A proof of the Erdős-Faber-Lovász conjecture

Tom Kelly

Joint work with:
Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus

UNIVERSITYOF BIRMINGHAM

Oberwolfach Graph Theory Workshop

December 7th, 2022

The Erdős-Faber-Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min \# colors used in proper coloring, denoted by χ

The Erdős-Faber-Lovász conjecture (1972)

If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

The Erdős-Faber-Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min \# colors used in proper coloring, denoted by χ

The Erdős-Faber-Lovász conjecture (1972)

If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

One of Erdős' "three most favorite combinatorial problems":

- Erdős initially offered $\$ 50$ for a solution, raised to $\$ 500$.

Faber, Lovász and I made this harmless looking conjecture at a party in Boulder Colorado in September 1972. Its difficulty was realised only slowly. I now offer 500 dollars for a proof or disproof. (Not long ago I only offered 50; the increase is not due to inflation but to the fact that I now think the problem is very difficult. Perhaps I am wrong.) -Paul Erdős, 1981

The Erdős-Faber-Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min \# colors used in proper coloring, denoted by χ

The Erdős-Faber-Lovász conjecture (1972)
If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
The Erdős-Faber-Lovász conjecture is true for sufficiently large n.

Hypergraph edge-coloring

(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

Erdős-Faber-Lovász conjecture (reformulated)

linear hypergraph: every pair of vertices contained in at most one edge

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.

Line graph:

- edges \rightarrow vertices: edges that share a vertex are adjacent
- proper edge-coloring \rightarrow proper vertex-coloring

The previous formulation is equivalent:
If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

Erdős-Faber-Lovász conjecture (reformulated)

linear hypergraph: every pair of vertices contained in at most one edge

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved

The previous formulation is equivalent:
If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

Basic background

The Erdős-Faber-Lovász conjecture (1972)
If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.

Basic background

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.

- Graphs are linear hypergraphs
- Linear hypergraphs with n vertices have maximum degree $\leq n-1$

Vizing's theorem (1964)

If G is a graph of maximum degree at most Δ, then $\chi^{\prime}(G) \leq \Delta+1$.
Corollary: EFL is true for graphs

Basic background

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Extremal examples:

Finite projective plane of order $k:(k+1)$-uniform intersecting linear hypergraph with $n=k^{2}+k+1$ vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with $n-$ 1 size-two edges and one size- $(n-1)$ edge
Complete graph: $\binom{n}{2}$ size-two edges; if $\chi^{\prime}<n$, then color classes are perfect matchings $\Rightarrow n$ is even

Basic background

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Direct approaches:
Trivial: $\chi^{\prime}(\mathcal{H}) \leq 2 n-3$ (color greedily, in order of size)
Chang-Lawler (1989): $\chi^{\prime}(\mathcal{H}) \leq\lceil 3 n / 2-2\rceil$

Basic background

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Relaxed parameters:
de Bruijn-Erdős (1948): true for intersecting hypergraphs
Seymour (1982): \exists a matching of size at least $|\mathcal{H}| / n$
Kahn-Seymour (1992): fractional chromatic index is at most n

Basic background

The Erdős-Faber-Lovász conjecture (1972)
If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Probabilistic approach:
Faber-Harris (2019): EFL is true if $|e| \in[3, c \sqrt{n}] \forall e \in \mathcal{H}(c \ll 1)$
Kahn (1992): $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
If \mathcal{H} is an n-vertex linear hypergraph where n is sufficiently large, then

$$
\chi^{\prime}(\mathcal{H}) \leq n .
$$

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
If \mathcal{H} is an n-vertex linear hypergraph where n is sufficiently large, then

$$
\chi^{\prime}(\mathcal{H}) \leq n .
$$

We also prove a stability result, predicted by Kahn:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
$\forall \delta>0, \exists \sigma>0$ such that the following holds for n sufficiently large.
If \mathcal{H} is an n-vertex linear hypergraph such that

- $\Delta(\mathcal{H}) \leq(1-\delta) n$ and
- at most $(1-\delta) n$ edges have size $(1 \pm \delta) \sqrt{n}$, then $\chi^{\prime}(\mathcal{H}) \leq(1-\sigma) n$.

The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes with maximum degree at most Δ, then $\chi^{\prime}(\mathcal{H}) \leq \Delta+o(\Delta)$.

