A proof of the Erdős-Faber-Lovász conjecture

Tom Kelly

Joint work with: Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus

Oberwolfach Graph Theory Workshop December 7th, 2022

The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \leq n$.

The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \leq n$.

One of Erdős' "three most favorite combinatorial problems":

Erdős initially offered \$50 for a solution, raised to \$500.
Faber, Lovász and I made this harmless looking conjecture at a party in Boulder Colorado in September 1972. Its difficulty was realised only slowly. I now offer 500 dollars for a proof or disproof. (Not long ago I only offered 50; the increase is not due to inflation but to the fact that I now think the problem is very difficult. Perhaps I am wrong.) -Paul Erdős, 1981

The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \leq n$.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) The Erdős–Faber–Lovász conjecture is true for sufficiently large *n*.

Hypergraph edge-coloring

(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

Erdős-Faber-Lovász conjecture (reformulated)

linear hypergraph: every pair of vertices contained in at most one edge

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Line graph:

- edges \rightarrow vertices: edges that share a vertex are adjacent
- proper edge-coloring \rightarrow proper vertex-coloring

The previous formulation is equivalent:

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \leq n$.

Erdős-Faber-Lovász conjecture (reformulated)

linear hypergraph: every pair of vertices contained in at most one edge

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved

The previous formulation is equivalent:

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \leq n$.

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

- Graphs are linear hypergraphs
- Linear hypergraphs with *n* vertices have maximum degree $\leq n-1$

Vizing's theorem (1964)

If G is a graph of maximum degree at most Δ , then $\chi'(G) \leq \Delta + 1$.

Corollary: EFL is true for graphs

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Extremal examples:

Finite projective plane of order *k*: (k+1)-uniform intersecting linear hypergraph with $n = k^2 + k + 1$ vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with n - 1 size-two edges and one size-(n - 1) edge

Complete graph: $\binom{n}{2}$ size-two edges; if $\chi' < n$, then color classes are perfect matchings $\Rightarrow n$ is even

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Direct approaches:

Trivial: $\chi'(\mathcal{H}) \leq 2n - 3$ (color greedily, in order of size) Chang-Lawler (1989): $\chi'(\mathcal{H}) \leq \lceil 3n/2 - 2 \rceil$

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Relaxed parameters:

de Bruijn-Erdős (1948): true for intersecting hypergraphs

Seymour (1982): \exists a matching of size at least $|\mathcal{H}|/n$

Kahn–Seymour (1992): fractional chromatic index is at most n

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Probabilistic approach:

Faber-Harris (2019): EFL is true if $|e| \in [3, c\sqrt{n}] \quad \forall e \in \mathcal{H} \ (c \ll 1)$ **Kahn (1992):** $\chi'(\mathcal{H}) \leq n + o(n)$

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) If \mathcal{H} is an *n*-vertex linear hypergraph where *n* is sufficiently large, then

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) If \mathcal{H} is an *n*-vertex linear hypergraph where *n* is sufficiently large, then

 $\chi'(\mathcal{H}) \leq n.$

We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) $\forall \delta > 0, \exists \sigma > 0$ such that the following holds for *n* sufficiently large. If \mathcal{H} is an *n*-vertex linear hypergraph such that

- $\Delta(\mathcal{H}) \leq (1-\delta)n$ and
- at most $(1-\delta)n$ edges have size $(1\pm\delta)\sqrt{n}$,

then $\chi'(\mathcal{H}) \leq (1 - \sigma)n$.

The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes with maximum degree at most Δ , then $\chi'(\mathcal{H}) \leq \Delta + o(\Delta)$.

An *n*-vtx linear hypergraph \mathcal{H} has max degree at most $n/\min_{e \in \mathcal{H}}(|e|-1)$. **Corollary 1:** EFL holds if $|e| \in [3, k] \ \forall e \in \mathcal{H}$ and $n \gg k$ **Corollary 2:** EFL holds "asymptotically" if $|e| \le k \ \forall e \in \mathcal{H}$ and $n \gg k$

The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes with maximum degree at most Δ , then $\chi'(\mathcal{H}) \leq \Delta + o(\Delta)$.

