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The Erdés—Faber—Lovédsz conjecture

proper coloring: adjacent vertices assigned different colors

chromatic number: min # colors used in proper coloring, denoted by x

The Erdés—Faber—Lovasz conjecture (1972)

If Gyi,..., G, are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then x(lJ/_; Gi) < n.
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The Erdés—Faber—Lovédsz conjecture

proper coloring: adjacent vertices assigned different colors

chromatic number: min # colors used in proper coloring, denoted by x

The Erdés—Faber—Lovasz conjecture (1972)

If Gyi,..., G, are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then x(lJ/_; Gi) < n.

One of Erdds’ “three most favorite combinatorial problems”:
e Erdés initially offered $50 for a solution, raised to $500.

Faber, Lovasz and | made this harmless looking conjecture at a
party in Boulder Colorado in September 1972. Its difficulty was
realised only slowly. | now offer 500 dollars for a proof or disproof.
(Not long ago | only offered 50; the increase is not due to inflation
but to the fact that | now think the problem is very difficult.
Perhaps | am wrong.) —Paul Erdés, 1981
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The Erdés—Faber—Lovédsz conjecture

proper coloring: adjacent vertices assigned different colors

chromatic number: min # colors used in proper coloring, denoted by x

The Erdés—Faber—Lovasz conjecture (1972)

If Gyi,..., G, are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then x(lJ/_; Gi) < n.

Theorem (Kang, K., Kiihn, Methuku, and Osthus, 2021+)

The Erdés—Faber—Lovdsz conjecture is true for sufficiently large n.
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Hypergraph edge-coloring
(proper) edge-coloring: no two edges of same color share a vertex

chromatic index: min # colors used in proper edge-coloring, denoted Y’

Tom Kelly



Erdés—Faber—Lovasz conjecture (reformulated)

linear hypergraph: every pair of vertices contained in at most one edge

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/(

4

Line graph:

e edges — vertices: edges that share a vertex are adjacent
e proper edge-coloring — proper vertex-coloring

The previous formulation is equivalent:

If Gi,..., G, are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then x(IJ"_; G;) < n.
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Erdés—Faber—Lovasz conjecture (reformulated)

linear hypergraph: every pair of vertices contained in at most one edge

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/(

= 4

Hypergraph duality:

e edges — vertices and vertices — edges
e linearity is preserved

The previous formulation is equivalent:

If Gi,..., G, are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then x(IJ"_; G;) < n.
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Basic background

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/'(#H) < n.
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Basic background

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/(#) < n.

e Graphs are linear hypergraphs

e Linear hypergraphs with n vertices have maximum degree < n—1

Vizing’s theorem (1964)
If G is a graph of maximum degree at most A, then \'(G) < A+ 1.

Corollary: EFL is true for graphs
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Basic background

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/'(#H) < n.

Extremal examples:

NN

Finite projective plane of order k: (k-1)-uniform intersecting linear hy-
pergraph with n = k? + k + 1 vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with n—
1 size-two edges and one size-(n — 1) edge

Complete graph: (3) size-two edges; if x' < n, then color classes are
perfect matchings = n is even
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Basic background

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/'(#H) < n.

Direct approaches:
Trivial: x/(#H) < 2n — 3 (color greedily, in order of size)
Chang-Lawler (1989): x/(#) < [3n/2 — 2]
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Basic background

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/'(#H) < n.

Relaxed parameters:
de Bruijn—Erdés (1948): true for intersecting hypergraphs
Seymour (1982): 3 a matching of size at least |H|/n

Kahn-Seymour (1992): fractional chromatic index is at most n
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Basic background

The Erdés—Faber—Lovasz conjecture (1972)
If H is an n-vertex linear hypergraph, then x/'(#H) < n.

Probabilistic approach:

Faber—Harris (2019): EFL is true if |e| € [3,c\/n] Ve € H (¢ < 1)
Kahn (1992): x/(H) < n+ o(n)
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Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:

Theorem (Kang, K., Kiihn, Methuku, and Osthus, 2021+)

If H is an n-vertex linear hypergraph where n is sufficiently large, then

X' (H) < n.
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Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:

Theorem (Kang, K., Kiihn, Methuku, and Osthus, 2021+)

If H is an n-vertex linear hypergraph where n is sufficiently large, then

X' (H) < n.

