Bounding χ by a Fraction of Δ for Graphs without Large Cliques

Tom Kelly ${ }^{1}$
Joint work with Marthe Bonamy ${ }^{2}$, Peter Nelson ${ }^{1}$, and Luke Postle ${ }^{1}$
${ }^{1}$ Department of Combinatorics \& Optimization
University of Waterloo
${ }^{2}$ CNRS, LaBRI, Université de Bordeaux

ICGT: July 12, 2018

Introduction

If G is a graph, then

- $\chi(G)=$ chromatic number of G
- $\Delta(G)=$ max degree of a vertex in G, and
- $\omega(G)=\max$ size of a clique in G.

Introduction

If G is a graph, then

- $\chi(G)=$ chromatic number of G
- $\Delta(G)=$ max degree of a vertex in G, and
- $\omega(G)=$ max size of a clique in G.

Trivial bounds:

$$
\omega \leq \chi \leq \Delta+1
$$

Introduction

If G is a graph, then

- $\chi(G)=$ chromatic number of G
- $\Delta(G)=$ max degree of a vertex in G, and
- $\omega(G)=$ max size of a clique in G.

Trivial bounds:

$$
\omega \leq \chi \leq \Delta+1
$$

Goal: Improve upper bound when ω is small.

Introduction

If G is a graph, then

- $\chi(G)=$ chromatic number of G
- $\Delta(G)=$ max degree of a vertex in G, and
- $\omega(G)=$ max size of a clique in G.

Trivial bounds:

$$
\omega \leq \chi \leq \Delta+1
$$

Goal: Improve upper bound when ω is small.
Brooks' Theorem (1941)
If $\Delta \geq 3$ and $\omega \leq \Delta$, then

$$
\chi \leq \Delta .
$$

Reed's Conjecture

Reed's Conjecture (1998)
If $\omega \leq \Delta+1-2 k$, then

$$
\chi \leq \Delta+1-k .
$$

Reed's Conjecture

Reed's Conjecture (1998)
If $\omega \leq \Delta+1-2 k$, then

$$
\chi \leq \Delta+1-k .
$$

Why $2 k$?
Theorem (Spencer, 1977)
The off-diagonal Ramsey number satisfies

$$
R(s, t)=\Omega\left((t / \ln t)^{\frac{s+1}{2}}\right)
$$

Reed's Conjecture

Reed's Conjecture (1998)
If $\omega \leq \Delta+1-2 k$, then

$$
\chi \leq \Delta+1-k .
$$

Why $2 k$?
Theorem (Spencer, 1977)
The off-diagonal Ramsey number satisfies

$$
R(s, t)=\Omega\left((t / \ln t)^{\frac{s+1}{2}}\right)
$$

Letting $s=3$ implies that there exists G on n vertices with $\chi(G) \geq n / 2$ and $\omega(G)=O\left(n^{\frac{1}{2}+o(1)}\right)$.

Reed's Conjecture

Reed's Conjecture (1998)
If $\omega \leq \Delta+1-2 k$, then

$$
\chi \leq \Delta+1-k .
$$

Reed proved his conjecture for $\Delta \geq 10^{8} \cdot k$.
Corollary
If $\omega \leq \Delta+1-10^{8} \cdot k$, then

$$
\chi \leq \Delta+1-k .
$$

Reed's Conjecture

Reed's Conjecture (1998)

If $\omega \leq \Delta+1-2 k$, then

$$
\chi \leq \Delta+1-k .
$$

Reed proved his conjecture for $\Delta \geq 10^{8} \cdot k$.

Corollary

If $\omega \leq \Delta+1-10^{8} \cdot k$, then

$$
\chi \leq \Delta+1-k .
$$

- In 2016, Bonamy, Perrett, and Postle proved it when $\omega \leq \Delta+1-26 \cdot k$ and Δ is large (not depending on k).

Reed's Conjecture

Reed's Conjecture (1998)

If $\omega \leq \Delta+1-2 k$, then

$$
\chi \leq \Delta+1-k .
$$

Reed proved his conjecture for $\Delta \geq 10^{8} \cdot k$.

