Bounding χ by a Fraction of Δ for Graphs without Large Cliques

Tom Kelly¹ Joint work with Marthe Bonamy², Peter Nelson¹, and Luke Postle¹

¹Department of Combinatorics & Optimization University of Waterloo

²CNRS, LaBRI, Université de Bordeaux

ICGT: July 12, 2018

If G is a graph, then

- $\chi(G) =$ chromatic number of G
- $\Delta(G) = \max$ degree of a vertex in G, and
- $\omega(G) = \max \text{ size of a clique in } G$.

- If G is a graph, then
 - $\chi(G) =$ chromatic number of G
 - $\Delta(G) = \max$ degree of a vertex in G, and
 - $\omega(G) = \max \text{ size of a clique in } G$.

Trivial bounds:

 $\omega \leq \chi \leq \Delta + 1.$

If G is a graph, then

- $\chi(G) =$ chromatic number of G
- $\Delta(G) = \max$ degree of a vertex in G, and

• $\omega(G) = \max \text{ size of a clique in } G$.

Trivial bounds:

 $\omega \leq \chi \leq \Delta + 1.$

Goal: Improve upper bound when ω is small.

If G is a graph, then

- $\chi(G) =$ chromatic number of G
- $\Delta(G) = \max$ degree of a vertex in G, and

• $\omega(G) = \max$ size of a clique in G.

Trivial bounds:

 $\omega \leq \chi \leq \Delta + 1.$

Goal: Improve upper bound when ω is small.

Brooks' Theorem (1941)

If $\Delta \geq 3$ and $\omega \leq \Delta$, then

$$\chi \leq \Delta$$
.

Reed's Conjecture (1998)

If $\omega \leq \Delta + 1 - 2k$, then

$$\chi \leq \Delta + 1 - k.$$

Reed's Conjecture (1998)

If $\omega \leq \Delta + 1 - 2k$, then

 $\chi \leq \Delta + 1 - k.$

Why 2k?

Theorem (Spencer, 1977)

The off-diagonal Ramsey number satisfies

$$R(s,t) = \Omega\left((t/\ln t)^{rac{s+1}{2}}
ight)$$

Reed's Conjecture (1998)

If $\omega \leq \Delta + 1 - 2k$, then

 $\chi \leq \Delta + 1 - k.$

Why 2k?

Theorem (Spencer, 1977)

The off-diagonal Ramsey number satisfies

$$R(s,t) = \Omega\left((t/\ln t)^{rac{s+1}{2}}
ight)$$

Letting s = 3 implies that there exists G on n vertices with $\chi(G) \ge n/2$ and $\omega(G) = O(n^{\frac{1}{2}+o(1)})$.

Reed's Conjecture (1998)

If $\omega \leq \Delta + 1 - 2k$, then

 $\chi \leq \Delta + 1 - k.$

Reed proved his conjecture for $\Delta \ge 10^8 \cdot k$.

Corollary

If $\omega \leq \Delta + 1 - 10^8 \cdot k$, then

 $\chi \leq \Delta + 1 - k.$

Reed's Conjecture (1998)

If $\omega \leq \Delta + 1 - 2k$, then

 $\chi \leq \Delta + 1 - k.$

Reed proved his conjecture for $\Delta \ge 10^8 \cdot k$.

Corollary

If $\omega \leq \Delta + 1 - 10^8 \cdot k$, then

 $\chi \leq \Delta + 1 - k.$

 In 2016, Bonamy, Perrett, and Postle proved it when ω ≤ Δ + 1 − 26 ⋅ k and Δ is large (not depending on k).

Reed's Conjecture (1998)

If $\omega \leq \Delta + 1 - 2k$, then

 $\chi \leq \Delta + 1 - k.$

Reed proved his conjecture for $\Delta \ge 10^8 \cdot k$.

Corollary

If $\omega \leq \Delta + 1 - 10^8 \cdot k$, then

 $\chi \leq \Delta + 1 - k.$

 In 2016, Bonamy, Perrett, and Postle proved it when ω ≤ Δ + 1 − 26 ⋅ k and Δ is large (not depending on k).

• In 2017, Delcourt and Postle improved this to $\omega \leq \Delta + 1 - 13 \cdot k$.

Theorem (Johansson, 1996)

$$\chi = O\left(\frac{\Delta}{\ln\Delta}\right).$$

Theorem (Johansson, 1996)

If $\omega \leq$ 2 (i.e. triangle-free), then

$$\chi = O\left(\frac{\Delta}{\ln\Delta}\right).$$

• Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.

Theorem (Pettie and Su, 2014) If $\omega \leq 2$ (*i.e. triangle-free*), then

$$\chi \leq (4 + o(1)) \frac{\Delta}{\ln \Delta}.$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to 4 + o(1).