We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kiihn, Methuku, and Osthus, 2021+)

V6 > 0, do > 0 such that the following holds for n sufficiently large.
If 7 is an n-vertex linear hypergraph such that

e A(H)<(1—0)nand
e at most (1 — §)n edges have size (1 & 6)+/n,
then x/(H) < (1 —o)n.
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The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger—Spencer theorem (1989)

If H is a linear hypergraph with bounded edge-sizes with maximum degree
at most A, then x/'(H) < A+ o(A).

An n-vix linear hypergraph H has max degree at most n/ min.cy/(|e| — 1).
Corollary 1: EFL holds if |e| € [3, k] Ve € H and n > k
Corollary 2: EFL holds “asymptotically” if |e| < k Ve € H and n>> k
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The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger—Spencer theorem (1989)

If H is a linear hypergraph with bounded edge-sizes with maximum degree
at most A, then x/'(H) < A+ o(A).

An n-vix linear hypergraph H has max degree at most n/ min.cy/(|e| — 1).
Corollary 1: EFL holds if |e| € [3, k] Ve € H and n > k

Corollary 2: EFL holds “asymptotically” if |e| < k Ve € H and n>> k
Kahn (1996): The Pippenger—Spencer theorem holds for list coloring

e Kahn used an intermediate result to generalize Corollary 2 for all
linear hypergraphs in 1992.

Tom Kelly A proof of the Erdés—Faber—Lovasz conjecture 6/15



The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger—Spencer theorem (1989)

If H is a linear hypergraph with bounded edge-sizes with maximum degree
at most A, then x/'(H) < A+ o(A).

An n-vix linear hypergraph H has max degree at most n/ min.cy/(|e| — 1).
Corollary 1: EFL holds if |e| € [3, k] Ve € H and n > k

Corollary 2: EFL holds “asymptotically” if |e| < k Ve € H and n>> k
Kahn (1996): The Pippenger—Spencer theorem holds for list coloring

e Kahn used an intermediate result to generalize Corollary 2 for all
linear hypergraphs in 1992.

Our proof also uses nibble to color “small” edges and moreover exploits
quasirandomness properties of the resulting coloring.
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Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree < A. If every v € V(G) satisfies
|E(GIN(V)])| < A?/f for f < A? +1, then x(G) = O(A/ log V).

Corollary: Johansson's theorem for triangle-free graphs
Davies, Kang, Pirot, & Sereni (2020+): x(G) < (1+ o(1))A/ logV/f
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Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree < A. If every v € V(G) satisfies
|E(GIN(V)])| < A?/f for f < A? +1, then x(G) = O(A/ log V).

Corollary: Ve > 0, 30 > 0 s.t. the following holds for 1/§ < k < é+/n:
If H is a k-uniform, n-vtx, linear hypergraph, then x/(H) < en
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Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree < A. If every v € V(G) satisfies
|E(GIN(V)])| < A?/f for f < A? +1, then x(G) = O(A/ log V).

Corollary: Ve > 0, 30 > 0 s.t. the following holds for 1/§ < k < é+/n:
If H is a k-uniform, n-vtx, linear hypergraph, then x/(H) < en
Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree < A. If every v € V(G) satisfies
[E(GIN(V)])| < (1 — a)(?) for 1/A < o, then x(G) < (1 — o/e®)A.

Improved by Bruhn and Joos (2018), Bonamy, Perrett, and Postle
(2018+), and Hurley, de Joannis de Verclos, and Kang (20204 )
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Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)

Let G be a graph of maximum degree < A. If every v € V(G) satisfies
|E(GIN(V)])| < A?/f for f < A? +1, then x(G) = O(A/ log V).

Corollary: Ve > 0, 30 > 0 s.t. the following holds for 1/§ < k < é+/n:
If H is a k-uniform, n-vtx, linear hypergraph, then x/(H) < en
Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree < A. If every v € V(G) satisfies
[E(GIN(V)])| < (1 — a)(ﬁ) for 1/A < o, then x(G) < (1 — o/e®)A.

Corollary: Vo € (0,1), the following holds for k = (1 — ¢)y/n and n > 1:
If H is a k-uniform, n-vtx, linear hypergraph, then x/(H) < (1—4/2%)n
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Roadmap to the proof

Theorem (Kang, K., Kithn, Methuku, and Osthus, 2021+)

If H is an n-vertex linear hypergraph where n is sufficiently large, then

X'(H) < n.
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Roadmap to the proof

Theorem (Kang, K., Kithn, Methuku, and Osthus, 2021+)

If H is an n-vertex linear hypergraph where n is sufficiently large, then

X'(H) < n.

