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The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors

chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G1, . . . ,Gn are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then χ(

⋃n
i=1 Gi ) ≤ n.
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proper coloring: adjacent vertices assigned different colors

chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G1, . . . ,Gn are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then χ(

⋃n
i=1 Gi ) ≤ n.

One of Erdős’ “three most favorite combinatorial problems”:

• Erdős initially offered $50 for a solution, raised to $500.

Faber, Lovász and I made this harmless looking conjecture at a
party in Boulder Colorado in September 1972. Its difficulty was
realised only slowly. I now offer 500 dollars for a proof or disproof.
(Not long ago I only offered 50; the increase is not due to inflation
but to the fact that I now think the problem is very difficult.
Perhaps I am wrong.) –Paul Erdős, 1981
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The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors

chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G1, . . . ,Gn are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then χ(

⋃n
i=1 Gi ) ≤ n.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

The Erdős–Faber–Lovász conjecture is true for sufficiently large n.
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Hypergraph edge-coloring

(proper) edge-coloring: no two edges of same color share a vertex

chromatic index: min # colors used in proper edge-coloring, denoted χ′

χ′ = 3
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Erdős–Faber–Lovász conjecture (reformulated)
linear hypergraph: every pair of vertices contained in at most one edge

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Line graph:

• edges → vertices: edges that share a vertex are adjacent

• proper edge-coloring → proper vertex-coloring

The previous formulation is equivalent:

If G1, . . . ,Gn are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then χ(

⋃n
i=1 Gi ) ≤ n.
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linear hypergraph: every pair of vertices contained in at most one edge

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Hypergraph duality:

• edges → vertices and vertices → edges

• linearity is preserved

The previous formulation is equivalent:

If G1, . . . ,Gn are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then χ(
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Basic background

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.
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Basic background

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

• Graphs are linear hypergraphs

• Linear hypergraphs with n vertices have maximum degree ≤ n − 1

Vizing’s theorem (1964)

If G is a graph of maximum degree at most ∆, then χ′(G ) ≤ ∆ + 1.

Corollary: EFL is true for graphs

Tom Kelly A proof of the Erdős–Faber–Lovász conjecture 4 / 15



Basic background

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Extremal examples:

Finite projective plane of order k: (k+1)-uniform intersecting linear hy-
pergraph with n = k2 + k + 1 vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with n−
1 size-two edges and one size-(n − 1) edge

Complete graph:
(n

2

)
size-two edges; if χ′ < n, then color classes are

perfect matchings ⇒ n is even
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Basic background

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Direct approaches:

Trivial: χ′(H) ≤ 2n − 3 (color greedily, in order of size)

Chang–Lawler (1989): χ′(H) ≤ d3n/2− 2e
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Basic background

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Relaxed parameters:

de Bruijn–Erdős (1948): true for intersecting hypergraphs

Seymour (1982): ∃ a matching of size at least |H|/n
Kahn–Seymour (1992): fractional chromatic index is at most n
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Basic background

The Erdős–Faber–Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Probabilistic approach:

Faber–Harris (2019): EFL is true if |e| ∈ [3, c
√
n] ∀e ∈ H (c � 1)

Kahn (1992): χ′(H) ≤ n + o(n)
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Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

If H is an n-vertex linear hypergraph where n is sufficiently large, then

χ′(H) ≤ n.

We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

∀δ > 0, ∃σ > 0 such that the following holds for n sufficiently large.
If H is an n-vertex linear hypergraph such that

• ∆(H) ≤ (1− δ)n and

• at most (1− δ)n edges have size (1± δ)
√
n,

then χ′(H) ≤ (1− σ)n.
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The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger–Spencer theorem (1989)

If H is a linear hypergraph with bounded edge-sizes with maximum degree
at most ∆, then χ′(H) ≤ ∆ + o(∆).

An n-vtx linear hypergraph H has max degree at most n/mine∈H(|e| − 1).

Corollary 1: EFL holds if |e| ∈ [3, k] ∀e ∈ H and n� k

Corollary 2: EFL holds “asymptotically” if |e| ≤ k ∀e ∈ H and n� k

Kahn (1996): The Pippenger–Spencer theorem holds for list coloring

• Kahn used an intermediate result to generalize Corollary 2 for all
linear hypergraphs in 1992.

