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Andersen’s Conjecture

Andersen’s Conjecture (1989)

Every properly edge-colored Kn has a rainbow path of length n − 2.

Proper edge-coloring: no two edges of the same color share a vertex.

Rainbow: every edge has a distinct color.

1-factorization: proper edge-coloring where every color is assigned to a
perfect matching.

For 1-factorizations, Andersen’s Conjecture says there is a rainbow path
using all but one vertex and color.
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Andersen’s Conjecture

Andersen’s Conjecture (1989)

Every properly edge-colored Kn has a rainbow path of length n − 2.

Related rainbow problems:

Euler (1782): For which n does there exist a 1-factorization of Kn,n that
can be decomposed into rainbow perfect matchings? (Ans: n /∈ {2, 6})

Ryser-Brualdi-Stein conj: Every 1-factorization of Kn,n has a rainbow
matching of size n − 1.

Glock-Kühn-Montgomery-Osthus (2020): For large enough n, every 1-
factorization of Kn can be decomposed into isomorphic rainbow span-
ning trees.
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Andersen’s Conjecture

Andersen’s Conjecture (1989)

Every properly edge-colored Kn has a rainbow path of length n − 2.

Why proper?

“Anti-Ramsey”: How many colors force a rainbow copy? For Hamilton
path, Ω(n2).

“Sub-Ramsey”: How much “global boundedness” (i.e., each color used
bounded number of times) forces a rainbow copy?

Conj (Hahn, 1980): Every “globally n/2-bounded” edge-colored Kn has a
rainbow Hamilton path.

Conj (Hahn-Thomassen, 1986): Every globally (n/2−1)-bounded edge-
colored Kn has a rainbow Hamilton path.

Pokrovskiy-Sudakov (2019): Both are false: ∃ globally n/2-bounded
edge-colorings of Kn with no rainbow (n − o(ln n))-length path.

Thus, Andersen’s Conj does not generalize to “sub-Ramsey” setting.
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Andersen’s Conjecture

Andersen’s Conjecture (1989)

Every properly edge-colored Kn has a rainbow path of length n − 2.

What’s known:

Trivial: There is a rainbow path of length n/2− 1.

Gyárfás-Mhalla (‘10): Every 1-factorization of Kn has a rainbow path of
length 2n/3 + 1.

Gyárfás-Ruszinkó-Sárközy-Schelp (‘11): Every properly edge-colored Kn

has a rainbow path of length (4/7− o(1)n.

Gebauer-Mousset (‘12) & Chen-Li (‘15): ... (3/4− o(1))n.

Alon-Pokrovskiy-Sudakov (‘17): ... n − O(n3/4).

Balogh-Molla (‘17): ... n − O(log n
√
n).
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Random 1-factorizations have a rainbow Hamilton path

Ferber-Jain-Sudakov (‘20): Do “almost all” 1-factorizations of Kn have
a rainbow Hamilton path?

We prove: Yes.

Theorem (Gould, K., Kühn, Osthus, 2020++)

As n→∞, the proportion of 1-factorizations of Kn that have a rainbow
Hamilton path tends to one.

• I.e., Andersen’s Conj holds in a strong sense for “almost all”
1-factorizations.

• Equivalently, almost all 1-factorizations of Kn have a Hamilton cycle
using all colors – confirms strong version of a conjecture of Akbari,
Etesami, Mahini, and Mahmoody for almost all 1-factorizations.

We also prove:

• Almost all 1-factorizations have a rainbow cycle using all the colors.
• For n odd, almost all n-edge colorings have a rainbow Hamilton cycle.
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Latin squares and transversals
Latin square: An n × n array of n symbols such that each row and each

column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column,

containing one instance of each symbol.

• Latin squares correspond to 1-factorizations of Kn,n.

• Transversals correspond to rainbow perfect matchings.

1

2

3

3

1

2

2

3

1

Ryser-Brualdi-Stein conj: Every LS has a partial transversal of size n−1.

