Fractional Coloring with Local Demands

Tom Kelly Joint work with Luke Postle

Department of Combinatorics & Optimization University of Waterloo

British Combinatorial Conference July 31, 2019

Let G be a graph on n vertices, $\alpha(G) = \text{size of a largest independent set.}$

Let G be a graph on n vertices, $\alpha(G) = \text{size of a largest independent set.}$

Turán's Theorem: $\alpha(G) \ge n/(d+1)$, where d is the avg degree of G.

Let G be a graph on n vertices, $\alpha(G) = \text{size of a largest independent set.}$

Turán's Theorem: $\alpha(G) \geq n/(d+1)$, where d is the avg degree of G.

Caro-Wei Theorem: $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v)+1)$, where d(v) is the degree of v – degree-sequence version of Turán's.

Let G be a graph on n vertices, $\alpha(G) = \text{size of a largest independent set.}$

Turán's Theorem: $\alpha(G) \geq n/(d+1)$, where d is the avg degree of G.

Caro-Wei Theorem: $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v)+1)$, where d(v) is the degree of v – degree-sequence version of Turán's.

Harant-Rautenbach '11: strengthened Caro-Wei bound, proved tight bound of $\alpha(G) \ge n/(d+1-o(d))$ for connected graphs.

Let G be a graph on n vertices, $\alpha(G) = \text{size of a largest independent set.}$

Turán's Theorem: $\alpha(G) \geq n/(d+1)$, where d is the avg degree of G.

Caro-Wei Theorem: $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v)+1)$, where d(v) is the degree of v – degree-sequence version of Turán's.

Harant-Rautenbach '11: strengthened Caro-Wei bound, proved tight bound of $\alpha(G) \ge n/(d+1-o(d))$ for connected graphs.

Theorem (K.-Postle '18+)

If G has no simplicial vertices (i.e. N(v) is not a clique), then

$$\alpha(G) \geq \sum_{v \in V(G)} 1/(d(v) + 1/2).$$

Let G be a graph on n vertices, $\alpha(G) = \text{size of a largest independent set.}$

Turán's Theorem: $\alpha(G) \geq n/(d+1)$, where d is the avg degree of G.

Caro-Wei Theorem: $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v)+1)$, where d(v) is the degree of v – degree-sequence version of Turán's.

Harant-Rautenbach '11: strengthened Caro-Wei bound, proved tight bound of $\alpha(G) \ge n/(d+1-o(d))$ for connected graphs.

Theorem (K.-Postle '18+)

If G has no simplicial vertices (i.e. N(v) is not a clique), then

$$\alpha(G) \geq \sum_{v \in V(G)} 1/(d(v) + 1/2).$$

• no $n/(d+1-\varepsilon)$ -bound known for $\varepsilon>0$; $\varepsilon=1/2$ is tight for 5-cycle.

Let G be a graph on n vertices, $\alpha(G) = \text{size of a largest independent set.}$

Turán's Theorem: $\alpha(G) \geq n/(d+1)$, where *d* is the avg degree of *G*.

Caro-Wei Theorem: $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v)+1)$, where d(v) is the degree of v – degree-sequence version of Turán's.

Harant-Rautenbach '11: strengthened Caro-Wei bound, proved tight bound of $\alpha(G) \ge n/(d+1-o(d))$ for connected graphs.

Theorem (K.-Postle '18+)

If G has no simplicial vertices (i.e. N(v) is not a clique), then

$$\alpha(G) \geq \sum_{v \in V(G)} 1/(d(v) + 1/2).$$

- no $n/(d+1-\varepsilon)$ -bound known for $\varepsilon>0$; $\varepsilon=1/2$ is tight for 5-cycle.
- actually holds if less than half of each clique's vertices are simplicial.

Multicoloring: a map

$$\psi:V({\sf G}) o {\sf subsets}$$
 of ${\Bbb N}$

such that $\psi(u) \cap \psi(v) = \emptyset$ for all $uv \in E(G)$.

Fractional chromatic number: denoted $\chi_f(G)$ – the min $k \in \mathbb{Q}$ such that G has a multicoloring ψ using N colors for some N such that $|\psi(v)| \geq N/k$ for all $v \in V(G)$.



