Coloring hypergraphs of small codegree, and a proof of the Erdős–Faber–Lovász conjecture

Tom Kelly

Joint work with:

Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus

Graphs & Matroids Seminar November 23rd, 2021

Part I

Coloring a nearly disjoint union of complete graphs

The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \le n$.

The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \le n$.

One of Erdős' "three most favorite combinatorial problems":

Erdős initially offered \$50 for a solution, raised to \$500.
Faber, Lovász and I made this harmless looking conjecture at a party in Boulder Colorado in September 1972. Its difficulty was realised only slowly. I now offer 500 dollars for a proof or disproof. (Not long ago I only offered 50; the increase is not due to inflation but to the fact that I now think the problem is very difficult. Perhaps I am wrong.) -Paul Erdős, 1981

The Erdős–Faber–Lovász conjecture

proper coloring: adjacent vertices assigned different colors chromatic number: min # colors used in proper coloring, denoted by χ

The Erdős–Faber–Lovász conjecture (1972)

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \le n$.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) The Erdős–Faber–Lovász conjecture is true for sufficiently large *n*.

A more general question of Erdős

Question (Erdős, 1977)

If G_1, \ldots, G_n are complete graphs, each on at most *n* vtcs, such that every pair shares at most *t* vtcs, what is the max possible value of $\chi(\bigcup_{i=1}^n G_i)$?

• The EFL conjecture asserts that the answer for t = 1 is n.

A more general question of Erdős

Question (Erdős, 1977)

If G_1, \ldots, G_n are complete graphs, each on at most n vtcs, such that every pair shares at most t vtcs, what is the max possible value of $\chi(\bigcup_{i=1}^n G_i)$?

• The EFL conjecture asserts that the answer for t = 1 is *n*. We prove that for $2 \le t < \sqrt{n}$ and *n* sufficiently large, the answer is *tn*:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For $t \geq 2$, *n* sufficiently large, and G_1, \ldots, G_n as above, we have

$$\chi\left(\bigcup_{i=1}^n G_i\right) \leq tn.$$

Moreover, for infinitely many $k \in \mathbb{N}$, if $n = k^2 + k + 1$ and $t \leq k$, then there exist such G_1, \ldots, G_n such that $\bigcup_{i=1}^n G_i$ has *tn* vtcs and is complete.

A more general question of Erdős

Question (Erdős, 1977)

If G_1, \ldots, G_n are complete graphs, each on at most n vtcs, such that every pair shares at most t vtcs, what is the max possible value of $\chi(\bigcup_{i=1}^n G_i)$?

• The EFL conjecture asserts that the answer for t = 1 is *n*.

We prove that for $2 \le t < \sqrt{n}$ and *n* sufficiently large, the answer is *tn*:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For $t \geq 2$, *n* sufficiently large, and G_1, \ldots, G_n as above, we have

$$\chi\left(\bigcup_{i=1}^n G_i\right) \leq tn.$$

Moreover, for infinitely many $k \in \mathbb{N}$, if $n = k^2 + k + 1$ and $t \leq k$, then there exist such G_1, \ldots, G_n such that $\bigcup_{i=1}^n G_i$ has tn vtcs and is complete.

Horák and Tuza (1990): $\chi(\bigcup_{i=1}^{n} G_i) \leq n^{3/2}$; covers range $t > \sqrt{n}$.

Part II

Hypergraph edge-coloring

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

degree: # edges containing a vertex

Vizing's theorem (1964)

Every graph of maximum degree $\leq \Delta$ has chromatic index $\leq \Delta + 1$.

matching: a set of disjoint edges (proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

More complex for hypergraphs: e.g.

• 3-dimensional matching: one of Karp's original NP-complete problems

Question: Which hypergraphs have large matchings or small χ' ?