1. “Small” edge case: |e| < k Ve € H (Kahn asked in '94 for k = 3)
» Pippenger-Spencer theorem (i.e. nibble) = x/(H) < n+ o(n)
» Using absorption, reduce to a graph coloring problem
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» Using absorption, reduce to a graph coloring problem
2. “Large” edge case: |e| > rVee H (for r > 1)
» Greedy coloring in order of size = x/(H) < (1+2/r)n
> “Reordering lemma” finds structure in line graph — a large
nearly complete or locally sparse induced subgraph
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Roadmap to the proof

Theorem (Kang, K., Kithn, Methuku, and Osthus, 2021+)

If H is an n-vertex linear hypergraph where n is sufficiently large, then

X'(H) < n.

1. “Small” edge case: |e| < k Ve € H (Kahn asked in '94 for k = 3)
» Pippenger-Spencer theorem (i.e. nibble) = x/(H) < n+ o(n)
» Using absorption, reduce to a graph coloring problem
2. “Large” edge case: |e| > rVee H (for r > 1)
» Greedy coloring in order of size = x/(H) < (1+2/r)n
> “Reordering lemma” finds structure in line graph — a large
nearly complete or locally sparse induced subgraph

3. Merge cases

» Color large edges first, with special properties
> Extend to small edges, avoiding conflicts
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Vizing-reduction strategy for bounded edge-sizes

Let 7 be a linear hypergraph such that |e| € {2,3} Ve € H.
e Fix0<y<e<l andlet U:=={ve V(H):d(v)>(1-—¢e)n}.

7w N

Low degree: more flexibility High degree: more graph-like
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e Fix0<y<e<l andlet U:=={ve V(H):d(v)>(1-—¢e)n}.

Vizing-reduction: Using k := |(1/2 + «)n] colors, color # such that:
e all size-3 edges are colored;
e > (1/2 — ~)-proportion of graph edges at each vix are colored;

e every color class covers U (perfect coverage of U).
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Vizing-reduction strategy for bounded edge-sizes

Let 7 be a linear hypergraph such that |e| € {2,3} Ve € H.
e Fix0<y<e<l andlet U:=={ve V(H):d(v)>(1-—¢e)n}.

Vizing-reduction: Using k := |(1/2 + «)n] colors, color # such that:
e all size-3 edges are colored;
e > (1/2 — ~)-proportion of graph edges at each vix are colored;

e every color class covers U (perfect coverage of U).

Proof that x’(H) < n (assuming Vizing-reduction)
e vertices in U have leftover degree < (n—1) — k < n— k;
e vertices not in U have leftover degree < (1/2+7)(1 —¢)n < n— k.
Uncolored edges comprise a graph of max degree < n — k. (%)
Finish with Vizing's theorem! L]
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Vizing-reduction strategy for bounded edge-sizes

Let 7 be a linear hypergraph such that |e| € {2,3} Ve € H.
e Fix0<y<e<l andlet U:=={ve V(H):d(v)>(1-—¢e)n}.

Vizing-reduction: Using k := |(1/2 + «)n] colors, color # such that:
e all size-3 edges are colored;
e > (1/2 — ~)-proportion of graph edges at each vix are colored;

e every color class covers U (perfect coverage of U).

Perfect coverage of U not always possible (e.g. K, for n odd).
Instead, find coloring with nearly perfect coverage:

e every color class covers all but one vertex of U and
e each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove x' < n.
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Simplified proof with one extra color
Recall: U= {ve V(H):d(v)>(1—¢)n} O<yxexl)
Aim: Using k = [(1/2 + ~)n] colors, color H such that:

e all size-3 edges are colored;

e for each vertex, nearly half of graph edges containing it are colored;

e the color classes have nearly perfect coverage of U.
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Simplified proof with one extra color
Recall: U= {ve V(H):d(v)>(1—¢)n} O<yxexl)

Aim: Using k = [(1/2 + «)n]| colors, color H such that:
e all size-3 edges are colored; v
e for each vertex, nearly half of graph edges containing it are colored; v/

e the color classes have nearly perfect coverage of U. X

'

Proof (sketch) of x' < n-+1
Put each graph edge in a “reservoir” R independently with probability 1/2;
» with high probability A(H \ R) < (1/2+ o(1))n, so
X'(H\ R) < (1/2+ v)n by the Pippenger-Spencer theorem.