Multicoloring: a map

$$\psi:V(G) o ext{subsets of }\mathbb{N}$$

such that $\psi(u) \cap \psi(v) = \emptyset$ for all $uv \in E(G)$.

Fractional chromatic number: denoted $\chi_f(G)$ – the min $k \in \mathbb{Q}$ such that G has a multicoloring ψ using N colors for some N such that $|\psi(v)| \geq N/k$ for all $v \in V(G)$.

Conventions introduced by Dvořák, Sereni, and Volec:

Demand function: a map $f: V(G) \rightarrow [0,1]$.

(f, N)-coloring: a multicoloring ψ using N colors s.t. $|\psi(v)| \ge f(v) \cdot N$ for all $v \in V(G)$, i.e. v receives "at least f(v) fraction of the colors."

f-colorable: there exists an (f, N)-coloring.

Multicoloring: a map

$$\psi: V(G)
ightarrow \mathsf{subsets}$$
 of $\mathbb N$

such that $\psi(u) \cap \psi(v) = \emptyset$ for all $uv \in E(G)$.

Fractional chromatic number: denoted $\chi_f(G)$ – the min $k \in \mathbb{Q}$ such that G has a multicoloring ψ using N colors for some N such that $|\psi(v)| \geq N/k$ for all $v \in V(G)$.

Conventions introduced by Dvořák, Sereni, and Volec:

Demand function: a map $f: V(G) \rightarrow [0,1]$.

(f, N)-coloring: a multicoloring ψ using N colors s.t. $|\psi(v)| \ge f(v) \cdot N$ for all $v \in V(G)$, i.e. v receives "at least f(v) fraction of the colors."

f-colorable: there exists an (f, N)-coloring.

 χ_f – constant demand functions; "local demands" – when is G f-colorable?

Multicoloring: a map

$$\psi:V(G) o {
m subsets}$$
 of ${\mathbb N}$

such that $\psi(u) \cap \psi(v) = \emptyset$ for all $uv \in E(G)$.

Fractional chromatic number: denoted $\chi_f(G)$ – the min $k \in \mathbb{Q}$ such that G has a multicoloring ψ using N colors for some N such that $|\psi(v)| \geq N/k$ for all $v \in V(G)$.

Conventions introduced by Dvořák, Sereni, and Volec:

Demand function: a map $f: V(G) \rightarrow [0,1]$.

(f, N)-coloring: a multicoloring ψ using N colors s.t. $|\psi(v)| \ge f(v) \cdot N$ for all $v \in V(G)$, i.e. v receives "at least f(v) fraction of the colors."

f-colorable: there exists an (f, N)-coloring.

 χ_f – constant demand functions; "local demands" – when is G f-colorable?

Proposition: If G is f-colorable, then $\alpha(G) \geq \sum_{v \in V(G)} f(v)$.

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

Proof.

- Let G be a min counterexample, and let $v \in V(G)$ have min degree.
- G v has an (f, N)-coloring, ψ , where $d(u) + 1 \mid N \ \forall u \in V(G)$.
- Let $\psi(v) = [N] \setminus (\bigcup_{u \in N(v)} \psi(u))$, i.e. color v what it doesn't "see."
- v "sees" at most $\sum_{u \in N(v)} f(u) \cdot N \le d(v) \cdot N/(d(v)+1)$ colors, so
- $|\phi(v)| \ge N/(d(v)+1)$, as required.

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

"Local Fractional Greedy" simultaneously generalizes:

Corollary (Frac. Relaxation of Greedy Bound): $\chi_f(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max degree.

Corollary (Caro-Wei Theorem): $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v) + 1)$.

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

"Local Fractional Greedy" simultaneously generalizes:

Corollary (Frac. Relaxation of Greedy Bound): $\chi_f(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max degree.

Corollary (Caro-Wei Theorem): $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v)+1)$.

All are tight for complete graphs (or if $\omega(G) = \Delta(G) + 1$, where $\omega(G) :=$ clique number).

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

"Local Fractional Greedy" simultaneously generalizes:

Corollary (Frac. Relaxation of Greedy Bound): $\chi_f(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max degree.

Corollary (Caro-Wei Theorem): $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v) + 1)$.

All are tight for complete graphs (or if $\omega(G) = \Delta(G) + 1$, where $\omega(G) :=$ clique number).