Hypergraph basics

In this talk, hypergraphs can have repeated edges but no size-one edges. **codegree:** max # edges containing any given pair of vertices **linear:** every pair of vertices contained in at most one edge *k*-uniform: every edge has size *k*

A 2-uniform hypergraph of codegree 2

A linear 3-uniform hypergraph

Hypergraph basics

In this talk, hypergraphs can have repeated edges but no size-one edges. **codegree:** max # edges containing any given pair of vertices **linear:** every pair of vertices contained in at most one edge *k*-uniform: every edge has size *k*

A 2-uniform hypergraph of codegree 2

A linear 3-uniform hypergraph

- multigraphs are 2-uniform hypergraphs
- graphs are 2-uniform linear hypergraphs

Erdős-Faber-Lovász conjecture (reformulated)

The Erdős–Faber–Lovász conjecture (1972)

If $\mathcal H$ is an *n*-vertex linear hypergraph, then $\chi'(\mathcal H) \leq n$.

Line graph:

- edges \rightarrow vertices: edges that share a vertex are adjacent
- proper edge-coloring \rightarrow proper vertex-coloring

The previous formulation is equivalent:

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \leq n$.

Erdős-Faber-Lovász conjecture (reformulated)

The Erdős–Faber–Lovász conjecture (1972)

If $\mathcal H$ is an *n*-vertex linear hypergraph, then $\chi'(\mathcal H) \leq n$.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved

The previous formulation is equivalent:

If G_1, \ldots, G_n are complete graphs, each on at most *n* vertices, such that every pair shares at most one vertex, then $\chi(\bigcup_{i=1}^n G_i) \leq n$.

The dual of Erdős' question

Question (Erdős, 1977)

If \mathcal{H} is an *n*-vertex hypergraph of maximum degree at most *n* and codegree at most *t*, what is the max possible value of $\chi'(\mathcal{H})$?

• max degree of $\mathcal{H} = \max |V(G_i)|$

• codegree of $\mathcal{H} = \max_{i \neq j} |V(G_i) \cap V(G_j)|$

The previous formulation is equivalent:

If G_1, \ldots, G_n are complete graphs, each on at most *n* vtcs, such that every pair shares at most *t* vtcs, what is the max possible value of $\chi(\bigcup_{i=1}^n G_i)$?

Extremal examples for EFL

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Extremal examples:

Finite projective plane of order k: (k + 1)-uniform intersecting linear hypergraph with $n = k^2 + k + 1$ vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with

n-1 size-two edges and one size-(n-1) edge

Complete graph: $\binom{n}{2}$ size-two edges; if $\chi' < n$, then color classes are perfect matchings $\Rightarrow n$ is even

Extremal examples for $t \ge 2$

The "*t*-EFL" conjecture

If \mathcal{H} is an *n*-vertex codegree-*t* hypergraph of max degree $\leq n$, then

 $\chi'(\mathcal{H}) \leq tn.$

3-fold order-1 projective plane

1-fold Fano plane

t-fold projective plane: replace each edge with *t* repeated edges Extremal examples: *t*-fold projective planes of order *k* for $t \le k$:

- codegree t
- max degree t(k+1) (and $t(k+1) \le n$ if $t \le k$)

Part III

Results

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Direct approaches:

Trivial: $\chi'(\mathcal{H}) \leq 2n - 3$ (color greedily, in order of size) Chang-Lawler (1989): $\chi'(\mathcal{H}) \leq \lceil 3n/2 - 2 \rceil$

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Relaxed parameters:

de Bruijn–Erdős (1948): true for intersecting hypergraphs **Seymour (1982):** \exists a matching of size at least $|\mathcal{H}|/n$ **Kahn–Seymour (1992):** fractional chromatic index is at most *n*

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Probabilistic "nibble" approach: Faber-Harris (2019): EFL is true if $|e| \in [3, c\sqrt{n}] \ \forall e \in \mathcal{H} \ (c \ll 1)$ Kahn (1992): $\chi'(\mathcal{H}) \leq (1 + o(1))n$

The Erdős–Faber–Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Probabilistic "nibble" approach: **Faber–Harris (2019):** EFL is true if $|e| \in [3, c\sqrt{n}] \quad \forall e \in \mathcal{H} \ (c \ll 1)$ **Kahn (1992):** $\chi'(\mathcal{H}) \leq (1 + o(1))n$ Both use "list coloring" generalization (proved by Kahn) of:

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a hypergraph with bounded edge-sizes with maximum degree at most Δ and codegree $o(\Delta)$, then $\chi'(\mathcal{H}) \leq \Delta + o(\Delta)$.

