Hamilton transversals in random Latin squares

Tom Kelly
Joint work with Stephen Gould

UNIVERSITYOF BIRMINGHAM

BCC 2021
July 9, 2021

Transversals in Latin squares

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size $n-1$.
Moreover, when n is odd, there may be a "full" transveral (i.e. size n).
Latin square: An $n \times n$ array of n symbols such that each row and column contains one instance of each symbol.
Partial transversal: A collection of entries, with at most one from each row and column, containing at most one instance of each symbol.

Transversals in Latin squares

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size $n-1$.
Moreover, when n is odd, there may be a "full" transveral (i.e. size n).
Latin square: An $n \times n$ array of n symbols such that each row and column contains one instance of each symbol.
Partial transversal: A collection of entries, with at most one from each row and column, containing at most one instance of each symbol.

Transversals in Latin squares

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size $n-1$.

Keevash, Pokrovskiy, Sudakov, and Yepremyan (2020+): Every $n \times n$ Latin square has a transversal of size $n-O(\log n / \log \log n)$.

Improved results of Woolbright ('78), Brouwer, de Vries, \& Wieringa ('78), and Hatami \& Shor ('08).

Transversals in Latin squares

The Ryser-Brualdi-Stein conjecture

Every $n \times n$ Latin square has a partial transversal of size $n-1$.

Keevash, Pokrovskiy, Sudakov, and Yepremyan (2020+): Every $n \times n$ Latin square has a transversal of size $n-O(\log n / \log \log n)$.

Improved results of Woolbright (‘78), Brouwer, de Vries, \& Wieringa ('78), and Hatami \& Shor ('08).

Kwan (2020): Almost all $n \times n$ Latin squares have a full transversal.
I.e., the Ryser-Brualdi-Stein conjecture holds with high probability for an $n \times n$ Latin square chosen uniformly at random.

Rainbow paths in properly edge-colored complete graphs

Andersen's conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.

Proper edge-coloring: an assignment of colors to the edges such that no two edges of the same color share a vertex.
Rainbow: every edge has a distinct color.

Rainbow paths in properly edge-colored complete graphs

Andersen's conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.

Proper edge-coloring: an assignment of colors to the edges such that no two edges of the same color share a vertex.
Rainbow: every edge has a distinct color.

Rainbow paths in properly edge-colored complete graphs

Andersen's conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.

Balogh-Molla (2017): Every properly edge-colored K_{n} has a rainbow path of length $n-O(\log n \sqrt{n})$.

Improved results of Gyárfás-Mhalla (‘10), Gyárfás-Ruszinkó-SárközySchelp (‘11):, Gebauer-Mousset ('12) \& Chen-Li ('15), and Alon-Pokrovskiy-Sudakov ('17).

Rainbow paths in properly edge-colored complete graphs

Andersen's conjecture (1989)

Every properly edge-colored K_{n} has a rainbow path of length $n-2$.

Balogh-Molla (2017): Every properly edge-colored K_{n} has a rainbow path of length $n-O(\log n \sqrt{n})$.

Improved results of Gyárfás-Mhalla (‘10), Gyárfás-Ruszinkó-SárközySchelp (‘11):, Gebauer-Mousset ('12) \& Chen-Li ('15), and Alon-Pokrovskiy-Sudakov ('17).

Gould, K., Kühn, and Osthus (2020+): Almost all optimally (and properly) edge-colored K_{n} have a rainbow Hamilton path.
I.e., Andersen's conjecture holds with high probability for an optimal edgecoloring chosen uniformly at random.

Cycle-free transversals and the directed setting

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size $n-2$.
l.e., every properly n-arc-colored K_{n}^{\leftrightarrow} has a rainbow directed linear forest with $n-2$ arcs.

- $n \times n$ Latin squares correspond to proper n-arc-colorings of K_{n}^{\leftrightarrow}.
- Partial transversals \approx rainbow subgraphs $w /$ in- and out-degrees ≤ 1.

	a	b	c	d
2	b	c	d	a
3	c	d	a	b
4	d	a	b	c

Cycle-free transversals and the directed setting

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size $n-2$.
l.e., every properly n-arc-colored K_{n}^{\leftrightarrow} has a rainbow directed linear forest with $n-2$ arcs.