Brooks' Theorem: If $\Delta > 3$ and $\omega < \Delta$, then $\chi < \Delta + 1$.

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

"Local Fractional Greedy" simultaneously generalizes:

Corollary (Frac. Relaxation of Greedy Bound): $\chi_f(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max degree.

Corollary (Caro-Wei Theorem): $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v) + 1)$.

All are tight for complete graphs (or if $\omega(G) = \Delta(G) + 1$, where $\omega(G) :=$ clique number).

Brooks' Theorem: If $\Delta \geq 3$ and $\omega \leq \Delta$, then $\chi < \Delta + 1$.

Question: Let $\varepsilon > 0$. Is G f-colorable if $f(v) \le 1/(d(v) + 1 - \varepsilon)$, subject to some assumptions about cliques?

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

"Local Fractional Greedy" simultaneously generalizes:

Corollary (Frac. Relaxation of Greedy Bound): $\chi_f(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max degree.

Corollary (Caro-Wei Theorem): $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v) + 1)$.

All are tight for complete graphs (or if $\omega(G) = \Delta(G) + 1$, where $\omega(G) :=$ clique number).

Brooks' Theorem: If $\Delta \geq 3$ and $\omega \leq \Delta$, then $\chi < \Delta + 1$.

Question: Let $\varepsilon > 0$. Is G f-colorable if $f(v) \le 1/(d(v) + 1 - \varepsilon)$, subject to some assumptions about cliques?

• Obvious necessary condition: every clique K satisfies $\sum_{v \in K} f(v) \leq 1$.

Proposition (Local Fractional Greedy): If $f(v) \le 1/(d(v)+1)$ for all $v \in V(G)$, then G is f-colorable.

"Local Fractional Greedy" simultaneously generalizes:

Corollary (Frac. Relaxation of Greedy Bound): $\chi_f(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max degree.

Corollary (Caro-Wei Theorem): $\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v) + 1)$.

All are tight for complete graphs (or if $\omega(G) = \Delta(G) + 1$, where $\omega(G) :=$ clique number).

Brooks' Theorem: If $\Delta \geq 3$ and $\omega \leq \Delta$, then $\chi < \Delta + 1$.

Question: Let $\varepsilon > 0$. Is G f-colorable if $f(v) \le 1/(d(v) + 1 - \varepsilon)$, subject to some assumptions about cliques?

- Obvious necessary condition: every clique K satisfies $\sum_{v \in K} f(v) \leq 1$.
- Local Fractional Brooks': we prove this condition is also sufficient.

Local Fractional Brooks'

Theorem (Local Fractional Brooks', K.-Postle '18+)

If $f(v) \le 1/(d(v)+1/2)$ for all $v \in V(G)$ and every clique K satisfies $\sum_{v \in K} f(v) \le 1$, then G is f-colorable.

Local Fractional Brooks'

Theorem (Local Fractional Brooks', K.-Postle '18+)

If $f(v) \le 1/(d(v) + 1/2)$ for all $v \in V(G)$ and every clique K satisfies $\sum_{v \in K} f(v) \le 1$, then G is f-colorable.

- $f(v) \le 1/(d(v) + 1 \varepsilon)$ was not previously known for any $\varepsilon > 0$, even for independence number.
- $\varepsilon = 1/2$ is tight for the 5-cycle.

Local Fractional Brooks'

Theorem (Local Fractional Brooks', K.-Postle '18+)

If $f(v) \le 1/(d(v) + 1/2)$ for all $v \in V(G)$ and every clique K satisfies $\sum_{v \in K} f(v) \le 1$, then G is f-colorable.

- $f(v) \le 1/(d(v) + 1 \varepsilon)$ was not previously known for any $\varepsilon > 0$, even for independence number.
- $\varepsilon = 1/2$ is tight for the 5-cycle.