Kwan (2016+): Almost all Latin squares have a full transversal – “partite
analogue” of our result.
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column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column,

containing one instance of each symbol.

• Symmetric Latin squares correspond to n-edge-colorings of Kn + a loop
at each vertex.

• Transversals correspond to rainbow 2-factors (including loops).

3 1 4 2 5

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2
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Cor (GKKO): For n odd, almost all symmetric order n Latin squares have
a “unicyclic” transversal.
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Latin squares and transversals
Latin square: An n × n array of n symbols such that each row and each

column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column,

containing one instance of each symbol.

• Symmetric Latin squares correspond to n-edge-colorings of Kn + a loop
at each vertex.

• Transversals correspond to rainbow 2-factors (including loops).

6 1 3 4 5 2

1 6 2 5 3 4

3 2 6 1 4 5

4 5 1 6 2 3

5 3 4 2 6 1

2 4 5 3 1 6

Cor (GKKO): For n even, almost all symmetric order n Latin squares with
“all n’s” on the diagonal have a “nearly unicyclic” transversal.
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Our result does not apply for n even if more than one symbol appears on
the diagonal.
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Latin squares and transversals
Latin square: An n × n array of n symbols such that each row and each

column contains one instance of each symbol.
Transversal: A collection of n cells, one from each row and column,

containing one instance of each symbol.

The “big picture”

Proper edge-coloring of Kn Latin square

Andersen: rainbow path of
length (n − 2)?

Ryser-Brualdi-Stein: order
n − 1 “partial” transversal?

Balogh-Molla: n − O(log n
√
n)

Keevash-Pokrosvkiy-Sudakov-
Yepreman:

n − O(log n/ log log n)

G-K-K-O: Almost all
1-factorizations have rainbow

Hamilton path

Kwan: Almost all Latin squares
have transversal
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Proof strategy

Theorem (Gould, K., Kühn, Osthus, 2020++)

A (uniform) random 1-factorization of Kn has a rainbow Ham path whp.

Definition: An edge-colored graph G is robustly rainbow-Hamiltonian
(with respect to “flexible” sets Vflex and Cflex of vtcs and colors) if

(?) for any pair of equal-sized subsets X ⊆ Vflex and Y ⊆ Cflex of size at
most |Vflex|/2 and |Cflex|/2, the graph G − X contains a rainbow
Hamilton path not containing a color in Y .

Aim: Find robustly rainbow-Hamiltonian subgraph G in a “random slice”
of vtcs and colors with ηn-sized flexible sets (η � 1) to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:

1: Find rainbow path P vertex- and color-disjoint from G with only o(n)
vertices and colors not in G or P.

2: Extend P to “cover” leftover vertices and colors using flexible sets.

3: “Absorb” remaining vertices of G into P using (?).
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A (uniform) random 1-factorization of Kn has a rainbow Ham path whp.

Definition: An edge-colored graph G is robustly rainbow-Hamiltonian
(with respect to “flexible” sets Vflex and Cflex of vtcs and colors) if

(?) for any pair of equal-sized subsets X ⊆ Vflex and Y ⊆ Cflex of size at
most |Vflex|/2 and |Cflex|/2, the graph G − X contains a rainbow
Hamilton path not containing a color in Y .

Aim: Find robustly rainbow-Hamiltonian subgraph G in a “random slice”
of vtcs and colors with ηn-sized flexible sets (η � 1) to use for absorption.

Use G to find rainbow Hamilton path in 3 steps:

1: Find rainbow path P vertex- and color-disjoint from G with only o(n)
vertices and colors not in G or P.

2: Extend P to “cover” leftover vertices and colors using flexible sets.

3: “Absorb” remaining vertices of G into P using (?).

