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Independence number

Let G be a graph on n vertices, α(G ) = size of a largest independent set.

Turán’s Theorem: α(G ) ≥ n/(d + 1), where d is the avg degree of G .

Caro-Wei Theorem: α(G ) ≥
∑

v∈V (G) 1/(d(v) + 1), where d(v) is the
degree of v – degree-sequence version of Turán’s.

Harant-Rautenbach ‘11: strengthened Caro-Wei bound, proved tight
bound of α(G ) ≥ n/(d + 1− o(d)) for connected graphs.

Theorem (K.-Postle ‘18+)

If G has no simplicial vertices (i.e. N(v) is not a clique), then

α(G ) ≥
∑

v∈V (G)

1/(d(v) + 1/2).

• no n/(d + 1− ε)-bound known for ε > 0; ε = 1/2 is tight for 5-cycle.

• actually holds if less than half of each clique’s vertices are simplicial.
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Fractional coloring

Multicoloring: a map

ψ : V (G )→ subsets of N

such that ψ(u) ∩ ψ(v) = ∅ for all uv ∈ E (G ).

Fractional chromatic number: denoted χf (G ) – the min k ∈ Q such
that G has a multicoloring ψ using N colors for some N such that
|ψ(v)| ≥ N/k for all v ∈ V (G ).

1, 2

4, 5

2, 3 5, 1

3, 4

χf (C5) ≤ 5/2
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Fractional coloring

Multicoloring: a map

ψ : V (G )→ subsets of N

such that ψ(u) ∩ ψ(v) = ∅ for all uv ∈ E (G ).

Fractional chromatic number: denoted χf (G ) – the min k ∈ Q such
that G has a multicoloring ψ using N colors for some N such that
|ψ(v)| ≥ N/k for all v ∈ V (G ).

Conventions introduced by Dvǒrák, Sereni, and Volec:

Demand function: a map f : V (G )→ [0, 1].

(f ,N)-coloring: a multicoloring ψ using N colors s.t. |ψ(v)| ≥ f (v) ·N for
all v ∈ V (G ), i.e. v receives “at least f (v) fraction of the colors.”

f -colorable: there exists an (f ,N)-coloring.

χf – constant demand functions; “local demands” – when is G f -colorable?

Proposition: If G is f -colorable, then α(G ) ≥
∑

v∈V (G) f (v).
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Greedy coloring

Proposition (Local Fractional Greedy): If f (v) ≤ 1/(d(v) + 1) for all
v ∈ V (G ), then G is f -colorable.
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Greedy coloring

Proposition (Local Fractional Greedy): If f (v) ≤ 1/(d(v) + 1) for all
v ∈ V (G ), then G is f -colorable.

Proof.

• Let G be a min counterexample, and let v ∈ V (G ) have min degree.

• G − v has an (f ,N)-coloring, ψ, where d(u) + 1 | N ∀u ∈ V (G ).

• Let ψ(v) = [N] \ (∪u∈N(v)ψ(u)), i.e. color v what it doesn’t “see.”

• v “sees” at most
∑

u∈N(v) f (u) · N ≤ d(v) · N/(d(v) + 1) colors, so

• |φ(v)| ≥ N/(d(v) + 1), as required.
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Greedy coloring

Proposition (Local Fractional Greedy): If f (v) ≤ 1/(d(v) + 1) for all
v ∈ V (G ), then G is f -colorable.

“Local Fractional Greedy” simultaneously generalizes:

Corollary (Frac. Relaxation of Greedy Bound): χf (G ) ≤ ∆(G ) + 1,
where ∆(G ) is the max degree.

Corollary (Caro-Wei Theorem): α(G ) ≥
∑

v∈V (G) 1/(d(v) + 1).

All are tight for complete graphs (or if ω(G ) = ∆(G ) + 1, where ω(G ) :=
clique number).

Brooks’ Theorem: If ∆ ≥ 3 and ω ≤ ∆, then χ < ∆ + 1.

Question: Let ε > 0. Is G f -colorable if f (v) ≤ 1/(d(v) + 1− ε), subject
to some assumptions about cliques?

• Obvious necessary condition: every clique K satisfies
∑

v∈K f (v) ≤ 1.

• Local Fractional Brooks’: we prove this condition is also sufficient.
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Local Fractional Brooks’

Theorem (Local Fractional Brooks’, K.-Postle ‘18+)

If f (v) ≤ 1/(d(v) + 1/2) for all v ∈ V (G ) and every clique K satisfies∑
v∈K f (v) ≤ 1, then G is f -colorable.