Theorem (Molloy, 2017)

$$\chi \leq (1 + o(1)) \frac{\Delta}{\ln \Delta}.$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to 4 + o(1).
- In 2017, Molloy improved it to 1 + o(1).

Theorem (Molloy, 2017)

$$\chi \leq (1 + o(1)) \frac{\Delta}{\ln \Delta}.$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to 4 + o(1).
- In 2017, Molloy improved it to 1 + o(1).
- Molloy's bound matches Kim's bound from '95 for girth 5 graphs and implies Shearer's bound on R(3, k).

Theorem (Molloy, 2017)

$$\chi \leq (1 + o(1)) \frac{\Delta}{\ln \Delta}.$$

- Johansson generalized his result for graphs where every vertex's neighborhood has χ at most a constant.
- In 2014, Pettie and Su improved the leading constant to 4 + o(1).
- In 2017, Molloy improved it to 1 + o(1).
- Molloy's bound matches Kim's bound from '95 for girth 5 graphs and implies Shearer's bound on R(3, k).
- Random Δ -regular graphs can have $\omega = 2$ and $\chi \geq \frac{\Delta}{2 \ln \Delta}$.

Theorem (Johansson, 1996)

If ω is fixed, then

$$\chi \le O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right)$$

•

Theorem (Johansson, 1996)

If ω is fixed, then

$$\chi \le O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right)$$

•

• Possible that $\ln \ln \Delta$ term is not needed.

Theorem (Johansson, 1996) If ω is fixed, then $\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right).$

- Possible that $\ln \ln \Delta$ term is not needed.
- \bullet Johansson's result wasn't published, but Molloy provided a proof that works for all $\omega.$

Theorem (Johansson, 1996) If ω is fixed, then $\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right).$

- Possible that $\ln \ln \Delta$ term is not needed.
- \bullet Johansson's result wasn't published, but Molloy provided a proof that works for all $\omega.$

Theorem (Molloy, 2017)

$$\chi \le 200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}.$$

Theorem (Johansson, 1996) If ω is fixed, then $\chi \leq O\left(\frac{\Delta \ln \ln \Delta}{\ln \Delta}\right).$

- Possible that $\ln \ln \Delta$ term is not needed.
- \bullet Johansson's result wasn't published, but Molloy provided a proof that works for all $\omega.$

Theorem (Molloy, 2017)

$$\chi \leq 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}.$$

• For this and triangle-free result, Molloy used entropy compression – Bernshteyn found shorter proofs by sampling a partial coloring uniformly at random and using the Lovász Local Lemma.

ω	$\chi \leq$	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 13k$ $\leq \Delta + 1 - 2k?$		Reed

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2\ln\Delta}$?	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
≤ ?	Δ/c for $c \geq 2$	
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2\ln\Delta}$?	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
≤ ?	Δ/c for $c \geq 2$	
?	$o(\Delta)$	
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2\ln\Delta}$?	

Bounding χ by a fraction of Δ

Question

For which ω is χ at most Δ/c or $o(\Delta)$?

Bounding χ by a fraction of Δ

Question For which ω is χ at most Δ/c or $o(\Delta)$?

Theorem (Bonamy, K., Nelson, Postle (2018+))

For Δ sufficiently large,

$$\chi \le 72\Delta \sqrt{\frac{\ln \omega}{\ln \Delta}}.$$

Bounding χ by a fraction of Δ

Question

For which ω is χ at most Δ/c or $o(\Delta)$?

Theorem (Bonamy, K., Nelson, Postle (2018+))

For Δ sufficiently large,

$$\chi \le 72\Delta \sqrt{\frac{\ln \omega}{\ln \Delta}}.$$

Implies that if Δ sufficiently large and

- if $\omega \leq \Delta^{1/(72c)^2}$, then $\chi \leq \Delta/c$, and
- if $\ln \omega = o(\ln \Delta)$, then $\chi = o(\Delta)$.

Bounding χ by a fraction of Δ

Question

For which ω is χ at most Δ/c or $o(\Delta)$?

Theorem (Bonamy, K., Nelson, Postle (2018+))

For Δ sufficiently large,

$$\chi \le 72\Delta \sqrt{\frac{\ln \omega}{\ln \Delta}}.$$

Implies that if Δ sufficiently large and

• if $\omega \leq \Delta^{1/(72c)^2}$, then $\chi \leq \Delta/c$, and

• if $\ln \omega = o(\ln \Delta)$, then $\chi = o(\Delta)$.

Spencer's Ramsey-theory result implies there exists G on n vertices with $\omega(G) = O\left(n^{\frac{2}{c+2}+o(1)}\right)$ and $\chi(G) \ge n/c \ge \Delta/c$.