An n-vtx linear hypergraph \mathcal{H} has max degree at most $n / \min _{e \in \mathcal{H}}(|e|-1)$.
Corollary 1: EFL holds if $|e| \in[3, k] \forall e \in \mathcal{H}$ and $n \gg k$
Corollary 2: EFL holds "asymptotically" if $|e| \leq k \forall e \in \mathcal{H}$ and $n \gg k$

The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes with maximum degree at most Δ, then $\chi^{\prime}(\mathcal{H}) \leq \Delta+o(\Delta)$.

An n-vtx linear hypergraph \mathcal{H} has max degree at most $n / \min _{e \in \mathcal{H}}(|e|-1)$.
Corollary 1: EFL holds if $|e| \in[3, k] \forall e \in \mathcal{H}$ and $n \gg k$
Corollary 2: EFL holds "asymptotically" if $|e| \leq k \forall e \in \mathcal{H}$ and $n \gg k$
Kahn (1996): The Pippenger-Spencer theorem holds for list coloring

- Kahn used an intermediate result to generalize Corollary 2 for all linear hypergraphs in 1992.

The nibble method

nibble: probabilistic approach for coloring or finding matchings

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes with maximum degree at most Δ, then $\chi^{\prime}(\mathcal{H}) \leq \Delta+o(\Delta)$.

An n-vtx linear hypergraph \mathcal{H} has max degree at most $n / \min _{e \in \mathcal{H}}(|e|-1)$.
Corollary 1: EFL holds if $|e| \in[3, k] \forall e \in \mathcal{H}$ and $n \gg k$
Corollary 2: EFL holds "asymptotically" if $|e| \leq k \forall e \in \mathcal{H}$ and $n \gg k$
Kahn (1996): The Pippenger-Spencer theorem holds for list coloring

- Kahn used an intermediate result to generalize Corollary 2 for all linear hypergraphs in 1992.
Our proof also uses nibble to color "small" edges and moreover exploits quasirandomness properties of the resulting coloring.

Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)
Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^{2} / f$ for $f \leq \Delta^{2}+1$, then $\chi(G)=O(\Delta / \log \sqrt{f})$.

Corollary: Johansson's theorem for triangle-free graphs Davies, Kang, Pirot, \& Sereni (2020+): $\chi(G) \leq(1+o(1)) \Delta / \log \sqrt{f}$

Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)
Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^{2} / f$ for $f \leq \Delta^{2}+1$, then $\chi(G)=O(\Delta / \log \sqrt{f})$.

Corollary: $\forall \varepsilon>0, \exists \delta>0$ s.t. the following holds for $1 / \delta \leq k \leq \delta \sqrt{n}$: If \mathcal{H} is a k-uniform, n-vtx, linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \varepsilon n$

Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)
Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^{2} / f$ for $f \leq \Delta^{2}+1$, then $\chi(G)=O(\Delta / \log \sqrt{f})$.

Corollary: $\forall \varepsilon>0, \exists \delta>0$ s.t. the following holds for $1 / \delta \leq k \leq \delta \sqrt{n}$: If \mathcal{H} is a k-uniform, n-vtx, linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \varepsilon n$

Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq(1-\sigma)\binom{\Delta}{2}$ for $1 / \Delta \ll \sigma$, then $\chi(G) \leq\left(1-\sigma / e^{6}\right) \Delta$.

Improved by Bruhn and Joos (2018), Bonamy, Perrett, and Postle (2018+), and Hurley, de Joannis de Verclos, and Kang (2020+)

Coloring locally sparse graphs

Theorem (Alon, Krivelevich, and Sudakov, 1999)
Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq \Delta^{2} / f$ for $f \leq \Delta^{2}+1$, then $\chi(G)=O(\Delta / \log \sqrt{f})$.

Corollary: $\forall \varepsilon>0, \exists \delta>0$ s.t. the following holds for $1 / \delta \leq k \leq \delta \sqrt{n}$: If \mathcal{H} is a k-uniform, n-vtx, linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \varepsilon n$

Theorem (Molloy and Reed, 2002)

Let G be a graph of maximum degree $\leq \Delta$. If every $v \in V(G)$ satisfies $|E(G[N(v)])| \leq(1-\sigma)\binom{\Delta}{2}$ for $1 / \Delta \ll \sigma$, then $\chi(G) \leq\left(1-\sigma / e^{6}\right) \Delta$.

