex }}$ of size at most $\left|V_{\text {flex }}\right| / 2$ and $\left|C_{\text {flex }}\right| / 2$, the graph $G-X$ contains a rainbow Hamilton path not containing a color in Y.
Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:
1: Find rainbow path P vertex- and color-disjoint from G with only $o(n)$ vertices and colors not in G or P.
2: Extend P to "cover" leftover vertices and colors using flexible sets.

Proof strategy

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of K_{n} has a rainbow Ham path whp.
Definition: An edge-colored graph G is robustly rainbow-Hamiltonian (with respect to "flexible" sets $V_{\text {flex }}$ and $C_{\text {flex }}$ of vtcs and colors) if (\star) for any pair of equal-sized subsets $X \subseteq V_{\text {flex }}$ and $Y \subseteq C_{\text {flex }}$ of size at most $\left|V_{\text {flex }}\right| / 2$ and $\left|C_{\text {flex }}\right| / 2$, the graph $G-X$ contains a rainbow Hamilton path not containing a color in Y.
Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:
1: Find rainbow path P vertex- and color-disjoint from G with only $o(n)$ vertices and colors not in G or P.
2: Extend P to "cover" leftover vertices and colors using flexible sets.
3: "Absorb" remaining vertices of G into P using (\star).

The robustly rainbow-Hamilton subgraph

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Three proof stages:

The robustly rainbow-Hamilton subgraph

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Three proof stages:
Designing the absorber: Provide sufficient conditions for robust rainbow-Hamiltonicity - distributive absorption.

The robustly rainbow-Hamilton subgraph

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Three proof stages:
Designing the absorber: Provide sufficient conditions for robust rainbow-Hamiltonicity - distributive absorption.
Analyzing random 1-factorization: Prove nice properties of random 1-factorization using "switchings" - useful heuristic: each edge assigned given color independently with probability $1 / n$.

The robustly rainbow-Hamilton subgraph

Aim: Find robustly rainbow-Hamiltonian subgraph G in a "random slice" of vtcs and colors with ηn-sized flexible sets $(\eta \ll 1)$ to use for absorption.

Three proof stages:
Designing the absorber: Provide sufficient conditions for robust rainbow-Hamiltonicity - distributive absorption.

Analyzing random 1-factorization: Prove nice properties of random 1-factorization using "switchings" - useful heuristic: each edge assigned given color independently with probability $1 / n$.
Building the absorber: Use combination of "greedy" and "nibble" to find robustly rainbow-Hamiltonian subgraph in random slice.

Absorbing gadgets

Let v be a vertex and c be a color.
(v, c)-absorbing gadget: Disjoint union of a triangle containing v and 4-cycle containing a c-edge - with colors "corresponding" as shown "completed" by two rainbow paths.

Absorbing gadgets

Let v be a vertex and c be a color.
(v, c)-absorbing gadget: Disjoint union of a triangle containing v and 4-cycle containing a c-edge - with colors "corresponding" as shown "completed" by two rainbow paths.

Path absorbing v, c : Uses all vertices and colors.

Absorbing gadgets

Let v be a vertex and c be a color.
(v, c)-absorbing gadget: Disjoint union of a triangle containing v and 4-cycle containing a c-edge - with colors "corresponding" as shown "completed" by two rainbow paths.

Path absorbing v, c : Uses all vertices and colors.
Path avoiding v, c : Uses all vertices and colors except v and c.

Absorbing gadgets

Let v be a vertex and c be a color.
(v, c)-absorbing gadget: Disjoint union of a triangle containing v and 4-cycle containing a c-edge - with colors "corresponding" as shown "completed" by two rainbow paths.

Path absorbing v, c : Uses all vertices and colors.
Path avoiding v, c : Uses all vertices and colors except v and c.
Convention: "Zigzags" form rainbow path forest "color-disjoint" from any drawn colors.

H -absorbers

Use auxiliary bipartite graph H - where one part is vtcs and one part is colors - as a "template" to build absorber from gadgets.
H-absorber: $\forall e=v c \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

H -absorbers

Use auxiliary bipartite graph H - where one part is vtcs and one part is colors - as a "template" to build absorber from gadgets.
H-absorber: $\forall e=v c \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Key fact: Matchings in H corresponds to rainbow paths in H-absorber!

H -absorbers

Use auxiliary bipartite graph H - where one part is vtcs and one part is colors - as a "template" to build absorber from gadgets.
H-absorber: $\forall e=v c \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Key fact: Matchings in H corresponds to rainbow paths in H-absorber!