- $n \times n$ Latin squares correspond to proper n-arc-colorings of K_{n}^{\leftrightarrow}.
- Partial transversals \approx rainbow subgraphs $w /$ in- and out-degrees ≤ 1.

	a	b	c	d
2	b	c	d	a
3	c	d	a	b
4	d	a	b	c

Cycle-free transversals and the directed setting

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size $n-2$.
I.e., every properly n-arc-colored K_{n}^{\leftrightarrow} has a rainbow directed linear forest with $n-2$ arcs.

- $n \times n$ Latin squares correspond to proper n-arc-colorings of K_{n}^{\leftrightarrow}.
- Partial transversals \approx rainbow subgraphs $w /$ in- and out-degrees ≤ 1.

	a	b	c	d
2	b	c	d	a
3	c	d	a	b
4	d	a	b	c

Cycle-free transversals and the directed setting

Conjecture (Gyárfás and Sárközy, 2014)

Every $n \times n$ Latin square has a cycle-free partial transversal of size $n-2$.
I.e., every properly n-arc-colored K_{n}^{\leftrightarrow} has a rainbow directed linear forest with $n-2$ arcs.

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed linear forest with $n-O\left(n^{2 / 3}\right)$ arcs.

Improved the $n-O(n \log \log n / \log n)$ bound of Gyárfás and Sárközy ('14).
Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed cycle of length $n-O\left(n^{4 / 5}\right)$.

Connected transversals: a common generalization?

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed cycle or path of length $n-1$.

Equivalently, every $n \times n$ Latin array has a connected partial transversal of size $n-1$.

If true, this conjecture implies:

- the Ryser-Brualdi-Stein conjecture,
- Andersen's conjecture, and
- Gyárfás and Sárközy's conjecture.

Connected transversals: a common generalization?

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed cycle or path of length $n-1$.

Equivalently, every $n \times n$ Latin array has a connected partial transversal of size $n-1$.

Theorem (K. and Gould, 2021+)

Almost all $n \times n$ Latin squares have a Hamilton transversal. I.e., almost all properly n-arc-colored K_{n}^{\leftrightarrow} 's have a rainbow directed Hamilton cycle.

In fact, we prove an asymptotically optimal counting result, finding

$$
\left((1-o(1)) \frac{n}{e^{2}}\right)^{n} \text { Hamilton transversals / cycles, }
$$

which matches Kwan's bound up to lower order terms.

Diagonals of random Latin squares

Let $X(L):=\max \#$ of times a symbol appears on the diagonal of a Latin square L.

- If $X(L)=n$ (where L is $n \times n$), then L has no Hamilton transversal.

a	b	c	d
b	c	d	a
c	d	a	b
d	a	b	c

$X=2$

a	b	c	d
b	a	d	c
c	d	a	b
d	c	b	a

$X=4$

Diagonals of random Latin squares

Let $X(L):=\max \#$ of times a symbol appears on the diagonal of a Latin square L.

- If $X(L)=n$ (where L is $n \times n$), then L has no Hamilton transversal.

Theorem (K. and Gould, 2021+)

If L is a uniformly random $n \times n$ Latin square, then $X(L)=O(\log n / \log \log n)$ with high probability.

Matches maximum load of a bin in the classic "balls into bins model".
Question: What is the distribution of X ?

Conclusion

Common generalization of the Ryser-Brualdi-Stein conjecture, Andersen's conjecture, and Gyárfás and Sárközy's conjecture:

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed cycle or path of length at least $n-1$.
K. and Gould (2021+): Almost all properly n-arc-colored $K_{n}^{\leftrightarrow}{ }^{\leftrightarrow}$ s have a rainbow directed Hamilton cycle.
Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed cycle of length $n-O\left(n^{4 / 5}\right)$.

Conclusion

Common generalization of the Ryser-Brualdi-Stein conjecture, Andersen's conjecture, and Gyárfás and Sárközy's conjecture:

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed cycle or path of length at least $n-1$.
K. and Gould (2021+): Almost all properly n-arc-colored K_{n}^{\leftrightarrow} 's have a rainbow directed Hamilton cycle.
Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored K_{n}^{\leftrightarrow} has a rainbow directed cycle of length $n-O\left(n^{4 / 5}\right)$.

Question

What is the distribution of the random variable that counts the number of occurences of the diagonal's "modal symbol" in a random Latin square?
K. and Gould (2021+): The modal symbol occurs at most $O(\log n / \log \log n)$ times with high probability.

Thanks for listening!