Corollary: $\forall \delta \in(0,1)$, the following holds for $k=(1-\delta) \sqrt{n}$ and $n \gg 1$:
If \mathcal{H} is a k-uniform, n-vtx, linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq\left(1-\delta / 2^{9}\right) n$

Roadmap to the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
If \mathcal{H} is an n-vertex linear hypergraph where n is sufficiently large, then

$$
\chi^{\prime}(\mathcal{H}) \leq n .
$$

Roadmap to the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
If \mathcal{H} is an n-vertex linear hypergraph where n is sufficiently large, then

$$
\chi^{\prime}(\mathcal{H}) \leq n .
$$

1. "Small" edge case: $|e| \leq k \forall e \in \mathcal{H}$ (Kahn asked in '94 for $k=3$)

- Pippenger-Spencer theorem (i.e. nibble) $\Rightarrow \chi^{\prime}(\mathcal{H}) \leq n+o(n)$
- Using absorption, reduce to a graph coloring problem

Roadmap to the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
If \mathcal{H} is an n-vertex linear hypergraph where n is sufficiently large, then

$$
\chi^{\prime}(\mathcal{H}) \leq n .
$$

1. "Small" edge case: $|e| \leq k \forall e \in \mathcal{H}$ (Kahn asked in '94 for $k=3$)

- Pippenger-Spencer theorem (i.e. nibble) $\Rightarrow \chi^{\prime}(\mathcal{H}) \leq n+o(n)$
- Using absorption, reduce to a graph coloring problem

2. "Large" edge case: $|e| \geq r \forall e \in \mathcal{H}$ (for $r \gg 1$)

- Greedy coloring in order of size $\Rightarrow \chi^{\prime}(\mathcal{H}) \leq(1+2 / r) n$
- "Reordering lemma" finds structure in line graph - a large nearly complete or locally sparse induced subgraph

Roadmap to the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

If \mathcal{H} is an n-vertex linear hypergraph where n is sufficiently large, then

$$
\chi^{\prime}(\mathcal{H}) \leq n .
$$

1. "Small" edge case: $|e| \leq k \forall e \in \mathcal{H}$ (Kahn asked in '94 for $k=3$)

- Pippenger-Spencer theorem (i.e. nibble) $\Rightarrow \chi^{\prime}(\mathcal{H}) \leq n+o(n)$
- Using absorption, reduce to a graph coloring problem

2. "Large" edge case: $|e| \geq r \forall e \in \mathcal{H}$ (for $r \gg 1$)

- Greedy coloring in order of size $\Rightarrow \chi^{\prime}(\mathcal{H}) \leq(1+2 / r) n$
- "Reordering lemma" finds structure in line graph - a large nearly complete or locally sparse induced subgraph

3. Merge cases

- Color large edges first, with special properties
- Extend to small edges, avoiding conflicts

Vizing-reduction strategy for bounded edge-sizes
Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Low degree: more flexibility

High degree: more graph-like

Vizing-reduction strategy for bounded edge-sizes

Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Low degree: more flexibility

High degree: more graph-like

Vizing-reduction strategy for bounded edge-sizes
Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Proof that $\chi^{\prime}(\mathcal{H}) \leq n$ (assuming Vizing-reduction)

- vertices in U have leftover degree $\leq(n-1)-k<n-k$;
- vertices not in U have leftover degree $\leq(1 / 2+\gamma)(1-\varepsilon) n<n-k$. Uncolored edges comprise a graph of max degree $<n-k$.

Finish with Vizing's theorem!

Vizing-reduction strategy for bounded edge-sizes

Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Perfect coverage of U not always possible (e.g. K_{n} for n odd). Instead, find coloring with nearly perfect coverage:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove $\chi^{\prime} \leq n$.

Simplified proof with one extra color Recall: $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\} \quad(0<\gamma \ll \varepsilon \ll 1)$

Aim: Using $k=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Simplified proof with one extra color
Recall: $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\} \quad(0<\gamma \ll \varepsilon \ll 1)$
Aim: Using $k=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Proof (sketch) of $\chi^{\prime} \leq n+1$

Put each graph edge in a "reservoir" R independently with probability $1 / 2$;

- with high probability $\Delta(\mathcal{H} \backslash R) \leq(1 / 2+o(1)) n$, so $\chi^{\prime}(\mathcal{H} \backslash R) \leq(1 / 2+\gamma) n$ by the Pippenger-Spencer theorem.
To obtain nearly perfect coverage, "re-run" Pippenger-Spencer proof (nibble) but apply absorption for each color class.
Nibble: Randomly construct matching in $\mathcal{H} \backslash R$ covering $\approx(1-\gamma) n$ vtcs. Absorption: Augment with matching in R covering remaining U-vtcs.