An *n*-vtx linear hypergraph \mathcal{H} has max degree at most $n/\min_{e \in \mathcal{H}}(|e|-1)$. **Corollary 1:** EFL holds if $|e| \in [3, k] \quad \forall e \in \mathcal{H} \text{ and } n \gg k$ **Corollary 2:** EFL holds "asymptotically" if $|e| \leq k \quad \forall e \in \mathcal{H} \text{ and } n \gg k$ **Kahn (1996):** The Pippenger–Spencer theorem holds for list coloring

• Kahn used an intermediate result to generalize Corollary 2 for all linear hypergraphs in 1992.

The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes with maximum degree at most Δ , then $\chi'(\mathcal{H}) \leq \Delta + o(\Delta)$.

An *n*-vtx linear hypergraph \mathcal{H} has max degree at most $n/\min_{e \in \mathcal{H}}(|e|-1)$. **Corollary 1:** EFL holds if $|e| \in [3, k] \quad \forall e \in \mathcal{H} \text{ and } n \gg k$ **Corollary 2:** EFL holds "asymptotically" if $|e| \leq k \quad \forall e \in \mathcal{H} \text{ and } n \gg k$ **Kahn (1996):** The Pippenger–Spencer theorem holds for list coloring

- Kahn used an intermediate result to generalize Corollary 2 for all linear hypergraphs in 1992.
- Our proof also uses nibble to color "small" edges and moreover exploits **quasirandomness** properties of the resulting coloring.

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^2/f$ for $f \leq \Delta^2 + 1$, then $\chi(G) = O(\Delta/\log\sqrt{f})$.

Corollary: Johansson's theorem for triangle-free graphs **Davies, Kang, Pirot, & Sereni (2020+):** $\chi(G) \leq (1 + o(1))\Delta / \log \sqrt{f}$

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^2/f$ for $f \leq \Delta^2 + 1$, then $\chi(G) = O(\Delta/\log\sqrt{f})$.

Corollary: $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. the following holds for $1/\delta \le k \le \delta \sqrt{n}$: If \mathcal{H} is a *k*-uniform, *n*-vtx, linear hypergraph, then $\chi'(\mathcal{H}) \le \varepsilon n$

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^2/f$ for $f \leq \Delta^2 + 1$, then $\chi(G) = O(\Delta/\log\sqrt{f})$.

Corollary: $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. the following holds for $1/\delta \le k \le \delta \sqrt{n}$: If \mathcal{H} is a k-uniform, *n*-vtx, linear hypergraph, then $\chi'(\mathcal{H}) \le \varepsilon n$

Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq (1 - \sigma) {\Delta \choose 2}$ for $1/\Delta \ll \sigma$, then $\chi(G) \leq (1 - \sigma/e^6)\Delta$.

Improved by Bruhn and Joos (2018), Bonamy, Perrett, and Postle (2018+), and Hurley, de Joannis de Verclos, and Kang (2020+)

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^2/f$ for $f \leq \Delta^2 + 1$, then $\chi(G) = O(\Delta/\log\sqrt{f})$.

Corollary: $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. the following holds for $1/\delta \le k \le \delta \sqrt{n}$: If \mathcal{H} is a k-uniform, *n*-vtx, linear hypergraph, then $\chi'(\mathcal{H}) \le \varepsilon n$

Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq (1 - \sigma) {\Delta \choose 2}$ for $1/\Delta \ll \sigma$, then $\chi(G) \leq (1 - \sigma/e^6)\Delta$.