Corollary

If $\omega \leq \Delta+1-10^{8} \cdot k$, then

$$
\chi \leq \Delta+1-k .
$$

- In 2016, Bonamy, Perrett, and Postle proved it when $\omega \leq \Delta+1-26 \cdot k$ and Δ is large (not depending on k).
- In 2017, Delcourt and Postle improved this to $\omega \leq \Delta+1-13 \cdot k$.

Triangle-free Graphs $(\omega \leq 2)$

Theorem (Johansson, 1996)
If $\omega \leq 2$ (i.e. triangle-free), then

$$
\chi=O\left(\frac{\Delta}{\ln \Delta}\right) .
$$

Triangle-free Graphs $(\omega \leq 2)$

Theorem (Johansson, 1996)
If $\omega \leq 2$ (i.e. triangle-free), then

$$
\chi=O\left(\frac{\Delta}{\ln \Delta}\right) .
$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.

Triangle-free Graphs $(\omega \leq 2)$

Theorem (Pettie and Su, 2014)
If $\omega \leq 2$ (i.e. triangle-free), then

$$
\chi \leq(4+o(1)) \frac{\Delta}{\ln \Delta} .
$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to $4+o(1)$.

Triangle-free Graphs $(\omega \leq 2)$

Theorem (Molloy, 2017)
If $\omega \leq 2$ (i.e. triangle-free), then

$$
\chi \leq(1+o(1)) \frac{\Delta}{\ln \Delta}
$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to $4+o(1)$.
- In 2017, Molloy improved it to $1+o(1)$.

Triangle-free Graphs $(\omega \leq 2)$

Theorem (Molloy, 2017)
If $\omega \leq 2$ (i.e. triangle-free), then

$$
\chi \leq(1+o(1)) \frac{\Delta}{\ln \Delta} .
$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to $4+o(1)$.
- In 2017, Molloy improved it to $1+o(1)$.
- Molloy's bound matches Kim's bound from '95 for girth 5 graphs and implies Shearer's bound on $R(3, k)$.

Triangle-free Graphs $(\omega \leq 2)$

Theorem (Molloy, 2017)
If $\omega \leq 2$ (i.e. triangle-free), then

$$
\chi \leq(1+o(1)) \frac{\Delta}{\ln \Delta} .
$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to $4+o(1)$.
- In 2017, Molloy improved it to $1+o(1)$.
- Molloy's bound matches Kim's bound from '95 for girth 5 graphs and implies Shearer's bound on $R(3, k)$.
- Random Δ-regular graphs can have $\omega=2$ and $\chi \geq \frac{\Delta}{2 \ln \Delta}$.

Small ω

Theorem (Johansson, 1996)
If ω is fixed, then

$$
\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right) .
$$

Small ω

Theorem (Johansson, 1996)
If ω is fixed, then

$$
\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right) .
$$

- Possible that $\ln \ln \Delta$ term is not needed.

Small ω

Theorem (Johansson, 1996)
If ω is fixed, then

$$
\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right) .
$$

- Possible that $\ln \ln \Delta$ term is not needed.
- Johansson's result wasn't published, but Molloy provided a proof that works for all ω.

Small ω

Theorem (Johansson, 1996)
If ω is fixed, then

$$
\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right) .
$$

- Possible that $\ln \ln \Delta$ term is not needed.
- Johansson's result wasn't published, but Molloy provided a proof that works for all ω.

Theorem (Molloy, 2017)

$$
\chi \leq 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}
$$

Small ω

Theorem (Johansson, 1996)
If ω is fixed, then

$$
\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right) .
$$

- Possible that $\ln \ln \Delta$ term is not needed.
- Johansson's result wasn't published, but Molloy provided a proof that works for all ω.

Theorem (Molloy, 2017)

$$
\chi \leq 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}
$$

- For this and triangle-free result, Molloy used entropy compression Bernshteyn found shorter proofs by sampling a partial coloring uniformly at random and using the Lovász Local Lemma.

