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Transversals in Latin squares

The Ryser-Brualdi-Stein conjecture

Every n × n Latin square has a partial transversal of size n − 1.

Moreover, when n is odd, there may be a “full” transveral (i.e. size n).

Latin square: An n× n array of n symbols such that each row and column
contains one instance of each symbol.

Partial transversal: A collection of entries, with at most one from each
row and column, containing at most one instance of each symbol.
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Transversals in Latin squares

The Ryser-Brualdi-Stein conjecture

Every n × n Latin square has a partial transversal of size n − 1.

Keevash, Pokrovskiy, Sudakov, and Yepremyan (2020+): Every
n × n Latin square has a transversal of size n − O(log n/ log log n).

Improved results of Woolbright (‘78), Brouwer, de Vries, & Wieringa
(‘78), and Hatami & Shor (‘08).

Kwan (2020): Almost all n × n Latin squares have a full transversal.

I.e., the Ryser-Brualdi-Stein conjecture holds with high probability for an
n × n Latin square chosen uniformly at random.
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Rainbow paths in properly edge-colored complete graphs

Andersen’s conjecture (1989)

Every properly edge-colored Kn has a rainbow path of length n − 2.

Proper edge-coloring: an assignment of colors to the edges such that no
two edges of the same color share a vertex.

Rainbow: every edge has a distinct color.
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Rainbow paths in properly edge-colored complete graphs

Andersen’s conjecture (1989)

Every properly edge-colored Kn has a rainbow path of length n − 2.

Balogh-Molla (2017): Every properly edge-colored Kn has a rainbow
path of length n − O(log n

√
n).

Improved results of Gyárfás-Mhalla (‘10), Gyárfás-Ruszinkó-Sárközy-
Schelp (‘11):, Gebauer-Mousset (‘12) & Chen-Li (‘15), and Alon-
Pokrovskiy-Sudakov (‘17).

Gould, K., Kühn, and Osthus (2020+): Almost all optimally (and
properly) edge-colored Kn have a rainbow Hamilton path.

I.e., Andersen’s conjecture holds with high probability for an optimal edge-
coloring chosen uniformly at random.
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Cycle-free transversals and the directed setting

Conjecture (Gyárfás and Sárközy, 2014)

Every n × n Latin square has a cycle-free partial transversal of size n − 2.

I.e., every properly n-arc-colored K↔
n has a rainbow directed linear forest

with n − 2 arcs.

• n × n Latin squares correspond to proper n-arc-colorings of K↔
n .

• Partial transversals ≈ rainbow subgraphs w/ in- and out-degrees ≤ 1.
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Cycle-free transversals and the directed setting

Conjecture (Gyárfás and Sárközy, 2014)

Every n × n Latin square has a cycle-free partial transversal of size n − 2.

I.e., every properly n-arc-colored K↔
n has a rainbow directed linear forest

with n − 2 arcs.

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored
K↔
n has a rainbow directed linear forest with n − O(n2/3) arcs.

Improved the n−O(n log log n/ log n) bound of Gyárfás and Sárközy (‘14).

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored
K↔
n has a rainbow directed cycle of length n − O(n4/5).
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Connected transversals: a common generalization?

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K↔
n has a rainbow directed cycle or path of

length n − 1.

Equivalently, every n × n Latin array has a connected partial transversal
of size n − 1.

If true, this conjecture implies:

• the Ryser-Brualdi-Stein conjecture,

• Andersen’s conjecture, and

• Gyárfás and Sárközy’s conjecture.
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Connected transversals: a common generalization?

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K↔
n has a rainbow directed cycle or path of

length n − 1.

Equivalently, every n × n Latin array has a connected partial transversal
of size n − 1.

Theorem (K. and Gould, 2021+)

Almost all n × n Latin squares have a Hamilton transversal. I.e., almost
all properly n-arc-colored K↔

n ’s have a rainbow directed Hamilton cycle.

In fact, we prove an asymptotically optimal counting result, finding(
(1− o(1))

n

e2

)n
Hamilton transversals / cycles,

which matches Kwan’s bound up to lower order terms.
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Diagonals of random Latin squares

Let X(L) := max # of times a symbol appears on the diagonal of a Latin
square L.

• If X(L) = n (where L is n × n), then L has no Hamilton transversal.
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Diagonals of random Latin squares

Let X(L) := max # of times a symbol appears on the diagonal of a Latin
square L.

• If X(L) = n (where L is n × n), then L has no Hamilton transversal.

Theorem (K. and Gould, 2021+)

If L is a uniformly random n × n Latin square, then
X(L) = O(log n/ log log n) with high probability.

Matches maximum load of a bin in the classic “balls into bins model”.

Question: What is the distribution of X?
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Conclusion
Common generalization of the Ryser-Brualdi-Stein conjecture, Andersen’s

conjecture, and Gyárfás and Sárközy’s conjecture:

Conjecture (K. and Gould, 2021+)

Every properly arc-colored K↔
n has a rainbow directed cycle or path of

length at least n − 1.

K. and Gould (2021+): Almost all properly n-arc-colored K↔
n ’s have a

rainbow directed Hamilton cycle.

Benzing, Pokrovskiy, and Sudakov (2020): Every properly arc-colored
K↔
n has a rainbow directed cycle of length n − O(n4/5).

Question

What is the distribution of the random variable that counts the number of
occurences of the diagonal’s “modal symbol” in a random Latin square?

K. and Gould (2021+): The modal symbol occurs at most
O(log n/ log log n) times with high probability.
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Thanks for listening!
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