Simplified proof with one extra color
Recall: $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\} \quad(0<\gamma \ll \varepsilon \ll 1)$
Aim: Using $k=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Proof (sketch) of $\chi^{\prime} \leq n+1$

Put each graph edge in a "reservoir" R independently with probability $1 / 2$; Nibble + absorption: using $k=(1 / 2+\gamma) n$ colors, color some $\mathcal{H}^{\prime} \supseteq \mathcal{H} \backslash R$ with nearly perfect coverage of U :

- vertices in U have leftover degree $\leq(n-1)-(k-1) \leq n-k$;
- vertices not in U have leftover degree $\leq(1-\varepsilon) n / 2+o(n)<n-k$. Thus $\mathcal{H} \backslash \mathcal{H}^{\prime}$ is a graph and $\Delta\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq n-k$, so by Vizing's thm

$$
\chi^{\prime}(\mathcal{H}) \leq \chi^{\prime}\left(\mathcal{H}^{\prime}\right)+\chi^{\prime}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq k+(n-k+1)=n+1 .
$$

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+2 n / r$ edges of size at least $|e|$ intersect e.

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+2 n / r$ edges of size at least $|e|$ intersect e. I.e. $d \preceq(e) \leq n+2 n / r \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.

"forward degree": $d \preceq(e)$

Large edges: reordering

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+2 n / r$ edges of size at least $|e|$ intersect e. I.e. $d \preceq(e) \leq n+2 n / r \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.
Reordering: Let e be the last edge with $d \preceq(e) \geq n$. If f intersects e and $<n$ edges preceding e intersect f, then move f immediately after e.

If reordering "finishes', then $d^{\preceq}(e)<n \forall e \in \mathcal{H}$, so $\chi^{\prime}(\mathcal{H}) \leq n$.

Reordering lemma (informal)

If reordering "gets stuck", then there is a highly structured $\mathcal{W} \subseteq \mathcal{H}$.

Proof when all edges are large

$$
\text { For } 0<\delta \ll 1 \text { and } \zeta<1: \quad(1 / r \ll \delta)
$$

- \mathcal{W} covers $(1-\delta)\binom{n}{2}$ pairs of vertices, and $|e| \sim(1-\zeta) \sqrt{n} \forall e \in \mathcal{W}$.
- If $e \in \mathcal{H}_{\text {good }}$, then $d^{\preceq}(e)<n$.
- If $e \in \mathcal{H}_{\text {left }}$, then $|e| \geq(1-\zeta) \sqrt{n}$.

Proof when all edges are large

For $0<\delta \ll 1$ and $\zeta<1$:

- \mathcal{W} covers $(1-\delta)\binom{n}{2}$ pairs of vertices, and $|e| \sim(1-\zeta) \sqrt{n} \forall e \in \mathcal{W}$.
- If $e \in \mathcal{H}_{\text {good }}$, then $d^{\preceq}(e)<n$.
- If $e \in \mathcal{H}_{\text {left }}$, then $|e| \geq(1-\zeta) \sqrt{n}$.
$\overbrace{\rightarrow}^{\mathcal{H}_{\text {left }}} \quad \rightarrow \quad \rightarrow \quad \mathcal{H}_{\text {good }}$

Case 1: $\zeta<\sqrt{\delta}$
($\mathcal{W} \approx$ projective plane)

Proof (sketch)

Find $\left|\mathcal{H}_{\text {left }} \cup \mathcal{W}\right|-n$ pairs of disjoint edges in $\mathcal{H}_{\text {left }} \cup \mathcal{W}$:

- assign edges of each pair the same color;
- assign remaining edges (of $\mathcal{H}_{\text {left }} \cup \mathcal{W}$) distinct colors.

Proof when all edges are large

For $0<\delta \ll 1$ and $\zeta<1$:

- \mathcal{W} covers $(1-\delta)\binom{n}{2}$ pairs of vertices, and $|e| \sim(1-\zeta) \sqrt{n} \forall e \in \mathcal{W}$.
- If $e \in \mathcal{H}_{\text {good }}$, then $d^{\preceq}(e)<n$.
- If $e \in \mathcal{H}_{\text {left }}$, then $|e| \geq(1-\zeta) \sqrt{n}$.
$\mathcal{H}_{\text {left }} \quad \longrightarrow \quad \mathcal{W} \quad \longrightarrow \quad \mathcal{H}_{\text {good }}$

Case 2: $\zeta \geq \sqrt{\delta}$
("non-extremal case")

Proof (sketch)