To obtain nearly perfect coverage, “re-run” Pippenger-Spencer proof
(nibble) but apply absorption for each color class.

Nibble: Randomly construct matching in H \ R covering ~ (1 — ~)n vtcs.

Absorption: Augment with matching in R covering remaining U-vtcs.
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Simplified proof with one extra color
Recall: U= {ve V(H):d(v)>(1—¢)n} O<yxexl)

Aim: Using k = [(1/2 + «)n]| colors, color H such that:
e all size-3 edges are colored; v
e for each vertex, nearly half of graph edges containing it are colored; v/

e the color classes have nearly perfect coverage of U. v

~

Proof (sketch) of x’ < n+1

Put each graph edge in a “reservoir” R independently with probability 1/2;
Nibble + absorption: using k = (1/2 + ~)n colors, color some
H' O H \ R with nearly perfect coverage of U:

e vertices in U have leftover degree < (n—1) — (k—1) < n— k;
e vertices not in U have leftover degree < (1 —e)n/2+ o(n) < n— k.
Thus H \ H' is a graph and A(H \ H') < n— k, so by Vizing's thm
XH) < XH)+XH\H)<k+(n—k+1)=n+1 O
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Nibble 4 absorption
e U={veV(H): d(v)>(1—¢e)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2
Alternate applications of “nibble” & "absorption”; construct k matchings
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Nibble 4 absorption
e U={veV(H):d(v)>(1—-¢€)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2
Alternate applications of “nibble” & "absorption”; construct k matchings
Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1 — ~y)n vertices are covered.
Vertices uncovered =~ independently with probability
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Nibble + absorption
e U={veV(H):d(v)>(1—-¢€)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2
Alternate applications of “nibble” & "absorption”; construct k matchings
Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1 — ~y)n vertices are covered.
Vertices uncovered =~ independently with probability
Absorption: Augment with a matching in R covering all but at most one
vertex of U. = nearly perfect coverage
If |U| is small, use “crossing” edges

Tom Kelly A proof of the Erdés—Faber—Lovasz conjecture 11/15



Nibble + absorption
e U={veV(H):d(v)>(1—-¢€)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2
Alternate applications of “nibble” & "absorption”; construct k matchings
Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1 — ~y)n vertices are covered.
Vertices uncovered =~ independently with probability
Absorption: Augment with a matching in R covering all but at most one
vertex of U. = nearly perfect coverage
If |U| is small, use “crossing” edges, o/w use “internal” edges.

Tom Kelly A proof of the Erdés—Faber—Lovasz conjecture 11/15



Nibble + absorption
e U={veV(H):d(v)>(1—-¢€)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2
Alternate applications of “nibble” & "absorption”; construct k matchings
Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1 — ~y)n vertices are covered.
Vertices uncovered =~ independently with probability
Absorption: Augment with a matching in R covering all but at most one
vertex of U. = nearly perfect coverage
If |U| is small, use “crossing” edges, o/w use “internal” edges.

Tom Kelly A proof of the Erdés—Faber—Lovasz conjecture 11/15



Nibble + absorption
e U={veV(H):d(v)>(1—-¢€)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2
Alternate applications of “nibble” & "absorption”; construct k matchings
Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1 — ~y)n vertices are covered.
Vertices uncovered =~ independently with probability
Absorption: Augment with a matching in R covering all but at most one
vertex of U. = nearly perfect coverage
If |U| is small, use “crossing” edges, o/w use “internal” edges.

Tom Kelly A proof of the Erdés—Faber—Lovasz conjecture 11/15



Nibble + absorption
e U={veV(H):d(v)>(1—-¢€)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2
Alternate applications of “nibble” & "absorption”; construct k matchings
Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1 — ~y)n vertices are covered.
Vertices uncovered =~ independently with probability
Absorption: Augment with a matching in R covering all but at most one
vertex of U. = nearly perfect coverage
If |U| is small, use “crossing” edges, o/w use “internal” edges.