Corollary: $\forall \delta \in (0, 1)$, the following holds for $k = (1 - \delta)\sqrt{n}$ and $n \gg 1$: If \mathcal{H} is a k-uniform, n-vtx, linear hypergraph, then $\chi'(\mathcal{H}) \leq (1 - \delta/2^9)n$

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

If \mathcal{H} is an *n*-vertex linear hypergraph where *n* is sufficiently large, then

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) If \mathcal{H} is an *n*-vertex linear hypergraph where *n* is sufficiently large, then

- **1.** "Small" edge case: $|e| \le k \ \forall e \in \mathcal{H}$ (Kahn asked in '94 for k = 3)
 - ▶ Pippenger–Spencer theorem (i.e. nibble) $\Rightarrow \chi'(\mathcal{H}) \leq n + o(n)$
 - Using absorption, reduce to a graph coloring problem

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) If \mathcal{H} is an *n*-vertex linear hypergraph where *n* is sufficiently large, then

- **1.** "Small" edge case: $|e| \le k \ \forall e \in \mathcal{H}$ (Kahn asked in '94 for k = 3)
 - ▶ Pippenger–Spencer theorem (i.e. nibble) $\Rightarrow \chi'(\mathcal{H}) \leq n + o(n)$
 - Using absorption, reduce to a graph coloring problem
- **2.** "Large" edge case: $|e| \ge r \ \forall e \in \mathcal{H}$ (for $r \gg 1$)
 - Greedy coloring in order of size $\Rightarrow \chi'(\mathcal{H}) \leq (1+2/r)n$
 - "Reordering lemma" finds structure in line graph a large nearly complete or locally sparse induced subgraph

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) If \mathcal{H} is an *n*-vertex linear hypergraph where *n* is sufficiently large, then

- **1.** "Small" edge case: $|e| \le k \ \forall e \in \mathcal{H}$ (Kahn asked in '94 for k = 3)
 - ▶ Pippenger–Spencer theorem (i.e. nibble) $\Rightarrow \chi'(\mathcal{H}) \leq n + o(n)$
 - Using absorption, reduce to a graph coloring problem
- **2.** "Large" edge case: $|e| \ge r \ \forall e \in \mathcal{H}$ (for $r \gg 1$)
 - Greedy coloring in order of size $\Rightarrow \chi'(\mathcal{H}) \leq (1+2/r)n$
 - "Reordering lemma" finds structure in line graph a large nearly complete or locally sparse induced subgraph
- 3. Merge cases
 - Color large edges first, with special properties
 - Extend to small edges, avoiding conflicts

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$.

High degree: more graph-like

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$.

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers *U* (perfect coverage of *U*).

High degree: more graph-like

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U \coloneqq \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$.

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Proof that $\chi'(\mathcal{H}) \leq n$ (assuming Vizing-reduction)

• vertices in U have leftover degree $\leq (n-1) - k < n - k$;

• vertices not in U have leftover degree $\leq (1/2 + \gamma)(1 - \varepsilon)n < n - k$. Uncolored edges comprise a **graph** of max degree < n - k. (*) Finish with Vizing's theorem!

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$.

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers *U* (perfect coverage of *U*).

Perfect coverage of U not always possible (e.g. K_n for n odd). Instead, find coloring with **nearly perfect coverage**:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove $\chi' \leq n$.

Simplified proof with one extra color Recall: $U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$

Aim: Using $k = \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have **nearly perfect coverage** of *U*.

Simplified proof with one extra color Recall: $U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$

Aim: Using $k = \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- the color classes have nearly perfect coverage of U.

Proof (sketch) of $\chi' \leq n+1$

Put each graph edge in a "reservoir" R independently with probability 1/2;

- ▶ with high probability $\Delta(\mathcal{H} \setminus R) \leq (1/2 + o(1))n$, so
 - $\chi'(\mathcal{H}\setminus R) \leq (1/2+\gamma)n$ by the Pippenger-Spencer theorem.

To obtain nearly perfect coverage, "re-run" Pippenger-Spencer proof (**nibble**) but apply **absorption** for each color class.

Nibble: Randomly construct matching in $\mathcal{H} \setminus R$ covering $\approx (1 - \gamma)n$ vtcs. **Absorption:** Augment with matching in R covering remaining U-vtcs.

