Hamilton transversals in random Latin squares

Tom Kelly

Joint work with Stephen Gould

BCC 2021 July 9, 2021

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size n - 1.

Moreover, when n is odd, there may be a "full" transveral (i.e. size n).

Latin square: An $n \times n$ array of n symbols such that each row and column contains one instance of each symbol.

Partial transversal: A collection of entries, with at most one from each row and column, containing at most one instance of each symbol.

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size n - 1.

Moreover, when n is odd, there may be a "full" transveral (i.e. size n).

Latin square: An $n \times n$ array of n symbols such that each row and column contains one instance of each symbol.

Partial transversal: A collection of entries, with at most one from each row and column, containing at most one instance of each symbol.

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size n - 1.

Keevash, Pokrovskiy, Sudakov, and Yepremyan (2020+): Every $n \times n$ Latin square has a transversal of size $n - O(\log n / \log \log n)$.

Improved results of Woolbright ('78), Brouwer, de Vries, & Wieringa ('78), and Hatami & Shor ('08).

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size n - 1.

Keevash, Pokrovskiy, Sudakov, and Yepremyan (2020+): Every $n \times n$ Latin square has a transversal of size $n - O(\log n / \log \log n)$.

Improved results of Woolbright ('78), Brouwer, de Vries, & Wieringa ('78), and Hatami & Shor ('08).

Kwan (2020): Almost all $n \times n$ Latin squares have a full transversal.

I.e., the Ryser-Brualdi-Stein conjecture holds with high probability for an $n \times n$ Latin square chosen uniformly at random.

Andersen's conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Proper edge-coloring: an assignment of colors to the edges such that no two edges of the same color share a vertex.

Rainbow: every edge has a distinct color.

Andersen's conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Proper edge-coloring: an assignment of colors to the edges such that no two edges of the same color share a vertex.

Rainbow: every edge has a distinct color.

Andersen's conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Balogh-Molla (2017): Every properly edge-colored K_n has a rainbow path of length $n - O(\log n\sqrt{n})$.

Improved results of Gyárfás-Mhalla ('10), Gyárfás-Ruszinkó-Sárközy-Schelp ('11):, Gebauer-Mousset ('12) & Chen-Li ('15), and Alon-Pokrovskiy-Sudakov ('17).

Andersen's conjecture (1989)

Every properly edge-colored K_n has a rainbow path of length n-2.

Balogh-Molla (2017): Every properly edge-colored K_n has a rainbow path of length $n - O(\log n\sqrt{n})$.

Improved results of Gyárfás-Mhalla ('10), Gyárfás-Ruszinkó-Sárközy-Schelp ('11):, Gebauer-Mousset ('12) & Chen-Li ('15), and Alon-Pokrovskiy-Sudakov ('17).

Gould, K., Kühn, and Osthus (2020+): Almost all optimally (and properly) edge-colored K_n have a rainbow Hamilton path.

I.e., Andersen's conjecture holds with high probability for an optimal edgecoloring chosen uniformly at random.

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size n - 2.

- I.e., every properly *n*-arc-colored K_n^{\leftrightarrow} has a rainbow directed linear forest with n 2 arcs.
 - $n \times n$ Latin squares correspond to proper *n*-arc-colorings of K_n^{\leftrightarrow} .
 - Partial transversals pprox rainbow subgraphs w/ in- and out-degrees \leq 1.

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size n - 2.

- I.e., every properly *n*-arc-colored K_n^{\leftrightarrow} has a rainbow directed linear forest with n 2 arcs.
 - $n \times n$ Latin squares correspond to proper *n*-arc-colorings of K_n^{\leftrightarrow} .
 - Partial transversals pprox rainbow subgraphs w/ in- and out-degrees \leq 1.

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size n - 2.

- I.e., every properly *n*-arc-colored K_n^{\leftrightarrow} has a rainbow directed linear forest with n 2 arcs.
 - $n \times n$ Latin squares correspond to proper *n*-arc-colorings of K_n^{\leftrightarrow} .
 - Partial transversals pprox rainbow subgraphs w/ in- and out-degrees \leq 1.

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size n - 2.

I.e., every properly *n*-arc-colored K_n^{\leftrightarrow} has a rainbow directed linear forest with n - 2 arcs.

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed linear forest with $n - O(n^{2/3})$ arcs.

Improved the $n - O(n \log \log n / \log n)$ bound of **Gyárfás and Sárközy ('14)**.

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed cycle of length $n - O(n^{4/5})$.

Connected transversals: a common generalization?

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed cycle or path of length n-1.

Equivalently, every $n \times n$ Latin array has a **connected** partial transversal of size n - 1.

If true, this conjecture implies:

- the Ryser-Brualdi-Stein conjecture,
- Andersen's conjecture, and
- Gyárfás and Sárközy's conjecture.

Connected transversals: a common generalization?

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed cycle or path of length n-1.

Equivalently, every $n \times n$ Latin array has a **connected** partial transversal of size n - 1.

Theorem (K. and Gould, 2021+)

Almost all $n \times n$ Latin squares have a **Hamilton** transversal. I.e., almost all properly *n*-arc-colored K_n^{\leftrightarrow} 's have a rainbow directed Hamilton cycle.

In fact, we prove an asymptotically optimal counting result, finding

$$\left((1-o(1))\frac{n}{e^2}\right)^n$$
 Hamilton transversals / cycles,

which matches Kwan's bound up to lower order terms.

Diagonals of random Latin squares

- Let $X(L) := \max \#$ of times a symbol appears on the diagonal of a Latin square L.
 - If X(L) = n (where L is $n \times n$), then L has no Hamilton transversal.

X = 4

X = 2

Diagonals of random Latin squares

- Let $X(L) := \max \#$ of times a symbol appears on the diagonal of a Latin square L.
 - If X(L) = n (where L is $n \times n$), then L has no Hamilton transversal.

Theorem (K. and Gould, 2021+)

If L is a uniformly random $n \times n$ Latin square, then X(L) = $O(\log n / \log \log n)$ with high probability.

Matches maximum load of a bin in the classic "balls into bins model".

Question: What is the distribution of X?

Conclusion

Common generalization of the Ryser-Brualdi-Stein conjecture, Andersen's conjecture, and Gyárfás and Sárközy's conjecture:

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed cycle or path of length at least n-1.

K. and Gould (2021+): Almost all properly *n*-arc-colored K_n^{\leftrightarrow} 's have a rainbow directed Hamilton cycle.

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed cycle of length $n - O(n^{4/5})$.

Conclusion

Common generalization of the Ryser-Brualdi-Stein conjecture, Andersen's conjecture, and Gyárfás and Sárközy's conjecture:

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed cycle or path of length at least n-1.

K. and Gould (2021+): Almost all properly *n*-arc-colored K_n^{\leftrightarrow} 's have a rainbow directed Hamilton cycle.

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_n^{\leftrightarrow} has a rainbow directed cycle of length $n - O(n^{4/5})$.

Question

What is the distribution of the random variable that counts the number of occurences of the diagonal's "modal symbol" in a random Latin square?

K. and Gould (2021+): The modal symbol occurs at most $O(\log n / \log \log n)$ times with high probability.

Thanks for listening!