• \Rightarrow EFL if $|e| \in [3, k] \ \forall e \in \mathcal{H}$ and $n \gg k$ (since $\Delta(\mathcal{H}) \leq n/2$)

• \Rightarrow EFL "asymptotically" if $|e| \le k \ \forall e \in \mathcal{H}$ and $n \gg k \ (\Delta(\mathcal{H}) \le n)$

• \Rightarrow "t-EFL" for $t \ge 2$ if $|e| \le k \ \forall e \in \mathcal{H}$ and $n \gg k$

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) For sufficiently large *n*, every *n*-vertex linear hypergraph has chromatic index at most *n*.

Our results

We confirm the EFL conjecture for all but finitely many hypergraphs:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) $\forall \delta > 0, \exists \sigma > 0$ such that the following holds for *n* sufficiently large. If \mathcal{H} is an *n*-vertex linear hypergraph such that

- $\Delta(\mathcal{H}) \leq (1-\delta)n$ and
- at most $(1-\delta)n$ edges have size $(1\pm\delta)\sqrt{n}$,

then $\chi'(\mathcal{H}) \leq (1-\sigma)n$.

Our results II

We confirm *t*-EFL for $t \ge 2$ for all but finitely many hypergraphs:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

 $\forall \varepsilon > 0$, the following holds for *n* sufficiently large and $t \in \mathbb{N}$. If \mathcal{H} is an *n*-vertex hypergraph with codegree at most *t* and maximum degree at most $(1 - \varepsilon)tn$, then $\chi'_{\ell}(\mathcal{H}) \leq tn$. Moreover, if $\chi'_{\ell}(\mathcal{H}) = tn$, then \mathcal{H} is a *t*-fold projective plane.

Strengthens answer to Erdős question in three ways:

- allows relaxed maximum degree assumption (except when t = 1)
- characterizes extremal examples
- holds for list coloring

Our results II

We confirm *t*-EFL for $t \ge 2$ for all but finitely many hypergraphs:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

 $\forall \varepsilon > 0$, the following holds for *n* sufficiently large and $t \in \mathbb{N}$. If \mathcal{H} is an *n*-vertex hypergraph with codegree at most *t* and maximum degree at most $(1 - \varepsilon)tn$, then $\chi'_{\ell}(\mathcal{H}) \leq tn$. Moreover, if $\chi'_{\ell}(\mathcal{H}) = tn$, then \mathcal{H} is a *t*-fold projective plane.

We also generalize our stability result and the de Bruijn-Erdős theorem:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

If \mathcal{H} is an *n*-vertex intersecting hypergraph with codegree at most t, then \mathcal{H} has at most tn edges, and if equality holds, then \mathcal{H} is either

- a *t*-fold projective plane or
- a *t*-fold near-pencil.

Part IV

Proof ideas

- 1: "Small" edge case: $|e| \le k \ \forall e \in \mathcal{H}$ (Kahn asked in '94 for k = 3)
 - The Pippenger–Spencer theorem (i.e. "nibble") implies the case t ≥ 2 and implies χ'(H) ≤ n + o(n) for t = 1
 - Using absorption, reduce t = 1 case to a graph coloring problem

- 1: "Small" edge case: $|e| \le k \ \forall e \in \mathcal{H}$ (Kahn asked in '94 for k = 3)
 - The Pippenger–Spencer theorem (i.e. "nibble") implies the case t ≥ 2 and implies χ'(H) ≤ n + o(n) for t = 1
 - Using absorption, reduce t = 1 case to a graph coloring problem
- **2:** "FPP-extremal case": $|e| \ge (1 \delta)\sqrt{n} \ \forall e \in \mathcal{H}$ (for $\delta \ll 1$)
 - ▶ Delicate argument includes when $\mathcal{H} \approx t$ -fold proj. plane
 - ▶ Can also prove $\chi'_{\ell}(\mathcal{H}) < tn$ unless \mathcal{H} is intersecting