Our proof also uses nibble to color “small” edges and moreover exploits
quasirandomness properties of the resulting coloring.
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Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree ≤ ∆. If every v ∈ V (G ) satisfies
|E (G [N(v)])| ≤ ∆2/f for f ≤ ∆2 + 1, then χ(G ) = O(∆/ log

√
f ).

Corollary: Johansson’s theorem for triangle-free graphs

Davies, Kang, Pirot, & Sereni (2020+): χ(G ) ≤ (1 + o(1))∆/ log
√
f

Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree ≤ ∆. If every v ∈ V (G ) satisfies
|E (G [N(v)])| ≤ (1− σ)

(∆
2

)
for 1/∆� σ, then χ(G ) ≤ (1− σ/e6)∆.
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Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree ≤ ∆. If every v ∈ V (G ) satisfies
|E (G [N(v)])| ≤ ∆2/f for f ≤ ∆2 + 1, then χ(G ) = O(∆/ log

√
f ).

Corollary: ∀ε > 0, ∃δ > 0 s.t. the following holds for 1/δ ≤ k ≤ δ√n:
If H is a k-uniform, n-vtx, linear hypergraph, then χ′(H) ≤ εn

Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree ≤ ∆. If every v ∈ V (G ) satisfies
|E (G [N(v)])| ≤ (1− σ)

(∆
2

)
for 1/∆� σ, then χ(G ) ≤ (1− σ/e6)∆.

Improved by Bruhn and Joos (2018), Bonamy, Perrett, and Postle
(2018+), and Hurley, de Joannis de Verclos, and Kang (2020+)
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Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree ≤ ∆. If every v ∈ V (G ) satisfies
|E (G [N(v)])| ≤ ∆2/f for f ≤ ∆2 + 1, then χ(G ) = O(∆/ log
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f ).
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If H is a k-uniform, n-vtx, linear hypergraph, then χ′(H) ≤ εn

Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree ≤ ∆. If every v ∈ V (G ) satisfies
|E (G [N(v)])| ≤ (1− σ)

(∆
2

)
for 1/∆� σ, then χ(G ) ≤ (1− σ/e6)∆.

Corollary: ∀δ ∈ (0, 1), the following holds for k = (1− δ)
√
n and n� 1:

If H is a k-uniform, n-vtx, linear hypergraph, then χ′(H) ≤ (1−δ/29)n
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Roadmap to the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

If H is an n-vertex linear hypergraph where n is sufficiently large, then

χ′(H) ≤ n.

1. “Small” edge case: |e| ≤ k ∀e ∈ H (Kahn asked in ‘94 for k = 3)

� Pippenger–Spencer theorem (i.e. nibble) ⇒ χ′(H) ≤ n + o(n)
� Using absorption, reduce to a graph coloring problem

2. “Large” edge case: |e| ≥ r ∀e ∈ H (for r � 1)

� Greedy coloring in order of size ⇒ χ′(H) ≤ (1 + 2/r)n
� “Reordering lemma” finds structure in line graph – a large

nearly complete or locally sparse induced subgraph

3. Merge cases

� Color large edges first, with special properties
� Extend to small edges, avoiding conflicts
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Vizing-reduction strategy for bounded edge-sizes

Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

• Fix 0 < γ � ε� 1, and let U := {v ∈ V (H) : d(v) > (1− ε)n}.

Vizing-reduction: Using k := b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• ≥ (1/2− γ)-proportion of graph edges at each vtx are colored;

• every color class covers U (perfect coverage of U).

Low degree: more flexibility High degree: more graph-like
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Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

• Fix 0 < γ � ε� 1, and let U := {v ∈ V (H) : d(v) > (1− ε)n}.

Vizing-reduction: Using k := b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• ≥ (1/2− γ)-proportion of graph edges at each vtx are colored;

• every color class covers U (perfect coverage of U).

Proof that χ′(H) ≤ n (assuming Vizing-reduction)

• vertices in U have leftover degree ≤ (n − 1)− k < n − k;

• vertices not in U have leftover degree ≤ (1/2 + γ)(1− ε)n < n − k .