H -absorbers

Use auxiliary bipartite graph H - where one part is vtcs and one part is colors - as a "template" to build absorber from gadgets.
H-absorber: $\forall e=v c \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Key fact: Matchings in H corresponds to rainbow paths in H-absorber!

H -absorbers

Use auxiliary bipartite graph H - where one part is vtcs and one part is colors - as a "template" to build absorber from gadgets.
H-absorber: $\forall e=v c \in E(H)$, there is a (v, c)-absorbing gadget s.t.:

- gadgets are vertex and color disjoint (except at v and c) and
- gadgets are connected in "path-like" way (by zigzags).

Template

Key fact: Matchings in H corresponds to rainbow paths in H-absorber!

Robustly matchable bipartite graphs

H bipartite with bipartition (A, B), where $|A|=|B|$.
Robustly matchable bipartite graph (RMBG): H is robustly matchable with respect to "flexible sets" $A_{\text {flex }} \subseteq A$ and $B_{\text {flex }} \subseteq B$ if
(\star) ' for any pair of equal-sized subsets $X \subseteq A_{\text {flex }}$ and $Y \subseteq B_{\text {flex }}$ of size at most $\left|A_{\text {flex }}\right| / 2$ and $\left|B_{\text {flex }}\right| / 2, H-(X \cup Y)$ has a perfect matching.

Distributive absorption: If H is robustly matchable, then an H-absorber is robustly rainbow-Hamiltonian wrt the same flexible sets.

Robustly matchable bipartite graphs

H bipartite with bipartition (A, B), where $|A|=|B|$.
Robustly matchable bipartite graph (RMBG): H is robustly matchable with respect to "flexible sets" $A_{\text {flex }} \subseteq A$ and $B_{\text {flex }} \subseteq B$ if
(\star) ' for any pair of equal-sized subsets $X \subseteq A_{\text {flex }}$ and $Y \subseteq B_{\text {flex }}$ of size at most $\left|A_{\text {flex }}\right| / 2$ and $\left|B_{\text {flex }}\right| / 2, H-(X \cup Y)$ has a perfect matching.

Distributive absorption: If H is robustly matchable, then an H-absorber is robustly rainbow-Hamiltonian wrt the same flexible sets.
Lemma (Montgomery '18): For m large, \exists RMBGs with $7 m$ vertices, flexible sets of size m, and max degree at most 256.

Robustly matchable bipartite graphs

H bipartite with bipartition (A, B), where $|A|=|B|$.
Robustly matchable bipartite graph (RMBG): H is robustly matchable with respect to "flexible sets" $A_{\text {flex }} \subseteq A$ and $B_{\text {flex }} \subseteq B$ if
(\star) ' for any pair of equal-sized subsets $X \subseteq A_{\text {flex }}$ and $Y \subseteq B_{\text {flex }}$ of size at most $\left|A_{\text {flex }}\right| / 2$ and $\left|B_{\text {flex }}\right| / 2, H-(X \cup Y)$ has a perfect matching.

Distributive absorption: If H is robustly matchable, then an H-absorber is robustly rainbow-Hamiltonian wrt the same flexible sets.
Lemma (Montgomery '18): For m large, \exists RMBGs with $7 m$ vertices, flexible sets of size m, and max degree at most 256.

Our absorber is an H-absorber where H is one of these RMBGs, with $m=\eta n$.

Proof (overview) by picture

Randomly slice μn vtcs and colors $(\eta \ll \mu \ll 1)$ - let H be RMBG.

Proof (overview) by picture

Find (v, c)-absorbing gadgets one by one, using H as template.

Proof (overview) by picture

Find (v, c)-absorbing gadgets one by one, using H as template.

Proof (overview) by picture

Find (v, c)-absorbing gadgets one by one, using H as template.

Proof (overview) by picture

Find (v, c)-absorbing gadgets one by one, using H as template.

Proof (overview) by picture

Complete/connect gadgets to obtain H -absorber...

Proof (overview) by picture

Complete/connect gadgets to obtain H-absorber... but too much leftover.

Proof (overview) by picture

Instead, find rainbow matching w/ almost all unused vtcs and cols in slice.

Proof (overview) by picture

Complete/connect to obtain H -absorber and simultaneously a "tail".

Proof (overview) by picture

Find almost spanning rainbow path outside slice (leftover $\ell \ll m$).

Proof (overview) by picture

"Cover" unused vtcs and colors with flexible vtcs and colors.

Proof (overview) by picture

Absorb!

Thanks for listening!