Tom Kelly A proof of the Erdés—Faber—Lovasz conjecture 11/15



Nibble + absorption
e U={veV(H):d(v)>(1—-¢)n} 0<yxexl)
e R = random “reservoir’ — graph edges included with prob 1/2

Alternate applications of “nibble” & “absorption”; construct k matchings

Nibble: Randomly select each color class in H \ R, in small "bites”, until

(1 — 7)n vertices are covered.
Vertices uncovered == independently with probability ~

Absorption: Augment with a matching in R covering all but at most one
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(1 — 7)n vertices are covered.
Vertices uncovered == independently with probability ~

Absorption: Augment with a matching in R covering all but at most one
vertex of U. = nearly perfect coverage

If |U| is small, use “crossing” edges, o/w use “internal” edges.

Tom Kelly



Large edges: reordering

Let H be a linear hypergraph such that |e| > r Ve € H, where r > 1.

Trivial: Ve € H, at most |e|(n—|e|)/(Je] — 1) < n+2n/r edges of size at
least |e| intersect e.

n el
o o o
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Large edges: reordering

Let H be a linear hypergraph such that |e| > r Ve € H, where r > 1.

Trivial: Ve € H, at most |e|(n—|e|)/(Je] — 1) < n+2n/r edges of size at
least |e| intersect e. l.e. d=(e) < n+2n/rVec Hif <is a
size-monotone decreasing ordering of the line graph.

Corollary: x'(H) < n+ o(n): color greedily.

“forward degree”: d=(e)
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Large edges: reordering

Let H be a linear hypergraph such that |e| > r Ve € H, where r > 1.

Trivial: Ve € H, at most |e|(n—|e|)/(Je] — 1) < n+2n/r edges of size at
least |e| intersect e. l.e. d=(e) < n+2n/rVec Hif <is a
size-monotone decreasing ordering of the line graph.

Corollary: x'(H) < n+ o(n): color greedily.

Reordering: Let e be the last edge with d=(e) > n. If f intersects e and
< n edges preceding e intersect f, then move f immediately after e.

“““ B d=<n
If reordering “finishes’, then d=(e) < n Ve € H, so x'(H) < n.

Reordering lemma (informal)
If reordering “gets stuck”, then there is a highly structured W C H.
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Proof when all edges are large

ForO<d<1land (<1 (1/r <)
o W covers (1 —§)(5) pairs of vertices, and |e| ~ (1 — ()\/n Ve € W.
o If e € Hgooa, then d=(e) < n.
o If e € Hiegt, then |e| > (1 — ¢)/n.

/Hleft — 4% — Hgood
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Proof when all edges are large

ForO<d<1land (<1 (1/r <)
o W covers (1 —§)(5) pairs of vertices, and |e| ~ (1 — ()\/n Ve € W.
o If e € Hgooa, then d=(e) < n.
o If e € Hiegt, then |e| > (1 — ¢)/n.

/Hleft — 4% — Hgood

Case 1: (<06 (W = projective plane)

Proof (sketch)
Find |Hiese U W| — n pairs of disjoint edges in Hiege U WV:
e assign edges of each pair the same color;

e assign remaining edges (of Hiery U W) distinct colors.
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Proof when all edges are large

ForO<d<1land (<1 (1/r <)
o W covers (1 —§)(5) pairs of vertices, and |e| ~ (1 — ()\/n Ve € W.
o If e € Hgooa, then d=(e) < n.
o If e € Hiegt, then |e| > (1 — ¢)/n.

/Hleft — 4% — Hgood

Case 2: (> /6 (“non-extremal case”)
Proof (sketch)

Line graph of W has max degree < (1 + o(1))n and is locally sparse,
i.e. < (1—¢/2)(5) edges in the neighborhood of every vertex:

e thm of Molloy & Reed = y/(W) < (1 —2710()n;
Apply “reordering” argument to edges preceding W:

o If e € Hiefi, then d=(e) < 2710¢n — 1 = /' (Hiers) < 2719,
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Subsequent work
Question (Erdds, 1977)

If H is an n-vertex hypergraph of maximum degree at most n and
codegree at most t, what is the maximum possible value of x/(H)?

e The EFL conjecture asserts that the answer for t =1 is n.
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Subsequent work
Question (Erdds, 1977)

If H is an n-vertex hypergraph of maximum degree at most n and
codegree at most t, what is the maximum possible value of x/(H)?

e The EFL conjecture asserts that the answer for t =1 is n.
We prove that for 2 < t < y/n and n sufficiently large, the answer is tn:

Theorem (Kang, K., Kiithn, Methuku, and Osthus, 2021+)

Ve > 0, the following holds for n sufficiently large and t € N.