Uncolored edges comprise a graph of max degree < n − k . (?)

Finish with Vizing’s theorem!
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Vizing-reduction strategy for bounded edge-sizes

Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

• Fix 0 < γ � ε� 1, and let U := {v ∈ V (H) : d(v) > (1− ε)n}.

Vizing-reduction: Using k := b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• ≥ (1/2− γ)-proportion of graph edges at each vtx are colored;

• every color class covers U (perfect coverage of U).

Perfect coverage of U not always possible (e.g. Kn for n odd).
Instead, find coloring with nearly perfect coverage:

• every color class covers all but one vertex of U and

• each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove χ′ ≤ n.
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Simplified proof with one extra color
Recall: U = {v ∈ V (H) : d(v) > (1− ε)n} (0 < γ � ε� 1)

Aim: Using k = b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• for each vertex, nearly half of graph edges containing it are colored;

• the color classes have nearly perfect coverage of U.

Proof (sketch) of χ′ ≤ n + 1

Put each graph edge in a “reservoir” R independently with probability 1/2;

Nibble + absorption: using k = (1/2 + γ)n colors, color some
H′ ⊇ H \ R with nearly perfect coverage of U:

• vertices in U have leftover degree ≤ (n − 1)− (k − 1) ≤ n − k;

• vertices not in U have leftover degree ≤ (1− ε)n/2 + o(n) < n − k .

Thus H \H′ is a graph and ∆(H \H′) ≤ n − k, so by Vizing’s thm

χ′(H) ≤ χ′(H′) + χ′(H \H′) ≤ k + (n − k + 1) = n + 1.
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Nibble + absorption
• U = {v ∈ V (H) : d(v) > (1− ε)n} (0 < γ � ε� 1)
• R = random “reservoir” – graph edges included with prob 1/2

Alternate applications of “nibble” & “absorption”; construct k matchings

Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1− γ)n vertices are covered.

Vertices uncovered ≈ independently with probability γ
Absorption: Augment with a matching in R covering all but at most one

vertex of U. ⇒ nearly perfect coverage
If |U| is small, use “crossing” edges

× ×

U
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Tom Kelly A proof of the Erdős–Faber–Lovász conjecture 11 / 15



Nibble + absorption
• U = {v ∈ V (H) : d(v) > (1− ε)n} (0 < γ � ε� 1)
• R = random “reservoir” – graph edges included with prob 1/2

Alternate applications of “nibble” & “absorption”; construct k matchings

Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1− γ)n vertices are covered.

Vertices uncovered ≈ independently with probability γ
Absorption: Augment with a matching in R covering all but at most one

vertex of U. ⇒ nearly perfect coverage
If |U| is small, use “crossing” edges

× ×

U
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Large edges: reordering

Let H be a linear hypergraph such that |e| ≥ r ∀e ∈ H, where r � 1.

Trivial: ∀e ∈ H, at most |e|(n− |e|)/(|e| − 1) ≤ n + 2n/r edges of size at
least |e| intersect e.

I.e. d�(e) ≤ n + 2n/r ∀e ∈ H if � is a
size-monotone decreasing ordering of the line graph.

Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

|e|

n − |e|
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Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

−→−→ e

“forward degree”: d�(e)

If reordering “finishes’, then d�(e) < n ∀e ∈ H, so χ′(H) ≤ n.

Reordering lemma (informal)

If reordering “gets stuck”, then there is a highly structured W ⊆ H.
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Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

−→−→ ef

d� < n
If reordering “finishes’, then d�(e) < n ∀e ∈ H, so χ′(H) ≤ n.

Reordering lemma (informal)

If reordering “gets stuck”, then there is a highly structured W ⊆ H.
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Proof when all edges are large

For 0 < δ � 1 and ζ < 1: (1/r � δ)

• W covers (1− δ)
(n

2

)
pairs of vertices, and |e| ∼ (1− ζ)

√
n ∀e ∈ W.

• If e ∈ Hgood, then d�(e) < n.

• If e ∈ Hleft, then |e| ≥ (1− ζ)
√
n.