Summary

ω	$\chi \leq$	

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks

Summary

ω	$x \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$	$\Delta+1-k$	Delcourt \& Postle

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle Reed

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle Reed
	$200 \Delta \frac{\omega \ln \mid n \Delta}{\ln \Delta}$	Molloy

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle Reed
$=O(1)$	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
	$O\left(\Delta \frac{\ln \ln \Delta)}{\ln \Delta}\right)$	Johansson

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Relcourt \& Postle Reed
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	
$=O(1)$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right)$	
		Molloy
		Johansson

Summary

\(\left.$$
\begin{array}{|l|l|l|}\hline \omega & \chi \leq & \\
\hline \leq \Delta & \Delta & \text { Brooks } \\
\hline \begin{array}{l}\leq \Delta+1-13 k \\
\leq \Delta+1-2 k ?\end{array} & \Delta+1-k & \begin{array}{l}\text { Relcourt \& Postle } \\
\text { Reed }\end{array}
$$

\hline \& \&

\hline \& 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}

=O(1) \& O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right)

\hline(\Delta / \ln \Delta) ?\end{array}\right]\) Molloy | Johansson |
| :--- |
| $=2$ |$(1+o(1)) \Delta / \ln \Delta$| Molloy |
| :--- |

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Relcourt \& Postle Reed
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	
$=O(1)$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right)$ $O(\Delta / \ln \Delta) ?$	Molloy
$=2$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Johansson

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Relcourt \& Postle Reed
$\leq ?$	Δ / c for $c \geq 2$	
$=O(1)$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right)$ $O(\Delta / \ln \Delta) ?$	Molloy
$=2$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Johansson

Summary

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Relcourt \& Postle Reed
$\leq ?$	Δ / c for $c \geq 2$	
$?$	$o(\Delta)$	
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	
$=O(1)$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right)$ $O(\Delta / \ln \Delta) ?$	Molloy
$=2$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Johansson

Bounding χ by a fraction of Δ

Question

For which ω is χ at most Δ / c or $o(\Delta)$?

Bounding χ by a fraction of Δ

Question

For which ω is χ at most Δ / c or $o(\Delta)$?
Theorem (Bonamy, K., Nelson, Postle (2018+))
For Δ sufficiently large,

$$
\chi \leq 72 \Delta \sqrt{\frac{\ln \omega}{\ln \Delta}} .
$$

Bounding χ by a fraction of Δ

Question

For which ω is χ at most Δ / c or $o(\Delta)$?
Theorem (Bonamy, K., Nelson, Postle (2018+))
For Δ sufficiently large,

$$
\chi \leq 72 \Delta \sqrt{\frac{\ln \omega}{\ln \Delta}}
$$

Implies that if Δ sufficiently large and

- if $\omega \leq \Delta^{1 /(72 c)^{2}}$, then $\chi \leq \Delta / c$, and
- if $\ln \omega=o(\ln \Delta)$, then $\chi=o(\Delta)$.

Bounding χ by a fraction of Δ

Question

For which ω is χ at most Δ / c or $o(\Delta)$?

Theorem (Bonamy, K., Nelson, Postle (2018+))
For Δ sufficiently large,

$$
\chi \leq 72 \Delta \sqrt{\frac{\ln \omega}{\ln \Delta}}
$$

Implies that if Δ sufficiently large and

- if $\omega \leq \Delta^{1 /(72 c)^{2}}$, then $\chi \leq \Delta / c$, and
- if $\ln \omega=o(\ln \Delta)$, then $\chi=o(\Delta)$.

Spencer's Ramsey-theory result implies there exists G on n vertices with $\omega(G)=O\left(n^{\frac{2}{c+2}+o(1)}\right)$ and $\chi(G) \geq n / c \geq \Delta / c$.

The state of the art

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle Reed
$\leq ?$	Δ / c for $c \geq 2$	
$?$	$o(\Delta)$	Molloy
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right.$ $O(\Delta / \ln \Delta) ?$
$=O(1)$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Molloy
$=2$		

The state of the art

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle Reed
$\leq \Delta^{1 /(72 c)^{2}}$	Δ / c for $c \geq 2$	BKNP
$?$	$o(\Delta)$	Molloy
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right.$ $O(\Delta / \ln \Delta) ?$
$=O(1)$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Molloy
$=2$		