Simplified proof with one extra color Recall: $U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$

Aim: Using $k = \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Proof (sketch) of $\chi' \leq n+1$

Put each graph edge in a "reservoir" R independently with probability 1/2; **Nibble + absorption:** using $k = (1/2 + \gamma)n$ colors, color some $\mathcal{H}' \supseteq \mathcal{H} \setminus R$ with **nearly perfect coverage** of U:

• vertices in U have leftover degree $\leq (n-1) - (k-1) \leq n-k$;

• vertices not in U have leftover degree $\leq (1 - \varepsilon)n/2 + o(n) < n - k$.

Thus $\mathcal{H} \setminus \mathcal{H}'$ is a **graph** and $\Delta(\mathcal{H} \setminus \mathcal{H}') \leq n - k$, so by Vizing's thm

 $\chi'(\mathcal{H}) \leq \chi'(\mathcal{H}') + \chi'(\mathcal{H} \setminus \mathcal{H}') \leq k + (n - k + 1) = n + 1.$

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

If |U| is small, use "crossing" edges

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$. **Trivial:** $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \le n + 2n/r$ edges of size at least |e| intersect e.

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \ \forall e \in \mathcal{H}$, where $r \gg 1$.

Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \leq n + 2n/r$ edges of size at least |e| intersect e. I.e. $d \leq (e) \leq n + 2n/r \quad \forall e \in \mathcal{H}$ if \leq is a size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$.

Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \leq n + 2n/r$ edges of size at least |e| intersect e. I.e. $d \leq (e) \leq n + 2n/r \quad \forall e \in \mathcal{H}$ if \leq is a size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Reordering: Let *e* be the last edge with $d^{\leq}(e) \geq n$. If *f* intersects *e* and < n edges preceding *e* intersect *f*, then move *f* immediately after *e*.

If reordering "finishes', then $d^{\preceq}(e) < n \ \forall e \in \mathcal{H}$, so $\chi'(\mathcal{H}) \leq n$.

Reordering lemma (informal)

If reordering "gets stuck", then there is a highly structured $\mathcal{W}\subseteq\mathcal{H}.$

Proof when all edges are large

Proof when all edges are large

Case 1: $\zeta < \sqrt{\delta}$ $(\mathcal{W} \approx \text{ projective plane})$

Proof (sketch)

Find $|\mathcal{H}_{left} \cup \mathcal{W}| - n$ pairs of disjoint edges in $\mathcal{H}_{left} \cup \mathcal{W}$:

- assign edges of each pair the same color;
- assign remaining edges (of $\mathcal{H}_{left} \cup \mathcal{W}$) distinct colors.

Proof when all edges are large

 $\begin{array}{ll} \mbox{For } 0 < \delta \ll 1 \mbox{ and } \zeta < 1; & (1/r \ll \delta) \\ \bullet \ \ensuremath{\mathcal{W}} \mbox{ covers } (1-\delta) {n \choose 2} \mbox{ pairs of vertices, and } |e| \sim (1-\zeta) \sqrt{n} \ \forall e \in \mathcal{W}. \\ \bullet \ \mbox{ If } e \in \mathcal{H}_{\rm good}, \mbox{ then } d^{\preceq}(e) < n. \\ \bullet \ \mbox{ If } e \in \mathcal{H}_{\rm left}, \mbox{ then } |e| \geq (1-\zeta) \sqrt{n}. \end{array}$

Case 2: $\zeta \ge \sqrt{\delta}$ ("non-extremal case")

Proof (sketch)

Line graph of \mathcal{W} has max degree $\leq (1 + o(1))n$ and is locally sparse, i.e. $\leq (1 - \zeta/2)\binom{n}{2}$ edges in the neighborhood of every vertex:

• thm of Molloy & Reed $\Rightarrow \chi'(\mathcal{W}) \leq (1-2^{-10}\zeta)n;$

Apply "reordering" argument to edges preceding \mathcal{W} :

• If $e \in \mathcal{H}_{\mathrm{left}}$, then $d^{\prec}(e) \leq 2^{-10}\zeta n - 1 \Rightarrow \chi'(\mathcal{H}_{\mathrm{left}}) \leq 2^{-10}\zeta n$.