• f (v) ≤ 1/(d(v) + 1− ε) was not previously known for any ε > 0,
even for independence number.

• ε = 1/2 is tight for the 5-cycle.

Corollary (K.-Postle)

Let σ ≤ 1/2. If each clique K ⊆ V (G ) has at most (1− σ)(|K | − σ)
simplicial vertices, then

α(G ) ≥
∑

v∈V (G)

1/(d(v) + 1− σ).
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Local Demands

Coloring Local demands deg-seq ind. #

χ ≤ f (v) ≤ α ≥
∑

v

∆ + 1 (Greedy) 1/(d(v) + 1) (Greedy) 1/(d(v)+1) (Caro-Wei)

∆ (if ω ≤ ∆, Brooks) 1/(d(v) + 1/2) (∀K ,∑
v∈K f (v) ≤ 1, K-P)

1/(d(v) + 1/2) (∀K , <
|K |/2 simp. vtcs, K-P)

∆−1 (if ω ≤ ∆−1, ∆ ≥
9, Borodin-Kostochka)

?? ??

d(∆ + 1 + ω)/2e (Reed) ?? 2/(d(v) +ω(G [N[v ]]) +
1), Brause et al

200∆ω ln ln ∆
ln ∆ (Mol-

loy/Johansson)
?? ??

(1 + o(1)) ∆
ln ∆ (if ω ≤ 2,

Molloy)
?? (1 − o(1)) d(v)

ln d(v) (if ω ≤
2, Shearer)

proved/conjectured
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∑

v

∆ + 1 (Greedy) 1/(d(v) + 1) (Greedy) 1/(d(v)+1) (Caro-Wei)

∆ (if ω ≤ ∆, Brooks) 1/(d(v) + 1/2) (∀K ,∑
v∈K f (v) ≤ 1, K-P)

1/(d(v) + 1/2) (∀K , <
|K |/2 simp. vtcs, K-P)

∆−1 (if ω ≤ ∆−1, ∆ ≥
9, Borodin-Kostochka)

?? ??

d(∆ + 1 + ω)/2e (Reed) ?? 2/(d(v) +ω(G [N[v ]]) +
1), Brause et al

200∆ω ln ln ∆
ln ∆ (Mol-

loy/Johansson)
?? ??

(1 + o(1)) ∆
ln ∆ (if ω ≤ 2,

Molloy)
?? (1 − o(1)) d(v)

ln d(v) (if ω ≤
2, Shearer)

proved/conjectured
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Extending Brooks’ Theorem

Question: When is χ ≤ ∆ + 1− k? local demands analogues?

Reed’s ω,∆, χ Conjecture ‘98: χ ≤ d(∆ + 1 + ω)/2e.

Reed’s Conjecture is true for χf (even without rounding).

Conjecture (“Local Independence Reed’s,” Brause et al. ‘16):
α(G ) ≥

∑
v∈V (G)

2
d(v)+1+ω(v) , where ω(v) is the size of the largest

clique containing v .

Conjecture (Local Fractional Reed’s, K.-Postle)

If f (v) ≤ 2/(d(v) + 1 + ω(v)) for all v ∈ V (G ), then G is f -colorable.

If true, local fractional Reed’s implies:

• local independence Reed’s,

• the fractional relaxation of Reed’s Conjecture, and

• local fractional Brooks’.
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Extending Brooks’ Theorem

Question: When is χ ≤ ∆ + 1− k? local demands analogues?

Borodin-Kostochka Conj: If ω ≤ ∆− 1 and ∆ ≥ 9, then χ ≤ ∆− 1.

Reed ‘98: B-K Conjecture is true for large ∆.

Local demands analogue of large ∆ or χ: large min degree/small demands.

Conjecture (Local Fractional Borodin-Kostochka, K.-Postle)

For every σ < 3/4 there exists δ ∈ N such that the following holds.
If f (v) ≤ 1/(d(v) + 1− σ) and d(v) ≥ δ for all v ∈ V (G ) and every
clique K satisfies

∑
v∈K f (v) ≤ 1, then G is f -colorable.

Farzad-Molloy-Reed ‘05: Characterized the (∆+1−k)-critical graphs for
small k and large ∆.

Problem: Determine the “fractionally 1/(d(v) + 1− σ)-critical” graphs of
large min degree for small σ.
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Triangle-free graphs
If G is triangle-free then...