- 1: "Small" edge case: $|e| \le k \ \forall e \in \mathcal{H}$ (Kahn asked in '94 for k = 3)
 - ▶ The Pippenger–Spencer theorem (i.e. "nibble") implies the case $t \ge 2$ and implies $\chi'(\mathcal{H}) \le n + o(n)$ for t = 1
 - Using absorption, reduce t = 1 case to a graph coloring problem
- **2:** "FPP-extremal case": $|e| \ge (1 \delta)\sqrt{n} \ \forall e \in \mathcal{H}$ (for $\delta \ll 1$)
 - ▶ Delicate argument includes when $\mathcal{H} \approx t$ -fold proj. plane
 - ▶ Can also prove $\chi'_{\ell}(\mathcal{H}) < tn$ unless \mathcal{H} is intersecting
- **3:** "Large" edge case: $|e| \ge r \ \forall e \in \mathcal{H}$ (for $r \gg 1$)
 - Greedy coloring in order of size $\Rightarrow \chi'(\mathcal{H}) \leq (1+2/r)tn$.
 - ► "Reordering lemma" finds highly structured W ⊆ H either W ≈ t-fold proj. plane or line graph of W is "locally sparse"

Roadmap to the proofs

KKKMO (2021+): If \mathcal{H} is an *n*-vertex hypergraph of maximum degree at most *n* and codegree at most *t*, then $\chi'(\mathcal{H}) \leq tn$. $(n \gg 1)$

- 1: "Small" edge case: $|e| \le k \ \forall e \in \mathcal{H}$ (Kahn asked in '94 for k = 3)
 - The Pippenger–Spencer theorem (i.e. "nibble") implies the case t ≥ 2 and implies χ'(H) ≤ n + o(n) for t = 1
 - Using absorption, reduce t = 1 case to a graph coloring problem
- **2:** "FPP-extremal case": $|e| \ge (1 \delta)\sqrt{n} \ \forall e \in \mathcal{H}$ (for $\delta \ll 1$)
 - Delicate argument includes when $\mathcal{H} \approx t$ -fold proj. plane
 - ▶ Can also prove $\chi'_{\ell}(\mathcal{H}) < tn$ unless \mathcal{H} is intersecting
- **3:** "Large" edge case: $|e| \ge r \ \forall e \in \mathcal{H}$ (for $r \gg 1$)
 - Greedy coloring in order of size $\Rightarrow \chi'(\mathcal{H}) \leq (1+2/r)tn$.
 - ► "Reordering lemma" finds highly structured W ⊆ H either W ≈ t-fold proj. plane or line graph of W is "locally sparse"
- 4: Merge cases
 - Color large edges first, with special properties
 - Stability result: can use fewer colors in non-FPP-extremal case

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$.

High degree: more graph-like

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$.

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers *U* (perfect coverage of *U*).

High degree: more graph-like

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$.

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers *U* (perfect coverage of *U*).

Proof that $\chi'(\mathcal{H}) \leq n$ (assuming Vizing-reduction)

• vertices in U have leftover degree $\leq (n-1) - k < n - k$;

• vertices not in U have leftover degree $\leq (1/2 + \gamma)(1 - \varepsilon)n < n - k$. Uncolored edges comprise a **graph** of max degree < n - k. (*) Finish with Vizing's theorem!

Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.

• Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n \}$.

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers *U* (perfect coverage of *U*).

Perfect coverage of U not always possible (e.g. K_n for n odd). Instead, find coloring with **nearly perfect coverage**:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove $\chi' \leq n$.

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$. **Trivial:** $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \le n + 2n/r$ edges of size at

least |e| intersect e.