Corollary (K.-Postle)

Let $\sigma \leq 1/2$. If each clique $K \subseteq V(G)$ has at most $(1 - \sigma)(|K| - \sigma)$ simplicial vertices, then

$$\alpha(G) \ge \sum_{v \in V(G)} 1/(d(v) + 1 - \sigma).$$

Coloring	Local demands	deg-seq ind. #
Coloring $\chi \leq$	$f(v) \leq$	deg-seq ind. $\#$ $\alpha \geq \sum_{\mathbf{v}}$

Coloring	Local demands	deg-seq ind. #
$\chi \leq$	$f(v) \leq$	$\alpha \geq \sum_{\mathbf{v}}$
$\Delta + 1$ (Greedy)	1/(d(v)+1) (Greedy)	1/(d(v)+1) (Caro-Wei)

Coloring	Local demands	deg-seq ind. #
$\chi \leq$	$f(v) \leq$	$\alpha \geq \sum_{\mathbf{v}}$
$\Delta + 1$ (Greedy)	1/(d(v)+1) (Greedy)	1/(d(v)+1) (Caro-Wei)
Δ (if $\omega \leq \Delta$, Brooks)	$ \frac{1/(d(v) + 1/2) \ (\forall K, \\ \sum_{v \in K} f(v) \le 1, \ K-P) }{} $	$1/(d(v)+1/2)$ ($\forall K, < K /2$ simp. vtcs, K-P)

Coloring	Local demands	deg-seq ind. #
$\chi \leq$	$f(v) \leq$	$\alpha \geq \sum_{\mathbf{v}}$
$\Delta + 1$ (Greedy)	1/(d(v)+1) (Greedy)	1/(d(v)+1) (Caro-Wei)
Δ (if $\omega \leq \Delta$, Brooks)	$\frac{1/(d(v)+1/2) \ (\forall K,}{\sum_{v\in K} f(v) \leq 1, \ K-P)}$	$1/(d(v)+1/2) \ (\forall K, < K /2 \ \text{simp. vtcs, K-P})$
Δ -1 (if $\omega \leq \Delta$ -1, $\Delta \geq$ 9, Borodin-Kostochka)	??	??

Coloring	Local demands	deg-seq ind. #
$\chi \leq$	$f(v) \leq$	$\alpha \geq \sum_{\mathbf{v}}$
$\Delta + 1$ (Greedy)	1/(d(v)+1) (Greedy)	1/(d(v)+1) (Caro-Wei)
Δ (if $\omega \leq \Delta$, Brooks)	$\frac{1/(d(v)+1/2) \ (\forall K,}{\sum_{v\in K} f(v) \leq 1, \ K-P)}$	$1/(d(v)+1/2)$ ($\forall K, < K /2$ simp. vtcs, K-P)
Δ -1 (if $\omega \le \Delta$ -1, $\Delta \ge$ 9, Borodin-Kostochka)	??	??
$\lceil (\Delta + 1 + \omega)/2 \rceil$ (Reed)	??	$2/(d(v) + \omega(G[N[v]]) + 1)$, Brause et al

Coloring	Local demands	deg-seq ind. #
$\chi \leq$	$f(v) \leq$	$\alpha \geq \sum_{\mathbf{v}}$
$\Delta + 1$ (Greedy)	1/(d(v)+1) (Greedy)	1/(d(v)+1) (Caro-Wei)
Δ (if $\omega \leq \Delta$, Brooks)	$\frac{1/(d(v)+1/2) \ (\forall K,}{\sum_{v\in K} f(v) \leq 1, \ K-P)}$	$1/(d(v)+1/2)$ ($\forall K, < K /2$ simp. vtcs, K-P)
Δ -1 (if $\omega \le \Delta$ -1, $\Delta \ge$ 9, Borodin-Kostochka)	??	??
$\lceil (\Delta + 1 + \omega)/2 \rceil$ (Reed)	??	$2/(d(v) + \omega(G[N[v]]) + 1)$, Brause et al
$\begin{array}{ c c c }\hline 200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta} & \text{(Molloy/Johansson)} \end{array}$??	??