Tom Kelly Rainbow Hamilton paths in a random 1-factorization of Kn



The robustly rainbow-Hamilton subgraph

Aim: Find robustly rainbow-Hamiltonian subgraph G in a “random slice”
of vtcs and colors with ηn-sized flexible sets (η � 1) to use for absorption.

Three proof stages:

Designing the absorber: Provide sufficient conditions for robust
rainbow-Hamiltonicity – distributive absorption.

Analyzing random 1-factorization: Prove nice properties of random
1-factorization using “switchings” – useful heuristic: each edge
assigned given color independently with probability 1/n.

Building the absorber: Use combination of “greedy” and “nibble” to
find robustly rainbow-Hamiltonian subgraph in random slice.
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Absorbing gadgets

Let v be a vertex and c be a color.

(v , c)-absorbing gadget: Disjoint union of a triangle containing v and
4-cycle containing a c-edge – with colors “corresponding” as shown –
“completed” by two rainbow paths.

v
1

3

2

3

1

2

c
4

5

6

7

Path absorbing v , c: Uses all vertices and colors.

Path avoiding v , c: Uses all vertices and colors except v and c .

Convention: “Zigzags” form rainbow path forest “color-disjoint” from any
drawn colors.
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H-absorbers
Use auxiliary bipartite graph H – where one part is vtcs and one part is
colors – as a “template” to build absorber from gadgets.

H-absorber: ∀ e = vc ∈ E (H), there is a (v , c)-absorbing gadget s.t.:

• gadgets are vertex and color disjoint (except at v and c) and

• gadgets are connected in “path-like” way (by zigzags).

Template
v1

v2

c1

c2

H ∼= K2,2

v1 1

3

2

3

1

2

c1
1′

3′

2′
3′

1′

2′
c2

v2 1′′

3′′

2′′
3′′

1′′

2′′
c1

1′′′

3′′′

2′′′
3′′′

1′′′

2′′′
c2

Key fact: Matchings in H corresponds to rainbow paths in H-absorber!
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Robustly matchable bipartite graphs

H bipartite with bipartition (A,B), where |A| = |B|.
Robustly matchable bipartite graph (RMBG): H is robustly matchable
with respect to “flexible sets” Aflex ⊆ A and Bflex ⊆ B if

(?)’ for any pair of equal-sized subsets X ⊆ Aflex and Y ⊆ Bflex of size at
most |Aflex|/2 and |Bflex|/2, H − (X ∪ Y ) has a perfect matching.

Distributive absorption: If H is robustly matchable, then an H-absorber
is robustly rainbow-Hamiltonian wrt the same flexible sets.

Lemma (Montgomery ‘18): For m large, ∃ RMBGs with 7m vertices,
flexible sets of size m, and max degree at most 256.

Our absorber is an H-absorber where H is one of these RMBGs, with
m = ηn.
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...

1 2 · · · 256 “Tail”

u1 u2 u`· · ·

Randomly slice µn vtcs and colors (η � µ� 1) – let H be RMBG.
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...
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Complete/connect gadgets to obtain H-absorber...
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...
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Complete/connect gadgets to obtain H-absorber... but too much leftover.
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...

1 2 · · · 256 “Tail”

u1 u2 u`· · ·

Instead, find rainbow matching w/ almost all unused vtcs and cols in slice.
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...

1 2 · · · 256 “Tail”

u1 u2 u`· · ·

Complete/connect to obtain H-absorber and simultaneously a “tail”.
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...

1 2 · · · 256 “Tail”

u1 u2 u`· · ·

Find almost spanning rainbow path outside slice (leftover `� m).
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...

1 2 · · · 256 “Tail”

u1 u2 u`· · ·

“Cover” unused vtcs and colors with flexible vtcs and colors.
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...

1 2 · · · 256 “Tail”

u1 u2 u`· · ·

Absorb!
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Proof (overview) by picture

v1 · · ·

v7m · · ·

... ...

1 2 · · · 256 “Tail”

u1 u2 u`· · ·

Thanks for listening!
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