Subsequent work

Question (Erdős, 1977)

If \mathcal{H} is an *n*-vertex hypergraph of maximum degree at most *n* and **codegree** at most *t*, what is the maximum possible value of $\chi'(\mathcal{H})$?

• The EFL conjecture asserts that the answer for t = 1 is n.

Subsequent work

Question (Erdős, 1977)

If \mathcal{H} is an *n*-vertex hypergraph of maximum degree at most *n* and **codegree** at most *t*, what is the maximum possible value of $\chi'(\mathcal{H})$?

• The EFL conjecture asserts that the answer for t = 1 is *n*. We prove that for $2 \le t < \sqrt{n}$ and *n* sufficiently large, the answer is *tn*:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

 $\forall \varepsilon > 0$, the following holds for *n* sufficiently large and $t \in \mathbb{N}$. If \mathcal{H} is an *n*-vertex hypergraph with codegree at most *t* and maximum degree at most $(1 - \varepsilon)tn$, then $\chi'_{\ell}(\mathcal{H}) \leq tn$. Moreover, if $\chi'_{\ell}(\mathcal{H}) = tn$, then \mathcal{H} is a *t*-fold projective plane.

Strengthens answer to Erdős' question in three ways:

- allows relaxed maximum degree assumption (except when t = 1)
- characterizes extremal examples
- holds for list coloring

Subsequent work

Question (Erdős, 1977)

If \mathcal{H} is an *n*-vertex hypergraph of maximum degree at most *n* and **codegree** at most *t*, what is the maximum possible value of $\chi'(\mathcal{H})$?

• The EFL conjecture asserts that the answer for t = 1 is *n*. We prove that for $2 \le t < \sqrt{n}$ and *n* sufficiently large, the answer is *tn*:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

 $\forall \varepsilon > 0$, the following holds for *n* sufficiently large and $t \in \mathbb{N}$. If \mathcal{H} is an *n*-vertex hypergraph with codegree at most *t* and maximum degree at most $(1 - \varepsilon)tn$, then $\chi'_{\ell}(\mathcal{H}) \leq tn$. Moreover, if $\chi'_{\ell}(\mathcal{H}) = tn$, then \mathcal{H} is a *t*-fold projective plane.

When $t \ge \sqrt{n}$, a *t*-fold projective plane has max degree > *n* Horák and Tuza (1990): $\chi'(\mathcal{H}) \le n^{3/2}$; covers range $t > \sqrt{n}$.

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

Kahn: "asymptotic" versions of List EFL and Berge-Füredi-Meyniel

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

Kahn: "asymptotic" versions of List EFL and Berge–Füredi–Meyniel What about **List Berge–Füredi–Meyniel**? **Thm:** $|\bigcup_{e \ni v} e| \le D \ \forall v \in V(\mathcal{H})$ and $D \ge \log^2 n \Rightarrow \chi'_{\ell}(\mathcal{H}) \le D + o(D)$

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

Kahn: "asymptotic" versions of List EFL and Berge–Füredi–Meyniel What about List Berge–Füredi–Meyniel? Thm: $|\bigcup_{e\ni v} e| \le D \ \forall v \in V(\mathcal{H}) \text{ and } D \ge \log^2 n \Rightarrow \chi'_{\ell}(\mathcal{H}) \le D + o(D)$ Two more tractable problems?

- Full "asymptotic" List Berge-Füredi-Meyniel
- "χ-EFL" variant

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

Kahn: "asymptotic" versions of List EFL and Berge–Füredi–Meyniel What about List Berge–Füredi–Meyniel? Thm: $|\bigcup_{e \ni v} e| \le D \ \forall v \in V(\mathcal{H}) \text{ and } D \ge \log^2 n \Rightarrow \chi'_{\ell}(\mathcal{H}) \le D + o(D)$ Two more tractable problems?

- Full "asymptotic" List Berge-Füredi-Meyniel
- "χ-EFL" variant

Thanks for listening!