Coloring	Local demands	deg-seq ind. #
$\chi \leq$	$f(v) \leq$	$\alpha \geq \sum_{\mathbf{v}}$
$\Delta + 1$ (Greedy)	1/(d(v)+1) (Greedy)	1/(d(v)+1) (Caro-Wei)
Δ (if $\omega \leq \Delta$, Brooks)	$1/(d(v) + 1/2) (\forall K, \sum_{v \in K} f(v) \le 1, K-P)$	$1/(d(v)+1/2)$ ($\forall K, < K /2$ simp. vtcs, K-P)
Δ -1 (if $\omega \le \Delta$ -1, $\Delta \ge$ 9, Borodin-Kostochka)	??	??
$\lceil (\Delta + 1 + \omega)/2 \rceil \text{ (Reed)}$??	$2/(d(v) + \omega(G[N[v]]) + 1)$, Brause et al
$\begin{array}{c c} 200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta} & \text{(Molloy/Johansson)} \end{array}$??	??
$(1+o(1)) \frac{\Delta}{\ln \Delta}$ (if $\omega \leq 2$, Molloy)	??	$(1-o(1))\frac{d(v)}{\ln d(v)}$ (if $\omega \leq$ 2, Shearer)

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Reed's ω, Δ, χ Conjecture '98: $\chi \leq \lceil (\Delta + 1 + \omega)/2 \rceil$.

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Reed's
$$\omega, \Delta, \chi$$
 Conjecture '98: $\chi \leq \lceil (\Delta + 1 + \omega)/2 \rceil$.

Reed's Conjecture is true for χ_f (even without rounding).

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Reed's
$$\omega, \Delta, \chi$$
 Conjecture '98: $\chi \leq \lceil (\Delta + 1 + \omega)/2 \rceil$.

Reed's Conjecture is true for χ_f (even without rounding).

Conjecture ("Local Independence Reed's," Brause et al. '16):

 $\alpha(G) \ge \sum_{v \in V(G)} \frac{2}{d(v)+1+\omega(v)}$, where $\omega(v)$ is the size of the largest clique containing v.

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Reed's
$$\omega, \Delta, \chi$$
 Conjecture '98: $\chi \leq \lceil (\Delta + 1 + \omega)/2 \rceil$.

Reed's Conjecture is true for χ_f (even without rounding).

Conjecture ("Local Independence Reed's," Brause et al. '16): $\alpha(G) \geq \sum_{v \in V(G)} \frac{2}{d(v)+1+\omega(v)}$, where $\omega(v)$ is the size of the largest

clique containing v.

Conjecture (Local Fractional Reed's, K.-Postle)

If
$$f(v) \le 2/(d(v) + 1 + \omega(v))$$
 for all $v \in V(G)$, then G is f-colorable.

If true, local fractional Reed's implies:

- local independence Reed's.
- the fractional relaxation of Reed's Conjecture, and
- local fractional Brooks'.

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Borodin-Kostochka Conj: If $\omega \leq \Delta - 1$ and $\Delta \geq 9$, then $\chi \leq \Delta - 1$.

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Borodin-Kostochka Conj: If $\omega \leq \Delta - 1$ and $\Delta \geq 9$, then $\chi \leq \Delta - 1$.

Reed '98: B-K Conjecture is true for large Δ .

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Borodin-Kostochka Conj: If $\omega \leq \Delta - 1$ and $\Delta \geq 9$, then $\chi \leq \Delta - 1$.

Reed '98: B-K Conjecture is true for large Δ .

Local demands analogue of large Δ or χ : large min degree/small demands.

Conjecture (Local Fractional Borodin-Kostochka, K.-Postle)

For every $\sigma < 3/4$ there exists $\delta \in \mathbb{N}$ such that the following holds. If $f(v) \leq 1/(d(v)+1-\sigma)$ and $d(v) \geq \delta$ for all $v \in V(G)$ and every clique K satisfies $\sum_{v \in K} f(v) \leq 1$, then G is f-colorable.

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Borodin-Kostochka Conj: If $\omega \leq \Delta - 1$ and $\Delta \geq 9$, then $\chi \leq \Delta - 1$.

Reed '98: B-K Conjecture is true for large Δ .

Local demands analogue of large Δ or χ : large min degree/small demands.

Conjecture (Local Fractional Borodin-Kostochka, K.-Postle)

For every $\sigma < 3/4$ there exists $\delta \in \mathbb{N}$ such that the following holds. If $f(v) \leq 1/(d(v)+1-\sigma)$ and $d(v) \geq \delta$ for all $v \in V(G)$ and every clique K satisfies $\sum_{v \in K} f(v) \leq 1$, then G is f-colorable.

Farzad-Molloy-Reed '05: Characterized the $(\Delta+1-k)$ -critical graphs for small k and large Δ .

