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Introduction

A set S ⊆ V (G ) is a feedback vertex set (FVS) of G if G − S is a
forest.

Let φ(G ) denote the size of a minimum feedback vertex set of G .
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Introduction

A set S ⊆ V (G ) is a feedback vertex set (FVS) of G if G − S is a
forest.

Let φ(G ) denote the size of a minimum feedback vertex set of G .

Given a graph G and k ∈ Z, deciding if φ(G ) ≤ k is NP-hard, even if
G is planar with maximum degree four.

Question

Can we upper bound φ(G ) for certain classes of graphs?
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Subcubic Results (Vertex Bounds)

Theorem (Bondy, Hopkins, and Staton, 1987)

If G is a connected subcubic graph on n vertices and G 6= K4, then
φ(G ) ≤ 3n

8 + 1
4 .

This is tight if G is cubic and every nontrivial block of G is K3 or K+
4 .

K+
4
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Theorem (BHS, 1987)

Additionally, if G has girth ≥ 4, then φ(G ) ≤ n
3 + 1

3 .

φ(Q3) = 3 φ(V8) = 3
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Subcubic Results (Edge Bound)

Theorem (Alon, Mubayi, and Thomas, 2001)

If G is a 2-connected subcubic graph with m edges, then

φ(G ) ≤ m

4
+


1
2 if G = K4,
1
4 if G = K3,K

+
4 ,

0 otherwise.
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Corollary (BHS)

If G 6= K4, then φ(G ) ≤ m
4 + 1

4 ≤
(3n/2)

4 + 1
4 .
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Our Subcubic Results (Girth 4)

Theorem (KL, 2016)

If G is a 2-connected subcubic graph of girth ≥ 4 on m edges, then

φ(G ) ≤ 2m

9
+


1
3 if G = Q3,V8,
2
9 if G = K−3,3,
1
9 if G is one of five graphs,

0 otherwise.
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Corollary (Zheng and Lu 1990)

If G /∈ {Q3,V8}, φ(G ) ≤ n
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Our Subcubic Results (Girth 5)

Theorem (KL, 2016)

If G is a 2-connected subcubic graph on m edges of girth ≥ 5, then

φ(G ) ≤ m

5
+


2
5 if G is one of two cubic graphs,
1
5 if G is one of finitely many graphs,

0 otherwise.

This is tight for infinitely many 2-connected graphs.

. . .
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Subcubic Summary

If G is a 2-connected subcubic graph on m edges, then

Girth φ(G ) ≤ ? Exceptions

3 m
4 K4,K3,K

+
4

4 2m
9 Q3,V8,K

−
3,3, five other graphs

5 m
5 finitely many
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Planar Results & Conjectures

If G is a planar graph on n vertices then φ(G ) ≤ ?

Girth Conjectured Best Known

3

n
2

3n
5

Albertson & Berman 1979 Borodin 1976

Bipartite

3n
8

3n
7

Akiyama & Watanabe 1987 Wang, Xie, & Yu 2016

4

3n
8 ? 5n

11

Dross, Montassier, Pinlou 2014

5

3n
10

n
3

Kowalik, Lužar, KL 2016

Škrekovski 2010
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Kowalik, Lužar, KL 2016
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Our Planar Results

Theorem (KL, 2016)

If G is a connected planar graph on n vertices and m edges of girth ≥ 5,
then φ(G ) ≤ 2m−n+2

7 .

By Euler’s formula,

Corollary

If G is a planar graph on n vertices and m edges of girth ≥ 5, then
φ(G ) ≤ 2m−n+2

7 ≤ m
5 ≤

n−2
3 .

Conjecture (DMP, 2015)

If G is a planar graph on m edges of girth ≥ g , then φ(G ) ≤ g
5 .
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The real theorems

Theorem (Girth 4 Subcubic)

If G is a 2-connected subcubic graph of girth ≥ 4 on m edges, then
φ(G ) ≤ 2m

9 + 1
3

Theorem ()

If G is a 2-connected subcubic graph on m edges , then φ(G ) ≤ m
5 +

Theorem ()

If G is a planar graph on n vertices and m edges , then φ(G ) ≤ .
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The real theorems

Theorem (Real Girth 4 Subcubic)
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The real theorems

Theorem (Real Girth 4 Subcubic)

If G is a 2-connected subcubic graph with no disjoint triangles on m
edges, then φ(G ) ≤ 2m

9 + 2
3

Theorem (Girth 5 Subcubic)

If G is a 2-connected subcubic graph on m edges of girth ≥ 5, then
φ(G ) ≤ m

5 + 2
5

Theorem (Planar)

If G is a planar graph on n vertices and m edges , then φ(G ) ≤ .
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Theorem (Real Girth 5 Subcubic)
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5 + 4
5

Theorem (Real Planar)

If G is a planar graph on n vertices and m edges , then φ(G ) ≤ .
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If G is a 2-connected subcubic graph on m edges with no disjoint triangles
or 4-cycles, then φ(G ) ≤ m

5 + 4
5

Theorem (Real Planar)

If G is a connected planar graph on n vertices and m edges of girth ≥ 5,
then φ(G ) ≤ 2m−n+2

7 .
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3

Theorem (Real Girth 5 Subcubic)

If G is a 2-connected subcubic graph on m edges with no disjoint triangles
or 4-cycles, then φ(G ) ≤ m

5 + 4
5

Theorem (Real Planar)

If G is a 2-connected subcubic planar graph on n vertices and m edges
with no disjoint triangles or 4-cycles, then φ(G ) ≤ 2m−n+6

7 .
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Proof Outline of the Real Theorems

Let G be a minimum counterexample to the real girth 5 subcubic theorem.

Then

G is internally 3-edge-connected

G has no triangle

G has girth at least five

G is cubic

For every v ∈ V (G ) and av , bv ∈ E (G ), G − v contains two disjoint
5-cycles, one containing a and the other containing b

G is the dodecahedron.
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Proving G has no triangle

Suppose G contains a triangle abc with bb′, cc ′ ∈ E (G ) and
b′c ′ /∈ E (G ).

Let G ′ = G − {a, b, c}+ b′c ′.

Note |V (G ′)| = |V (G )| − 3,
|E (G ′)| = |E (G )| − 5, and G contains no disjoint short cycles.

By minimality, there is a FVS S of G ′ of size at most
m−5
5 + ε5(G ′) = m

5 + ε5(G ′)− 1

a

bc

b′c ′

Then S ∪ {a} is a FVS of G of size at most m
5 + ε5(G ′).
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Proof Outline of the Real Theorems

Let G be a minimum counterexample to the real girth 5 subcubic theorem.
Then

G is internally 3-edge-connected

G has no triangle

G has girth at least five

G is cubic

For every v ∈ V (G ) and av , bv ∈ E (G ), G − v contains two disjoint
5-cycles, one containing a and the other containing b

G is the dodecahedron.
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Proving the 5-cycle property

Let v ∈ V (G ) and av , bv ∈ E (G ). Say aa1, aa2, bb1, bb2 ∈ E (G ) and
a1a2, b1b2 /∈ E (G ).

Let G ′ = G − {a, b, v}+ a1a2 + b1b2.

Note |V (G ′)| = |V (G )| − 3,
and |E (G ′)| = |E (G )| − 5.

Suppose for contradiction G − v does not contain disjoint 4-cycles.

By minimality, there is a FVS S of G ′ of size at most
m−5
5 + ε5(G ′) = m

5 + ε5(G ′)− 1.

va b

a1

a2

b1

b2

Then S ∪ {v} is a FVS of G of size at most m
5 + ε5(G ′).
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Thanks for listening!
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