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$. **Trivial:** $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \le n + 2n/r$ edges of size at least |e| intersect e. I.e. $d^{\preceq}(e) \le n + 2n/r \ \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \ \forall e \in \mathcal{H}$, where $r \gg 1$.

Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \leq n + 2n/r$ edges of size at least |e| intersect e. I.e. $d^{\leq}(e) \leq n + 2n/r \ \forall e \in \mathcal{H}$ if \leq is a

size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Reordering: Let *e* be the last edge with $d^{\leq}(e) \geq n$. If *f* intersects *e* and < n edges preceding *e* intersect *f*, then move *f* immediately after *e*.

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$.

Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \leq n + 2n/r$ edges of size at least |e| intersect e. I.e. $d^{\preceq}(e) \leq n + 2n/r \ \forall e \in \mathcal{H}$ if \preceq is a

size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Reordering: Let *e* be the last edge with $d^{\preceq}(e) \ge n$. If *f* intersects *e* and < n edges preceding *e* intersect *f*, then move *f* immediately after *e*. If reordering "finishes", then $d^{\preceq}(e) < n \ \forall e \in \mathcal{H}$, so $\chi'(\mathcal{H}) \le n$.

"Reordering lemma" (informal)

If reordering "gets stuck", then there is a highly structured $\mathcal{W}\subseteq\mathcal{H}:$ either

- $\mathcal{W}\approx$ projective plane (i.e. its line graph is close to complete), or
- line graph of \mathcal{W} is **locally sparse** (i.e. nbrhoods far from complete).

Use structure to color \mathcal{H} with $\leq n$ colors (via graph theoretical techniques)

Part V

Conclusion

Summary

The "*t*-EFL" conjecture

If \mathcal{H} is an *n*-vertex codegree-*t* hypergraph of max degree $\leq n$, then

 $\chi'(\mathcal{H}) \leq tn.$

Combining our results resolves the "t-EFL" conjecture for large n:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) For sufficiently large n, every n-vertex hypergraph of maximum degree at most n and codegree at most t has chromatic index at most tn.

- The case t = 1 confirms the Erdős–Faber–Lovász conjecture for all but finitely many hypergraphs
- For t ≥ 2, we characterize extremal examples and prove bounds hold for list coloring and with relaxed max degree assumption
- We also prove stability results and a generalization of the de Bruijn–Erdős theorem

More extremal examples

Overfull graph: $> \Delta \lfloor n/2 \rfloor$ edges, where $\Delta = \max$ degree and n = # vtcs **"Blowup" of degenerate plane:** replace pencil point with a clique

Additional extremal examples for EFL:

- overfull graphs with maximum degree n-1
- "odd blowups" of a degenerate plane

More extremal examples

Overfull graph: $> \Delta \lfloor n/2 \rfloor$ edges, where $\Delta = \max$ degree and n = # vtcs **"Blowup" of degenerate plane:** replace pencil point with a clique

Additional extremal examples for EFL:

- overfull graphs with maximum degree n-1
- "odd blowups" of a degenerate plane

Conjecture

If \mathcal{H} is an *n*-vertex linear hypergraph of chromatic index *n*, then either

- \mathcal{H} has more than $(n-1)^2/2$ size-two edges and n is odd,
- \mathcal{H} is a finite projective plane (of order k, where $n = k^2 + k + 1$), or
- \mathcal{H} is an odd blowup of a degenerate plane.

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

"Restricted" Larman's conjecture, 1981

If \mathcal{H} is an *n*-vertex **intersecting** hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{H}$ such that $|F \cap F'| \ge \mathbf{2} \ \forall \ F, F' \in \mathcal{F}_i$ and $i \in [n]$.

Conjecture (Berge, 1989; Füredi, 1986; Meyniel)

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

The List EFL conjecture (Faber, 2017)

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

"Restricted" Larman's conjecture, 1981

If \mathcal{H} is an *n*-vertex **intersecting** hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{H}$ such that $|F \cap F'| \ge \mathbf{2} \ \forall \ F, F' \in \mathcal{F}_i$ and $i \in [n]$.

Thanks for listening!