Question: When is $\chi \leq \Delta + 1 - k$? local demands analogues?

Borodin-Kostochka Conj: If $\omega \leq \Delta - 1$ and $\Delta \geq 9$, then $\chi \leq \Delta - 1$.

Reed '98: B-K Conjecture is true for large Δ .

Local demands analogue of large Δ or χ : large min degree/small demands.

Conjecture (Local Fractional Borodin-Kostochka, K.-Postle)

For every $\sigma < 3/4$ there exists $\delta \in \mathbb{N}$ such that the following holds. If $f(v) \leq 1/(d(v)+1-\sigma)$ and $d(v) \geq \delta$ for all $v \in V(G)$ and every clique K satisfies $\sum_{v \in K} f(v) \leq 1$, then G is f-colorable.

Farzad-Molloy-Reed '05: Characterized the $(\Delta+1-k)$ -critical graphs for small k and large Δ .

Problem: Determine the "fractionally $1/(d(v)+1-\sigma)$ -critical" graphs of large min degree for small σ .

If G is triangle-free then...

Shearer '91: ... $\alpha(G) \ge \sum_{v \in V(G)} (1 - o(1)) \log d(v) / d(v)$.

Molloy '17+: ... $\chi(G) \le (1 + o(1))\Delta(G)/\log(\Delta(G))$.

If *G* is triangle-free then...

Shearer '91: ... $\alpha(G) \ge \sum_{v \in V(G)} (1 - o(1)) \log d(v) / d(v)$.

Molloy '17+: ... $\chi(G) \leq (1 + o(1))\Delta(G)/\log(\Delta(G))$.

Conjecture (Local fractional Shearer/Molloy)

If $f(v) \le (1 - o(1)) \log d(v)/d(v)$ for all $v \in V(G)$ and G is triangle-free, then G is f-colorable.

If G is triangle-free then...

Shearer '91: ...
$$\alpha(G) \ge \sum_{v \in V(G)} (1 - o(1)) \log d(v) / d(v)$$
.

Molloy '17+: ...
$$\chi(G) \leq (1 + o(1))\Delta(G)/\log(\Delta(G))$$
.

Conjecture (Local fractional Shearer/Molloy)

If $f(v) \le (1 - o(1)) \log d(v) / d(v)$ for all $v \in V(G)$ and G is triangle-free, then G is f-colorable.

All three imply:

Corollary: The Ramsey number $R(3, k) \le (1 + o(1))k^2/\log k$.

Equivalently, every triangle-free graph on n vertices satisfies

$$n/\alpha(G) \leq (\sqrt{2} + o(1))\sqrt{n/\log n}$$
.

If *G* is triangle-free then...

Shearer '91: ...
$$\alpha(G) \ge \sum_{v \in V(G)} (1 - o(1)) \log d(v) / d(v)$$
.

Molloy '17+: ...
$$\chi(G) \leq (1 + o(1))\Delta(G)/\log(\Delta(G))$$
.

Conjecture (Local fractional Shearer/Molloy)

If $f(v) \leq (1 - o(1)) \log d(v) / d(v)$ for all $v \in V(G)$ and G is triangle-free, then G is f-colorable.

All three imply:

Corollary: The Ramsey number $R(3, k) \le (1 + o(1))k^2/\log k$.

Equivalently, every triangle-free graph on n vertices satisfies

$$n/\alpha(G) \leq (\sqrt{2} + o(1))\sqrt{n/\log n}$$
.

Conjecture (Cames van Batenburg et al. '18): If G is triangle-free, then $\chi_f(G) \leq (\sqrt{2} + o(1))\sqrt{n/\log n}$.

If *G* is triangle-free then...

Shearer '91: ...
$$\alpha(G) \ge \sum_{v \in V(G)} (1 - o(1)) \log d(v) / d(v)$$
.

Molloy '17+: ...
$$\chi(G) \leq (1 + o(1))\Delta(G)/\log(\Delta(G))$$
.

Conjecture (Local fractional Shearer/Molloy)

If $f(v) \le (1 - o(1)) \log d(v) / d(v)$ for all $v \in V(G)$ and G is triangle-free, then G is f-colorable.

All three imply:

Corollary: The Ramsey number $R(3, k) \le (1 + o(1))k^2/\log k$.