The state of the art

ω	$\chi \leq$						
$\leq \Delta$	Δ	Brooks					
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle					
Reed			$	$	$\leq \Delta^{1 /(72 c)^{2}}$		
:---	:---	:---					
$\leq \Delta^{2 /(c+2) ?} ?$	Δ / c for $c \geq 2$	BKNP					
$?$	$o(\Delta)$						
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy					
$=O(1)$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right)$ $O(\Delta / \ln \Delta) ?$	Johansson					
$=2$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Molloy					

The state of the art

ω	$\chi \leq$						
$\leq \Delta$	Δ	Brooks					
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle					
Reed			$	$	$\leq \Delta^{1 /(72 c)^{2}}$		
:---	:---	:---					
$\leq \Delta^{2 /(c+2) ?} ?$	Δ / c for $c \geq 2$	BKNP					
$\ln \omega=o(\ln \Delta)$	$o(\Delta)$	BKNP					
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy					
$=O(1)$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right.$ $O(\Delta / \ln \Delta) ?$	Johansson					
$=2$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Molloy					

The state of the art

ω	$\chi \leq$						
$\leq \Delta$	Δ	Brooks					
$\leq \Delta+1-13 k$ $\leq \Delta+1-2 k ?$	$\Delta+1-k$	Delcourt \& Postle					
Reed			$	$	$\leq \Delta^{1 /(72 c)^{2}}$		
:---	:---	:---					
$\leq \Delta^{2 /(c+2) ?} ?$	Δ / c for $c \geq 2$	BKNP					
$\ln \omega=o(\ln \Delta)$	$o(\Delta)$	BKNP					
	$200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}, 72 \Delta \sqrt{\ln \omega} \ln \Delta$	Molloy, BKNP					
$=O(1)$	$O\left(\Delta \frac{\ln \ln \Delta}{\ln \Delta}\right.$ $O(\Delta / \ln \Delta) ?$	Johansson					
$=2$	$(1+o(1)) \Delta / \ln \Delta$ $\frac{\Delta}{2 \ln \Delta} ?$	Molloy					

List-Coloring

For a graph G,

- $L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors",
- G is L-colorable if there is a proper coloring in which each $v \in V(G)$ receives a color from $L(v)$, and
- the list-chromatic number of G, denoted $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.
Clearly,

$$
\chi(G) \leq \chi_{\ell}(G)
$$

List-Coloring

For a graph G,

- $L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors",
- G is L-colorable if there is a proper coloring in which each $v \in V(G)$ receives a color from $L(v)$, and
- the list-chromatic number of G, denoted $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.
Clearly,

$$
\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G)+1
$$

List-Coloring

For a graph G,

- $L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors",
- G is L-colorable if there is a proper coloring in which each $v \in V(G)$ receives a color from $L(v)$, and
- the list-chromatic number of G, denoted $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.
Clearly,

$$
\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G)+1
$$

What if $|L(v)|$ depends on local parameters, such as

- $d(v)$, the degree of v and
- $\omega(v)$, the size of a largest clique containing v ?

The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)
Every connected graph G is L-colorable if $|L(v)| \geq d(v)$ for all $v \in V(G)$, unless every block of G is a clique or odd cycle.

The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)

Every connected graph G is L-colorable if $|L(v)| \geq d(v)$ for all $v \in V(G)$, unless every block of G is a clique or odd cycle.

Conjecture (Local Version of Reed's)
Every graph G is L-colorable if $|L(v)| \geq\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil$ for every $v \in V(G)$.

The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)

Every connected graph G is L-colorable if $|L(v)| \geq d(v)$ for all $v \in V(G)$, unless every block of G is a clique or odd cycle.

Conjecture (Local Version of Reed's)

Every graph G is L-colorable if $|L(v)| \geq\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil$ for every $v \in V(G)$.

What if

- $|L(v)|=\Omega\left(d(v) \sqrt{\frac{\ln \omega(v)}{\ln d(v)}}\right)$ or $\Omega\left(d(v) \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}\right)$, or
- $|L(v)|=\Omega(d(v) / \ln d(v))$ and G is triangle-free?