If H is an n-vertex hypergraph with codegree at most t and maximum
degree at most (1 —¢)tn, then x}(#) < tn. Moreover, if x,(H) = tn, then
H is a t-fold projective plane.

Strengthens answer to Erd3s’ question in three ways:
e allows relaxed maximum degree assumption (except when t = 1)
e characterizes extremal examples

e holds for list coloring
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Subsequent work
Question (Erdds, 1977)

If H is an n-vertex hypergraph of maximum degree at most n and
codegree at most t, what is the maximum possible value of x/(H)?

e The EFL conjecture asserts that the answer for t =1 is n.
We prove that for 2 < t < y/n and n sufficiently large, the answer is tn:

Theorem (Kang, K., Kiithn, Methuku, and Osthus, 2021+)

Ve > 0, the following holds for n sufficiently large and t € N.

If H is an n-vertex hypergraph with codegree at most t and maximum
degree at most (1 —¢)tn, then x}(#) < tn. Moreover, if x,(H) = tn, then
H is a t-fold projective plane.

When t > /n, a t-fold projective plane has max degree > n
Horak and Tuza (1990): x/ (H) < n®?; covers range t > /n.
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Open problems

Conjecture (Berge, 1989; Fiiredi, 1986; Meyniel)
If H is a linear hypergraph, then x'(H) < max,cv ) [ Ues, €l-

e common generalization of Vizing's theorem and EFL
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If H is a linear hypergraph, then x'(H) < max,cv ) [ Ues, €l- J

e common generalization of Vizing's theorem and EFL

If H is an n-vertex linear hypergraph, then H has list chromatic index < n.

The List EFL conjecture (Faber, 2017) J
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If H is a linear hypergraph, then x'(H) < max,cv ) [ Ues, €l- J

e common generalization of Vizing's theorem and EFL

If H is an n-vertex linear hypergraph, then H has list chromatic index < n.

The List EFL conjecture (Faber, 2017) J

Kahn: “asymptotic” versions of List EFL and Berge—Fiiredi-Meyniel
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Conjecture (Berge, 1989; Fiiredi, 1986; Meyniel)
If H is a linear hypergraph, then x'(H) < max,cv ) [ Ues, €l- J

e common generalization of Vizing's theorem and EFL

If H is an n-vertex linear hypergraph, then H has list chromatic index < n.

The List EFL conjecture (Faber, 2017) J

Kahn: “asymptotic” versions of List EFL and Berge—Fiiredi-Meyniel
What about List Berge—Fiiredi—Meyniel?
Thm: U, €] <D Vv e V(H) and D > log? n = x)(H) < D + o(D)
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Open problems

Conjecture (Berge, 1989; Fiiredi, 1986; Meyniel)
If H is a linear hypergraph, then x'(H) < max,cv ) [ Ues, €l- J

e common generalization of Vizing's theorem and EFL

If H is an n-vertex linear hypergraph, then H has list chromatic index < n.

The List EFL conjecture (Faber, 2017) J

Kahn: “asymptotic” versions of List EFL and Berge—Fiiredi-Meyniel
What about List Berge—Fiiredi—Meyniel?
Thm: U, €] <D Vv e V(H) and D > log? n = x)(H) < D + o(D)
Two more tractable problems?

e Full "asymptotic” List Berge—Fiiredi—Meyniel

o “x-EFL" variant
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Open problems

Conjecture (Berge, 1989; Fiiredi, 1986; Meyniel)
If H is a linear hypergraph, then x'(H) < max,cv ) [ Ues, €l- J

e common generalization of Vizing's theorem and EFL

If H is an n-vertex linear hypergraph, then H has list chromatic index < n.

The List EFL conjecture (Faber, 2017) J

Kahn: “asymptotic” versions of List EFL and Berge—Fiiredi-Meyniel
What about List Berge—Fiiredi—Meyniel?
Thm: U, €] <D Vv e V(H) and D > log? n = x)(H) < D + o(D)
Two more tractable problems?

e Full "asymptotic” List Berge—Fiiredi—Meyniel

o “x-EFL" variant

Thanks for listening!
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