Equivalently, every triangle-free graph on n vertices satisfies

$$n/\alpha(G) \leq (\sqrt{2} + o(1))\sqrt{n/\log n}$$
.

Conjecture (Cames van Batenburg et al. '18): If G is triangle-free, then $\chi_f(G) \leq (\sqrt{2} + o(1))\sqrt{n/\log n}$.

If true, local fractional S/M implies this conjecture.

If *G* is triangle-free then...

Shearer '91: ...
$$\alpha(G) \ge \sum_{v \in V(G)} (1 - o(1)) \log d(v) / d(v)$$
.

Molloy '17+: ...
$$\chi(G) \leq (1 + o(1))\Delta(G)/\log(\Delta(G))$$
.

Conjecture (Local fractional Shearer/Molloy)

If $f(v) \leq (1 - o(1)) \log d(v) / d(v)$ for all $v \in V(G)$ and G is triangle-free, then G is f-colorable.

An approximate version of local fractional S/M:

If $f(v) \le (2e - o(1)) \log d(v)/(d(v)) \log \log d(v)$ and G is triangle-free, then G is f-colorable.

Any improvement over local fractional greedy for triangle-free is nontrivial and was not previously known.

Let G be a K_r -free graph on n vertices of avg degree d and max degree Δ .

Let G be a K_r -free graph on n vertices of avg degree d and max degree Δ .

Ajtai-Erdős-Komlós-Szemerédi '81: $\alpha(G) = \Omega((n/d)(\log(\log d)/r))$.

Let G be a K_r -free graph on n vertices of avg degree d and max degree Δ .

Ajtai-Erdős-Komlós-Szemerédi '81: $\alpha(G) = \Omega((n/d)(\log(\log d)/r))$.

Question (A-E-K-S): is $\alpha(G) = \Omega((n/d) \log d)$?

Let G be a K_r -free graph on n vertices of avg degree d and max degree Δ .

Ajtai-Erdős-Komlós-Szemerédi '81: $\alpha(G) = \Omega((n/d)(\log(\log d)/r))$.

Question (A-E-K-S): is $\alpha(G) = \Omega((n/d) \log d)$?

Shearer '95: $\alpha(G) = \Omega((n/\Delta)(\log \Delta/\log \log \Delta))$.

Let G be a K_r -free graph on n vertices of avg degree d and max degree Δ .

Ajtai-Erdős-Komlós-Szemerédi '81: $\alpha(G) = \Omega((n/d)(\log(\log d)/r))$.

Question (A-E-K-S): is $\alpha(G) = \Omega((n/d) \log d)$?

Shearer '95: $\alpha(G) = \Omega((n/\Delta)(\log \Delta/\log \log \Delta))$.

Conjecture (Local fractional A-E-K-S)

For every r, there exists some constant c such that the following holds. If $f(v) \le c \log d(v)/d(v)$ for each $v \in V(G)$ and G is a K_r -free, then G is f-colorable.

Let G be a K_r -free graph on n vertices of avg degree d and max degree Δ .

Ajtai-Erdős-Komlós-Szemerédi '81: $\alpha(G) = \Omega((n/d)(\log(\log d)/r)).$

Question (A-E-K-S): is $\alpha(G) = \Omega((n/d) \log d)$?

Shearer '95: $\alpha(G) = \Omega((n/\Delta)(\log \Delta/\log \log \Delta))$.

Conjecture (Local fractional A-E-K-S)

For every r, there exists some constant c such that the following holds. If $f(v) \le c \log d(v)/d(v)$ for each $v \in V(G)$ and G is a K_r -free, then G is f-colorable.

Theorem (K.-Postle '19++)

If
$$f(v) = O\left(\frac{\log d(v)}{d(v)(\log\log d(v))^2}\right)$$
 and G is K_r -free, then G is f -colorable.

Let G be a K_r -free graph on n vertices of avg degree d and max degree Δ .

Ajtai-Erdős-Komlós-Szemerédi '81: $\alpha(G) = \Omega((n/d)(\log(\log d)/r))$.

Question (A-E-K-S): is $\alpha(G) = \Omega((n/d) \log d)$?

Shearer '95: $\alpha(G) = \Omega((n/\Delta)(\log \Delta/\log \log \Delta))$.

