Coloring hypergraphs of small codegree, and

 a proof of the Erdős-Faber-Lovász conjectureTom Kelly
Joint work with:
Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus

UNIVERSITYOF BIRMINGHAM

Graphs \& Matroids Seminar
November 23rd, 2021

Part I

Coloring a nearly disjoint union of complete graphs

The Erdős-Faber-Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min \# colors used in proper coloring, denoted by χ

The Erdős-Faber-Lovász conjecture (1972)

If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

The Erdős-Faber-Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min \# colors used in proper coloring, denoted by χ

The Erdős-Faber-Lovász conjecture (1972)

If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

One of Erdős' "three most favorite combinatorial problems":

- Erdős initially offered $\$ 50$ for a solution, raised to $\$ 500$.

Faber, Lovász and I made this harmless looking conjecture at a party in Boulder Colorado in September 1972. Its difficulty was realised only slowly. I now offer 500 dollars for a proof or disproof. (Not long ago I only offered 50; the increase is not due to inflation but to the fact that I now think the problem is very difficult. Perhaps I am wrong.)
-Paul Erdős, 1981

The Erdős-Faber-Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min \# colors used in proper coloring, denoted by χ

The Erdős-Faber-Lovász conjecture (1972)
If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
The Erdős-Faber-Lovász conjecture is true for sufficiently large n.

A more general question of Erdős

Question (Erdős, 1977)

If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vtcs, such that every pair shares at most t vtcs, what is the max possible value of $\chi\left(\bigcup_{i=1}^{n} G_{i}\right)$?

- The EFL conjecture asserts that the answer for $t=1$ is n.

A more general question of Erdős

Question (Erdős, 1977)

If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vtcs, such that every pair shares at most t vtcs, what is the max possible value of $\chi\left(\bigcup_{i=1}^{n} G_{i}\right)$?

- The EFL conjecture asserts that the answer for $t=1$ is n.

We prove that for $2 \leq t<\sqrt{n}$ and n sufficiently large, the answer is $t n$:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For $t \geq 2, n$ sufficiently large, and G_{1}, \ldots, G_{n} as above, we have

$$
\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq t n
$$

Moreover, for infinitely many $k \in \mathbb{N}$, if $n=k^{2}+k+1$ and $t \leq k$, then there exist such G_{1}, \ldots, G_{n} such that $\bigcup_{i=1}^{n} G_{i}$ has $t n$ vtcs and is complete.

A more general question of Erdős

Question (Erdős, 1977)

If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vtcs, such that every pair shares at most t vtcs, what is the max possible value of $\chi\left(\bigcup_{i=1}^{n} G_{i}\right)$?

- The EFL conjecture asserts that the answer for $t=1$ is n.

We prove that for $2 \leq t<\sqrt{n}$ and n sufficiently large, the answer is $t n$:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For $t \geq 2, n$ sufficiently large, and G_{1}, \ldots, G_{n} as above, we have

$$
\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq t n
$$

Moreover, for infinitely many $k \in \mathbb{N}$, if $n=k^{2}+k+1$ and $t \leq k$, then there exist such G_{1}, \ldots, G_{n} such that $\bigcup_{i=1}^{n} G_{i}$ has $t n$ vtcs and is complete.

Horák and Tuza (1990): $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n^{3 / 2}$; covers range $t>\sqrt{n}$.

Part II

Hypergraph edge-coloring

Matchings and edge-coloring

matching: a set of disjoint edges
(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

$\chi^{\prime}($ Petersen graph $)=4$

$\chi^{\prime}(\mathcal{H})=3$

Matchings and edge-coloring

matching: a set of disjoint edges
(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

$\chi^{\prime}($ Petersen graph $)=4$

$\chi^{\prime}(\mathcal{H})=3$

Matchings and edge-coloring

matching: a set of disjoint edges
(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

$\chi^{\prime}($ Petersen graph $)=4$

$\chi^{\prime}(\mathcal{H})=3$

Matchings and edge-coloring

matching: a set of disjoint edges
(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

$\chi^{\prime}($ Petersen graph $)=4$

$$
\chi^{\prime}(\mathcal{H})=3
$$

Matchings and edge-coloring

matching: a set of disjoint edges
(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

$\chi^{\prime}($ Petersen graph $)=4$

$\chi^{\prime}(\mathcal{H})=3$
degree: \# edges containing a vertex

Vizing's theorem (1964)

Every graph of maximum degree $\leq \Delta$ has chromatic index $\leq \Delta+1$.