Line graph of \mathcal{W} has max degree $\leq(1+o(1)) n$ and is locally sparse, i.e. $\leq(1-\zeta / 2)\binom{n}{2}$ edges in the neighborhood of every vertex:

- thm of Molloy \& Reed $\Rightarrow \chi^{\prime}(\mathcal{W}) \leq\left(1-2^{-10} \zeta\right) n$;

Apply "reordering" argument to edges preceding \mathcal{W} :

- If $e \in \mathcal{H}_{\text {left }}$, then $d^{\preceq}(e) \leq 2^{-10} \zeta n-1 \Rightarrow \chi^{\prime}\left(\mathcal{H}_{\text {left }}\right) \leq 2^{-10} \zeta n$.

Subsequent work

Question (Erdős, 1977)

If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, what is the maximum possible value of $\chi^{\prime}(\mathcal{H})$?

- The EFL conjecture asserts that the answer for $t=1$ is n.

Subsequent work

Question (Erdős, 1977)

If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, what is the maximum possible value of $\chi^{\prime}(\mathcal{H})$?

- The EFL conjecture asserts that the answer for $t=1$ is n. We prove that for $2 \leq t<\sqrt{n}$ and n sufficiently large, the answer is $t n$:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

$\forall \varepsilon>0$, the following holds for n sufficiently large and $t \in \mathbb{N}$.
If \mathcal{H} is an n-vertex hypergraph with codegree at most t and maximum degree at most $(1-\varepsilon) t n$, then $\chi_{\ell}^{\prime}(\mathcal{H}) \leq t n$. Moreover, if $\chi_{\ell}^{\prime}(\mathcal{H})=t n$, then \mathcal{H} is a t-fold projective plane.

Strengthens answer to Erdős' question in three ways:

- allows relaxed maximum degree assumption (except when $t=1$)
- characterizes extremal examples
- holds for list coloring

Subsequent work

Question (Erdős, 1977)

If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, what is the maximum possible value of $\chi^{\prime}(\mathcal{H})$?

- The EFL conjecture asserts that the answer for $t=1$ is n. We prove that for $2 \leq t<\sqrt{n}$ and n sufficiently large, the answer is $t n$:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

$\forall \varepsilon>0$, the following holds for n sufficiently large and $t \in \mathbb{N}$.
If \mathcal{H} is an n-vertex hypergraph with codegree at most t and maximum degree at most $(1-\varepsilon) t n$, then $\chi_{\ell}^{\prime}(\mathcal{H}) \leq t n$. Moreover, if $\chi_{\ell}^{\prime}(\mathcal{H})=t n$, then \mathcal{H} is a t-fold projective plane.

When $t \geq \sqrt{n}$, a t-fold projective plane has max degree $>n$ Horák and Tuza (1990): $\chi^{\prime}(\mathcal{H}) \leq n^{3 / 2}$; covers range $t>\sqrt{n}$.

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)
If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)
If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)
If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)
If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)
If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
Kahn: "asymptotic" versions of List EFL and Berge-Füredi-Meyniel

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)
If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
Kahn: "asymptotic" versions of List EFL and Berge-Füredi-Meyniel What about List Berge-Füredi-Meyniel?
Thm: $\left|\bigcup_{e \ni v} e\right| \leq D \forall v \in V(\mathcal{H})$ and $D \geq \log ^{2} n \Rightarrow \chi_{\ell}^{\prime}(\mathcal{H}) \leq D+o(D)$

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
Kahn: "asymptotic" versions of List EFL and Berge-Füredi-Meyniel What about List Berge-Füredi-Meyniel?
Thm: $\left|\bigcup_{e \ni v} e\right| \leq D \forall v \in V(\mathcal{H})$ and $D \geq \log ^{2} n \Rightarrow \chi_{\ell}^{\prime}(\mathcal{H}) \leq D+o(D)$
Two more tractable problems?

- Full "asymptotic" List Berge-Füredi-Meyniel
- " χ-EFL" variant

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
Kahn: "asymptotic" versions of List EFL and Berge-Füredi-Meyniel What about List Berge-Füredi-Meyniel?
Thm: $\left|\bigcup_{e \ni v} e\right| \leq D \forall v \in V(\mathcal{H})$ and $D \geq \log ^{2} n \Rightarrow \chi_{\ell}^{\prime}(\mathcal{H}) \leq D+o(D)$
Two more tractable problems?

- Full "asymptotic" List Berge-Füredi-Meyniel
- " χ-EFL" variant

Thanks for listening!