Conjecture (Local fractional A-E-K-S)

For every r, there exists some constant c such that the following holds. If $f(v) \le c \log d(v)/d(v)$ for each $v \in V(G)$ and G is a K_r -free, then G is f-colorable.

Theorem (K.-Postle '19++)

If
$$f(v) = O\left(\frac{\log d(v)}{d(v)(\log \log d(v))^2}\right)$$
 and G is K_r -free, then G is f -colorable.

Corollary:
$$\alpha(G) \ge c \sum_{v \in V(G)} \frac{\log d(v)}{d(v)(\log \log d(v))^2}$$
.

Conclusion		
Local Fractional	hypotheses	demands: $f(v) \leq$
Brooks'	$\sum_{v \in K} f(v) \le 1, \forall K$	1/(d(v)+1/2)
Borodin-Kostochka	$\sigma <$ 3/4, $\delta(G)$ large,	$1/(d(v)+1-\sigma)$
	$\sum_{v \in K} f(v) \leq 1, \forall K$	
Reed's		$2/(d(v)+1+\omega(v))$

proved/conjectured

Local Fractional	hypotheses	demands: $f(v) \leq$
Brooks'	$\sum_{v \in K} f(v) \le 1, \forall K$	1/(d(v)+1/2)
Borodin-Kostochka	$\sigma <$ 3/4, $\delta(G)$ large,	$1/(d(v)+1-\sigma)$
	$\sum_{v \in K} f(v) \leq 1, \forall K$	
Reed's		$2/(d(v)+1+\omega(v))$
Shearer/Molloy	triangle-free	$(1-o(1)) \ln d(v)/d(v)$
${\sf approximate}\ {\sf S}/{\sf M}$		$O\left(\frac{\ln d(v)}{d(v)\ln\ln d(v)}\right)$
A-E-K-S	K_r -free	$O(\ln d(v)/d(v))$
approx. A-E-K-S		$O\left(\frac{\ln d(v)}{d(v)(\ln \ln d(v))^2}\right)$

proved/conjectured

Local Fractional	hypotheses	demands: $f(v) \leq$
Brooks'	$\sum_{v \in K} f(v) \le 1, \forall K$	1/(d(v)+1/2)
Borodin-Kostochka	$\sigma <$ 3/4, $\delta(G)$ large,	$1/(d(v)+1-\sigma)$
	$\sum_{v \in K} f(v) \leq 1, \forall K$	
Reed's		$2/(d(v)+1+\omega(v))$
Shearer/Molloy	triangle-free	$(1-o(1)) \ln d(v)/d(v)$
${\sf approximate} \; {\sf S/M}$		$O\left(\frac{\ln d(v)}{d(v)\ln \ln d(v)}\right)$
A-E-K-S	K_r -free	$O(\ln d(v)/d(v))$
approx. A-E-K-S		$O\left(\frac{\ln d(v)}{d(v)(\ln \ln d(v))^2}\right)$
Vizing's	line-graph	$1/(\omega(v)+1)$
TCC	total-graph	$1/(\omega(v)+1)$
Perfect graph Thm	perfect graph	$1/\omega(v)$

proved/conjectured

Local Fractional	hypotheses	demands: $f(v) \leq$
Brooks'	$\sum_{v \in K} f(v) \le 1, \forall K$	1/(d(v)+1/2)
Borodin-Kostochka	$\sigma <$ 3/4, $\delta(G)$ large,	$1/(d(v)+1-\sigma)$
	$\sum_{v \in K} f(v) \leq 1, \forall K$	
Reed's		$2/(d(v)+1+\omega(v))$
Shearer/Molloy	triangle-free	$(1-o(1)) \ln d(v)/d(v)$
approximate S/M		$O\left(\frac{\ln d(v)}{d(v)\ln\ln d(v)}\right)$
A-E-K-S	K_r -free	$O(\ln d(v)/d(v))$
approx. A-E-K-S		$O\left(\frac{\ln d(v)}{d(v)(\ln \ln d(v))^2}\right)$
Vizing's	line-graph	$1/(\omega(v)+1)$
TCC	total-graph	$1/(\omega(v)+1)$
Perfect graph Thm	perfect graph	$1/\omega(v)$

proved/conjectured

Thanks for listening!