Matchings and edge-coloring

matching: a set of disjoint edges
(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

$$
\chi^{\prime}(\text { Petersen graph })=4
$$

$\chi^{\prime}(\mathcal{H})=3$

More complex for hypergraphs: e.g.

- 3-dimensional matching: one of Karp's original NP-complete problems

Question: Which hypergraphs have large matchings or small χ^{\prime} ?

Hypergraph basics

In this talk, hypergraphs can have repeated edges but no size-one edges. codegree: max \# edges containing any given pair of vertices
linear: every pair of vertices contained in at most one edge k-uniform: every edge has size k

A 2-uniform hypergraph of codegree 2

A linear 3-uniform hypergraph

Hypergraph basics

In this talk, hypergraphs can have repeated edges but no size-one edges. codegree: max \# edges containing any given pair of vertices
linear: every pair of vertices contained in at most one edge k-uniform: every edge has size k

A 2-uniform hypergraph of codegree 2

A linear 3-uniform hypergraph

- multigraphs are 2-uniform hypergraphs
- graphs are 2-uniform linear hypergraphs

Erdős-Faber-Lovász conjecture (reformulated)

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.

Line graph:

- edges \rightarrow vertices: edges that share a vertex are adjacent
- proper edge-coloring \rightarrow proper vertex-coloring

The previous formulation is equivalent:
If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

Erdős-Faber-Lovász conjecture (reformulated)

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved

The previous formulation is equivalent:
If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi\left(\bigcup_{i=1}^{n} G_{i}\right) \leq n$.

The dual of Erdős' question

Question (Erdős, 1977)

If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, what is the max possible value of $\chi^{\prime}(\mathcal{H})$?

- max degree of $\mathcal{H}=\max \left|V\left(G_{i}\right)\right|$
- codegree of $\mathcal{H}=\max _{i \neq j}\left|V\left(G_{i}\right) \cap V\left(G_{j}\right)\right|$

The previous formulation is equivalent:
If G_{1}, \ldots, G_{n} are complete graphs, each on at most n vtcs, such that every pair shares at most t vtcs, what is the max possible value of $\chi\left(\bigcup_{i=1}^{n} G_{i}\right)$?

Extremal examples for EFL

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Extremal examples:

Finite projective plane of order $k:(k+1)$-uniform intersecting linear hypergraph with $n=k^{2}+k+1$ vertices and edges
Degenerate plane / near pencil: intersecting linear hypergraph with $n-1$ size-two edges and one size- $(n-1)$ edge
Complete graph: $\binom{n}{2}$ size-two edges; if $\chi^{\prime}<n$, then color classes are perfect matchings $\Rightarrow n$ is even

Extremal examples for $t \geq 2$

The " t-EFL" conjecture

If \mathcal{H} is an n-vertex codegree- t hypergraph of max degree $\leq n$, then

$$
\chi^{\prime}(\mathcal{H}) \leq t n .
$$

3-fold order-1 projective plane

1-fold Fano plane t-fold projective plane: replace each edge with t repeated edges Extremal examples: t-fold projective planes of order k for $t \leq k$:

- codegree t
- max degree $t(k+1)$ (and $t(k+1) \leq n$ if $t \leq k)$

Part III

Results

Previous results

The Erdős-Faber-Lovász conjecture (1972)
If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Direct approaches:
Trivial: $\chi^{\prime}(\mathcal{H}) \leq 2 n-3$ (color greedily, in order of size)
Chang-Lawler (1989): $\chi^{\prime}(\mathcal{H}) \leq\lceil 3 n / 2-2\rceil$

Previous results

The Erdős-Faber-Lovász conjecture (1972)
If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Relaxed parameters:
de Bruijn-Erdős (1948): true for intersecting hypergraphs
Seymour (1982): \exists a matching of size at least $|\mathcal{H}| / n$
Kahn-Seymour (1992): fractional chromatic index is at most n

Previous results

The Erdős-Faber-Lovász conjecture (1972)
If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Probabilistic "nibble" approach:
Faber-Harris (2019): EFL is true if $|e| \in[3, c \sqrt{n}] \forall e \in \mathcal{H}(c \ll 1)$ Kahn (1992): $\chi^{\prime}(\mathcal{H}) \leq(1+o(1)) n$

Previous results

The Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Probabilistic "nibble" approach:
Faber-Harris (2019): EFL is true if $|e| \in[3, c \sqrt{n}] \forall e \in \mathcal{H}(c \ll 1)$
Kahn (1992): $\chi^{\prime}(\mathcal{H}) \leq(1+o(1)) n$
Both use "list coloring" generalization (proved by Kahn) of:

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a hypergraph with bounded edge-sizes with maximum degree at most Δ and codegree $o(\Delta)$, then $\chi^{\prime}(\mathcal{H}) \leq \Delta+o(\Delta)$.