Hleft W Hgood−→ −→
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For 0 < δ � 1 and ζ < 1: (1/r � δ)

• W covers (1− δ)
(n

2

)
pairs of vertices, and |e| ∼ (1− ζ)

√
n ∀e ∈ W.

• If e ∈ Hgood, then d�(e) < n.

• If e ∈ Hleft, then |e| ≥ (1− ζ)
√
n.

Hleft W Hgood−→ −→

Case 1: ζ <
√
δ (W ≈ projective plane)

Proof (sketch)

Find |Hleft ∪W| − n pairs of disjoint edges in Hleft ∪W:

• assign edges of each pair the same color;

• assign remaining edges (of Hleft ∪W) distinct colors.
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Proof when all edges are large

For 0 < δ � 1 and ζ < 1: (1/r � δ)

• W covers (1− δ)
(n

2

)
pairs of vertices, and |e| ∼ (1− ζ)

√
n ∀e ∈ W.

• If e ∈ Hgood, then d�(e) < n.

• If e ∈ Hleft, then |e| ≥ (1− ζ)
√
n.

Hleft W Hgood−→ −→

Case 2: ζ ≥
√
δ (“non-extremal case”)

Proof (sketch)

Line graph of W has max degree ≤ (1 + o(1))n and is locally sparse,
i.e. ≤ (1− ζ/2)

(n
2

)
edges in the neighborhood of every vertex:

• thm of Molloy & Reed ⇒ χ′(W) ≤ (1− 2−10ζ)n;

Apply “reordering” argument to edges preceding W:

• If e ∈ Hleft, then d�(e) ≤ 2−10ζn − 1⇒ χ′(Hleft) ≤ 2−10ζn.
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Subsequent work

Question (Erdős, 1977)

If H is an n-vertex hypergraph of maximum degree at most n and
codegree at most t, what is the maximum possible value of χ′(H)?

• The EFL conjecture asserts that the answer for t = 1 is n.

We prove that for 2 ≤ t <
√
n and n sufficiently large, the answer is tn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

∀ε > 0, the following holds for n sufficiently large and t ∈ N.
If H is an n-vertex hypergraph with codegree at most t and maximum
degree at most (1− ε)tn, then χ′`(H) ≤ tn. Moreover, if χ′`(H) = tn, then
H is a t-fold projective plane.
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n and n sufficiently large, the answer is tn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

∀ε > 0, the following holds for n sufficiently large and t ∈ N.
If H is an n-vertex hypergraph with codegree at most t and maximum
degree at most (1− ε)tn, then χ′`(H) ≤ tn. Moreover, if χ′`(H) = tn, then
H is a t-fold projective plane.

Strengthens answer to Erdős’ question in three ways:

• allows relaxed maximum degree assumption (except when t = 1)

• characterizes extremal examples

• holds for list coloring
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codegree at most t, what is the maximum possible value of χ′(H)?

• The EFL conjecture asserts that the answer for t = 1 is n.

We prove that for 2 ≤ t <
√
n and n sufficiently large, the answer is tn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

∀ε > 0, the following holds for n sufficiently large and t ∈ N.
If H is an n-vertex hypergraph with codegree at most t and maximum
degree at most (1− ε)tn, then χ′`(H) ≤ tn. Moreover, if χ′`(H) = tn, then
H is a t-fold projective plane.

When t ≥ √n, a t-fold projective plane has max degree > n

Horák and Tuza (1990): χ′ (H) ≤ n3/2; covers range t >
√
n.
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Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If H is a linear hypergraph, then χ′(H) ≤ maxv∈V (H) |
⋃

e3v e|.

• common generalization of Vizing’s theorem and EFL

The List EFL conjecture (Faber, 2017)

If H is an n-vertex linear hypergraph, then H has list chromatic index ≤ n.

Kahn: “asymptotic” versions of List EFL and Berge–Füredi–Meyniel

What about List Berge–Füredi–Meyniel?

Thm: |⋃e3v e| ≤ D ∀v ∈ V (H) and D ≥ log2 n ⇒ χ′`(H) ≤ D + o(D)

Two more tractable problems?

• Full “asymptotic” List Berge–Füredi–Meyniel

• “χ-EFL” variant

Thanks for listening!
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