Shearer ‘91: ... α(G ) ≥
∑

v∈V (G)(1− o(1)) log d(v)/d(v).

Molloy ‘17+: ... χ(G ) ≤ (1 + o(1))∆(G )/ log(∆(G )).

Conjecture (Local fractional Shearer/Molloy)

If f (v) ≤ (1− o(1)) log d(v)/d(v) for all v ∈ V (G ) and G is triangle-free,
then G is f -colorable.
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∑

v∈V (G)(1− o(1)) log d(v)/d(v).

Molloy ‘17+: ... χ(G ) ≤ (1 + o(1))∆(G )/ log(∆(G )).

Conjecture (Local fractional Shearer/Molloy)

If f (v) ≤ (1− o(1)) log d(v)/d(v) for all v ∈ V (G ) and G is triangle-free,
then G is f -colorable.

All three imply:

Corollary: The Ramsey number R(3, k) ≤ (1 + o(1))k2/ log k.

Equivalently, every triangle-free graph on n vertices satisfies

n/α(G ) ≤ (
√

2 + o(1))
√
n/ log n.

Conjecture (Cames van Batenburg et al. ‘18): If G is triangle-free,
then χf (G ) ≤ (

√
2 + o(1))

√
n/ log n.

If true, local fractional S/M implies this conjecture.
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Triangle-free graphs
If G is triangle-free then...

Shearer ‘91: ... α(G ) ≥
∑

v∈V (G)(1− o(1)) log d(v)/d(v).

Molloy ‘17+: ... χ(G ) ≤ (1 + o(1))∆(G )/ log(∆(G )).

Conjecture (Local fractional Shearer/Molloy)

If f (v) ≤ (1− o(1)) log d(v)/d(v) for all v ∈ V (G ) and G is triangle-free,
then G is f -colorable.

An approximate version of local fractional S/M:

Theorem (K.-Postle ‘19++)

If f (v) ≤ (2e − o(1)) log d(v)/(d(v) log log d(v)) and G is triangle-free,
then G is f -colorable.

Any improvement over local fractional greedy for triangle-free is nontrivial
and was not previously known.
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Kr -free graphs

Let G be a Kr -free graph on n vertices of avg degree d and max degree ∆.

Ajtai-Erdős-Komlós-Szemerédi ‘81: α(G ) = Ω ((n/d)(log(log d)/r)).

Question (A-E-K-S): is α(G ) = Ω ((n/d) log d)?

Shearer ‘95: α(G ) = Ω ((n/∆)(log ∆/ log log ∆)).

Conjecture (Local fractional A-E-K-S)

For every r , there exists some constant c such that the following holds.
If f (v) ≤ c log d(v)/d(v) for each v ∈ V (G ) and G is a Kr -free, then G is
f -colorable.

Theorem (K.-Postle ‘19++)

If f (v) = O
(

log d(v)
d(v)(log log d(v))2

)
and G is Kr -free, then G is f -colorable.

Corollary: α(G ) ≥ c
∑

v∈V (G)
log d(v)

d(v)(log log d(v))2 .
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Conclusion
Local Fractional... hypotheses demands: f (v) ≤
Brooks’

∑
v∈K f (v) ≤ 1,∀K 1/(d(v) + 1/2)

Borodin-Kostochka σ < 3/4, δ(G ) large, 1/(d(v) + 1− σ)∑
v∈K f (v) ≤ 1,∀K

Reed’s 2/(d(v) + 1 + ω(v))

Shearer/Molloy triangle-free (1− o(1)) ln d(v)/d(v)

approximate S/M · · · O
(

ln d(v)
d(v) ln ln d(v)

)
A-E-K-S Kr -free O(ln d(v)/d(v))

approx. A-E-K-S · · · O
(

ln d(v)
d(v)(ln ln d(v))2

)
Vizing’s line-graph 1/(ω(v) + 1)

TCC total-graph 1/(ω(v) + 1)

Perfect graph Thm perfect graph 1/ω(v)

proved/conjectured

Thanks for listening!
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approximate S/M · · · O
(

ln d(v)
d(v) ln ln d(v)

)
A-E-K-S Kr -free O(ln d(v)/d(v))

approx. A-E-K-S · · · O
(

ln d(v)
d(v)(ln ln d(v))2

)
Vizing’s line-graph 1/(ω(v) + 1)

TCC total-graph 1/(ω(v) + 1)

Perfect graph Thm perfect graph 1/ω(v)

proved/conjectured
Thanks for listening!
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