- $\Rightarrow \mathrm{EFL}$ if $|e| \in[3, k] \forall e \in \mathcal{H}$ and $n \gg k$ (since $\Delta(\mathcal{H}) \leq n / 2)$
- \Rightarrow EFL "asymptotically" if $|e| \leq k \forall e \in \mathcal{H}$ and $n \gg k(\Delta(\mathcal{H}) \leq n)$
- \Rightarrow " t-EFL" for $t \geq 2$ if $|e| \leq k \forall e \in \mathcal{H}$ and $n \gg k$

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

We also prove a stability result, predicted by Kahn:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) $\forall \delta>0, \exists \sigma>0$ such that the following holds for n sufficiently large. If \mathcal{H} is an n-vertex linear hypergraph such that

- $\Delta(\mathcal{H}) \leq(1-\delta) n$ and
- at most $(1-\delta) n$ edges have size $(1 \pm \delta) \sqrt{n}$, then $\chi^{\prime}(\mathcal{H}) \leq(1-\sigma) n$.

Our results II

We confirm t-EFL for $t \geq 2$ for all but finitely many hypergraphs:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
$\forall \varepsilon>0$, the following holds for n sufficiently large and $t \in \mathbb{N}$.
If \mathcal{H} is an n-vertex hypergraph with codegree at most t and maximum degree at most $(1-\varepsilon) t n$, then $\chi_{\ell}^{\prime}(\mathcal{H}) \leq t n$. Moreover, if $\chi_{\ell}^{\prime}(\mathcal{H})=t n$, then \mathcal{H} is a t-fold projective plane.

Strengthens answer to Erdős question in three ways:

- allows relaxed maximum degree assumption (except when $t=1$)
- characterizes extremal examples
- holds for list coloring

Our results II

We confirm t-EFL for $t \geq 2$ for all but finitely many hypergraphs:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
$\forall \varepsilon>0$, the following holds for n sufficiently large and $t \in \mathbb{N}$.
If \mathcal{H} is an n-vertex hypergraph with codegree at most t and maximum degree at most $(1-\varepsilon) t n$, then $\chi_{\ell}^{\prime}(\mathcal{H}) \leq t n$. Moreover, if $\chi_{\ell}^{\prime}(\mathcal{H})=t n$, then \mathcal{H} is a t-fold projective plane.

We also generalize our stability result and the de Bruijn-Erdős theorem:
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
If \mathcal{H} is an n-vertex intersecting hypergraph with codegree at most t, then \mathcal{H} has at most $t n$ edges, and if equality holds, then \mathcal{H} is either

- a t-fold projective plane or
- a t-fold near-pencil.

Part IV

Proof ideas

Roadmap to the proofs

KKKMO (2021+): If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, then $\chi^{\prime}(\mathcal{H}) \leq t n$.

Roadmap to the proofs

KKKMO (2021+): If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, then $\chi^{\prime}(\mathcal{H}) \leq t n$.

1: "Small" edge case: $|e| \leq k \forall e \in \mathcal{H}$ (Kahn asked in '94 for $k=3$)

- The Pippenger-Spencer theorem (i.e. "nibble") implies the case $t \geq 2$ and implies $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$ for $t=1$
- Using absorption, reduce $t=1$ case to a graph coloring problem

Roadmap to the proofs

KKKMO (2021+): If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, then $\chi^{\prime}(\mathcal{H}) \leq t n$.