Our Local Versions

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq 72 d(v) \min \left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln (\chi(G[N(v)])+1)}{\ln d(v)}\right\},
$$

and $d(v) \geq \ln ^{2} \Delta$, then G is L-colorable.

Our Local Versions

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq 72 d(v) \min \left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln (\chi(G[N(v)])+1)}{\ln d(v)}\right\},
$$

and $d(v) \geq \ln ^{2} \Delta$, then G is L-colorable.
This simultaneously implies

Our Local Versions

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq 72 d(v) \min \left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln (\chi(G[N(v)])+1)}{\ln d(v)}\right\},
$$

and $d(v) \geq \ln ^{2} \Delta$, then G is L-colorable.
This simultaneously implies

- $\chi \leq 72 \Delta \sqrt{\ln \omega / \ln \Delta}$ (BKNP),

Our Local Versions

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq 72 d(v) \min \left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln (\chi(G[N(v)])+1)}{\ln d(v)}\right\},
$$

and $d(v) \geq \ln ^{2} \Delta$, then G is L-colorable.
This simultaneously implies

- $\chi \leq 72 \Delta \sqrt{\ln \omega / \ln \Delta}$ (BKNP),
- $\chi \leq 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$ (Molloy), and

Our Local Versions

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq 72 d(v) \min \left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln (\chi(G[N(v)])+1)}{\ln d(v)}\right\}
$$

and $d(v) \geq \ln ^{2} \Delta$, then G is L-colorable.
This simultaneously implies

- $\chi \leq 72 \Delta \sqrt{\ln \omega / \ln \Delta}$ (BKNP),
- $\chi \leq 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$ (Molloy), and
- $\chi \leq O(\Delta \ln r / \ln \Delta)$ if $\chi(G[N(v)])<r$ for all $v \in V(G)$ (Johansson).

Our Local Versions

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq 72 d(v) \min \left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln (\chi(G[N(v)])+1)}{\ln d(v)}\right\},
$$

and $d(v) \geq \ln ^{2} \Delta$, then G is L-colorable.

Theorem (BKNP, 2018+)

If Δ is sufficiently large, G has triangle-free and $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq(4+o(1)) \frac{d(v)}{\log _{2}(d(v))}
$$

and $d(v) \geq \ln ^{2} \Delta$, then G is L-colorable.

A Metatheorem

For a graph H,

- let $\bar{\alpha}(H)$ be the average size of an independent set in H, and
- let $i(H)$ be the number of independent sets in H.

A Metatheorem

For a graph H,

- let $\bar{\alpha}(H)$ be the average size of an independent set in H, and
- let $i(H)$ be the number of independent sets in H.

Theorem (BKNP 2018+)

Let $\varepsilon>0$. Let $\alpha_{\min }(v)$ be the minimum of $\bar{\alpha}(H)$ where $H \subseteq G[N(v)]$ and $i(H) \geq d(v)^{(1-\varepsilon) / 2}$. If Δ sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq(1+\varepsilon) \frac{d(v)}{\alpha_{\min }(v)}
$$

and $d(v) \geq \ln ^{2} \Delta$, then G has an L-coloring.

A Metatheorem

For a graph H,

- let $\bar{\alpha}(H)$ be the average size of an independent set in H, and
- let $i(H)$ be the number of independent sets in H.

Theorem (BKNP 2018+)

Let $\varepsilon>0$. Let $\alpha_{\min }(v)$ be the minimum of $\bar{\alpha}(H)$ where $H \subseteq G[N(v)]$ and $i(H) \geq d(v)^{(1-\varepsilon) / 2}$. If Δ sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$
|L(v)| \geq(1+\varepsilon) \frac{d(v)}{\alpha_{\min }(v)}
$$

and $d(v) \geq \ln ^{2} \Delta$, then G has an L-coloring.
Lemma

$$
\begin{array}{rrr}
\bar{\alpha}(H) \geq & \log (i(H)) /(10 \log (\chi(H)+1)), & (\text { Alon }) \\
\log (i(H)) /(2 \omega \log (\log (i(H)))), & (\text { Shearer }) \\
24^{-1} \sqrt{\log (i(H)) / \log (\omega) .} & (\text { BKNP })
\end{array}
$$

Thanks!