1: "Small" edge case: $|e| \leq k \forall e \in \mathcal{H}$ (Kahn asked in '94 for $k=3$)

- The Pippenger-Spencer theorem (i.e. "nibble") implies the case $t \geq 2$ and implies $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$ for $t=1$
- Using absorption, reduce $t=1$ case to a graph coloring problem

2: "FPP-extremal case": $|e| \geq(1-\delta) \sqrt{n} \forall e \in \mathcal{H} \quad$ (for $\delta \ll 1$)

- Delicate argument - includes when $\mathcal{H} \approx t$-fold proj. plane
- Can also prove $\chi_{\ell}^{\prime}(\mathcal{H})<$ tn unless \mathcal{H} is intersecting

Roadmap to the proofs

KKKMO (2021+): If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, then $\chi^{\prime}(\mathcal{H}) \leq t n$.

1: "Small" edge case: $|e| \leq k \forall e \in \mathcal{H}$ (Kahn asked in '94 for $k=3$)

- The Pippenger-Spencer theorem (i.e. "nibble") implies the case $t \geq 2$ and implies $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$ for $t=1$
- Using absorption, reduce $t=1$ case to a graph coloring problem

2: "FPP-extremal case": $|e| \geq(1-\delta) \sqrt{n} \forall e \in \mathcal{H} \quad$ (for $\delta \ll 1$)

- Delicate argument - includes when $\mathcal{H} \approx t$-fold proj. plane
- Can also prove $\chi_{\ell}^{\prime}(\mathcal{H})<$ tn unless \mathcal{H} is intersecting

3: "Large" edge case: $|e| \geq r \forall e \in \mathcal{H}$
(for $r \gg 1$)

- Greedy coloring in order of size $\Rightarrow \chi^{\prime}(\mathcal{H}) \leq(1+2 / r)$ tn.
- "Reordering lemma" finds highly structured $\mathcal{W} \subseteq \mathcal{H}$ - either $\mathcal{W} \approx t$-fold proj. plane or line graph of \mathcal{W} is "locally sparse"

Roadmap to the proofs

KKKMO (2021+): If \mathcal{H} is an n-vertex hypergraph of maximum degree at most n and codegree at most t, then $\chi^{\prime}(\mathcal{H}) \leq t n$.

1: "Small" edge case: $|e| \leq k \forall e \in \mathcal{H}$ (Kahn asked in '94 for $k=3$)

- The Pippenger-Spencer theorem (i.e. "nibble") implies the case $t \geq 2$ and implies $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$ for $t=1$
- Using absorption, reduce $t=1$ case to a graph coloring problem

2: "FPP-extremal case": $|e| \geq(1-\delta) \sqrt{n} \forall e \in \mathcal{H}$
(for $\delta \ll 1$)

- Delicate argument - includes when $\mathcal{H} \approx t$-fold proj. plane
- Can also prove $\chi_{\ell}^{\prime}(\mathcal{H})<t n$ unless \mathcal{H} is intersecting

3: "Large" edge case: $|e| \geq r \forall e \in \mathcal{H}$
(for $r \gg 1$)

- Greedy coloring in order of size $\Rightarrow \chi^{\prime}(\mathcal{H}) \leq(1+2 / r)$ tn.
- "Reordering lemma" finds highly structured $\mathcal{W} \subseteq \mathcal{H}$ - either $\mathcal{W} \approx t$-fold proj. plane or line graph of \mathcal{W} is "locally sparse"
4: Merge cases
- Color large edges first, with special properties
- Stability result: can use fewer colors in non-FPP-extremal case

Vizing-reduction strategy for bounded edge-sizes
Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Low degree: more flexibility

High degree: more graph-like

Vizing-reduction strategy for bounded edge-sizes

Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Low degree: more flexibility

High degree: more graph-like

Vizing-reduction strategy for bounded edge-sizes
Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Proof that $\chi^{\prime}(\mathcal{H}) \leq n$ (assuming Vizing-reduction)

- vertices in U have leftover degree $\leq(n-1)-k<n-k$;
- vertices not in U have leftover degree $\leq(1 / 2+\gamma)(1-\varepsilon) n<n-k$. Uncolored edges comprise a graph of max degree $<n-k$.

Vizing-reduction strategy for bounded edge-sizes

Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.

- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Perfect coverage of U not always possible (e.g. K_{n} for n odd). Instead, find coloring with nearly perfect coverage:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove $\chi^{\prime} \leq n$.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+2 n / r$ edges of size at least $|e|$ intersect e.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+2 n / r$ edges of size at least $|e|$ intersect e. l.e. $d \preceq(e) \leq n+2 n / r \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+2 n / r$ edges of size at least $|e|$ intersect e. l.e. $d \preceq(e) \leq n+2 n / r \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.
Reordering: Let e be the last edge with $d \preceq(e) \geq n$. If f intersects e and $<n$ edges preceding e intersect f, then move f immediately after e.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+2 n / r$ edges of size at
least $|e|$ intersect e. I.e. $d^{\preceq}(e) \leq n+2 n / r \forall e \in \mathcal{H}$ if \preceq is a
size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.
Reordering: Let e be the last edge with $d^{\preceq}(e) \geq n$. If f intersects e and
$<n$ edges preceding e intersect f, then move f immediately after e.
If reordering "finishes", then $d^{\preceq}(e)<n \forall e \in \mathcal{H}$, so $\chi^{\prime}(\mathcal{H}) \leq n$.

"Reordering lemma" (informal)

If reordering "gets stuck", then there is a highly structured $\mathcal{W} \subseteq \mathcal{H}$: either

- $\mathcal{W} \approx$ projective plane (i.e. its line graph is close to complete), or
- line graph of \mathcal{W} is locally sparse (i.e. nbrhoods far from complete).

Use structure to color \mathcal{H} with $\leq n$ colors (via graph theoretical techniques)

Part V

Conclusion

Summary

The " t-EFL" conjecture
If \mathcal{H} is an n-vertex codegree- t hypergraph of max degree $\leq n$, then

$$
\chi^{\prime}(\mathcal{H}) \leq t n .
$$

Combining our results resolves the " t-EFL" conjecture for large n :
Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For sufficiently large n, every n-vertex hypergraph of maximum degree at most n and codegree at most t has chromatic index at most $t n$.

- The case $t=1$ confirms the Erdős-Faber-Lovász conjecture for all but finitely many hypergraphs
- For $t \geq 2$, we characterize extremal examples and prove bounds hold for list coloring and with relaxed max degree assumption
- We also prove stability results and a generalization of the de Bruijn-Erdős theorem

More extremal examples

Overfull graph: $>\Delta\lfloor n / 2\rfloor$ edges, where $\Delta=\max$ degree and $n=\#$ vtcs "Blowup" of degenerate plane: replace pencil point with a clique

Additional extremal examples for EFL:

- overfull graphs with maximum degree $n-1$
- "odd blowups" of a degenerate plane

More extremal examples

Overfull graph: $>\Delta\lfloor n / 2\rfloor$ edges, where $\Delta=\max$ degree and $n=\#$ vtcs "Blowup" of degenerate plane: replace pencil point with a clique

Additional extremal examples for EFL:

- overfull graphs with maximum degree $n-1$
- "odd blowups" of a degenerate plane

Conjecture

If \mathcal{H} is an n-vertex linear hypergraph of chromatic index n, then either

- \mathcal{H} has more than $(n-1)^{2} / 2$ size-two edges and n is odd,
- \mathcal{H} is a finite projective plane (of order k, where $n=k^{2}+k+1$), or
- \mathcal{H} is an odd blowup of a degenerate plane.

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

$$
\max _{v}\left|\bigcup_{e \ni v} e\right|=5
$$

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

```
If }\mathcal{H}\mathrm{ is a linear hypergraph, then }\mp@subsup{\chi}{}{\prime}(\mathcal{H})\leq\mp@subsup{\operatorname{max}}{v\inV(\mathcal{H})}{}|\mp@subsup{\bigcup}{e\niv}{}e|
```

- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
l.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

```
If }\mathcal{H}\mathrm{ is a linear hypergraph, then }\mp@subsup{\chi}{}{\prime}(\mathcal{H})\leq\mp@subsup{max}{v\inV(\mathcal{H})}{}|\mp@subsup{\bigcup}{e\niv}{}e|
```

- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
I.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

"Restricted" Larman's conjecture, 1981

If \mathcal{H} is an n-vertex intersecting hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \subseteq \mathcal{H}$ such that $\left|F \cap F^{\prime}\right| \geq \mathbf{2} \forall F, F^{\prime} \in \mathcal{F}_{i}$ and $i \in[n]$.

Open problems

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

 If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.- common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
I.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

"Restricted" Larman's conjecture, 1981

If \mathcal{H} is an n-vertex intersecting hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \subseteq \mathcal{H}$ such that $\left|F \cap F^{\prime}\right| \geq \mathbf{2} \forall F, F^{\prime} \in \mathcal{F}_{i}$ and $i \in[n]$.

Thanks for listening!