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
\leq ?	Δ/c for $c \geq 2$	
?	$o(\Delta)$	
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2\ln\Delta}$?	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
$\leq \Delta^{1/(72c)^2}$	Δ/c for $c \geq 2$	BKNP
?	$o(\Delta)$	
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2\ln\Delta}$?	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
$ig \leq \Delta^{1/(72c)^2} \ < \Delta^{2/(c+2)}?$	Δ/c for $c \geq 2$	BKNP
$\leq \Delta^{2/(c+2)}?$		
?	$o(\Delta)$	
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2\ln\Delta}$?	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
$ig \leq \Delta^{1/(72c)^2} \ < \Delta^{2/(c+2)}?$	Δ/c for $c \geq 2$	BKNP
$\leq \Delta^{2/(c+2)}?$		
$\ln \omega = o(\ln \Delta)$	$o(\Delta)$	BKNP
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$	Molloy
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2\ln\Delta}$?	

ω	$\chi \leq$	
$\leq \Delta$	Δ	Brooks
$\leq \Delta + 1 - 13k$	$\Delta + 1 - k$	Delcourt & Postle
$\leq \Delta + 1 - 2k?$		Reed
$\leq \Delta^{1/(72c)^2}$	Δ/c for $c \geq 2$	BKNP
$ \leq \Delta^{2/(c+2)}$?		
$\ln \omega = o(\ln \Delta)$	$o(\Delta)$	BKNP
	$200\Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$, $72\Delta \sqrt{\frac{\ln \omega}{\ln \Delta}}$	Molloy, BKNP
= O(1)	$O(\Delta \frac{\ln \ln \Delta}{\ln \Delta})$	Johansson
	$O(\Delta/\ln\Delta)?$	
= 2	$(1+o(1))\Delta/\ln\Delta$	Molloy
	$\frac{\Delta}{2 \ln \Delta}$?	

List-Coloring

For a graph G,

- L = (L(v) : v ∈ V(G)) is a list-assignment if each L(v) ⊂ N is a "list of colors",
- G is L-colorable if there is a proper coloring in which each $v \in V(G)$ receives a color from L(v), and
- the list-chromatic number of G, denoted χ_ℓ(G), is the smallest k such that G is L-colorable whenever |L(v)| ≥ k for all v ∈ V(G).
 Clearly,

 $\chi(G) \leq \chi_{\ell}(G)$

List-Coloring

For a graph G,

- L = (L(v) : v ∈ V(G)) is a list-assignment if each L(v) ⊂ N is a "list of colors",
- G is L-colorable if there is a proper coloring in which each $v \in V(G)$ receives a color from L(v), and
- the list-chromatic number of G, denoted χ_ℓ(G), is the smallest k such that G is L-colorable whenever |L(v)| ≥ k for all v ∈ V(G).
 Clearly,

$$\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G) + 1.$$

List-Coloring

For a graph G,

- L = (L(v) : v ∈ V(G)) is a list-assignment if each L(v) ⊂ N is a "list of colors",
- G is L-colorable if there is a proper coloring in which each $v \in V(G)$ receives a color from L(v), and
- the list-chromatic number of G, denoted χ_ℓ(G), is the smallest k such that G is L-colorable whenever |L(v)| ≥ k for all v ∈ V(G).
 Clearly,

$$\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G) + 1.$$

What if |L(v)| depends on local parameters, such as

- d(v), the degree of v and
- $\omega(v)$, the size of a largest clique containing v?

The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)

Every connected graph G is L-colorable if $|L(v)| \ge d(v)$ for all $v \in V(G)$, unless every block of G is a clique or odd cycle.

The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)

Every connected graph G is L-colorable if $|L(v)| \ge d(v)$ for all $v \in V(G)$, unless every block of G is a clique or odd cycle.

Conjecture (Local Version of Reed's)

Every graph G is L-colorable if $|L(v)| \ge \lfloor \frac{1}{2}(d(v) + 1 + \omega(v)) \rfloor$ for every $v \in V(G)$.

The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)

Every connected graph G is L-colorable if $|L(v)| \ge d(v)$ for all $v \in V(G)$, unless every block of G is a clique or odd cycle.

Conjecture (Local Version of Reed's)

Every graph G is L-colorable if $|L(v)| \ge \lfloor \frac{1}{2}(d(v) + 1 + \omega(v)) \rfloor$ for every $v \in V(G)$.

What if

•
$$|L(v)| = \Omega\left(d(v)\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}\right)$$
 or $\Omega\left(d(v)\frac{\omega(v)\ln \ln d(v)}{\ln d(v)}\right)$, or
• $|L(v)| = \Omega(d(v)/\ln d(v))$ and G is triangle-free?

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$|L(v)| \geq 72d(v) \min\left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln(\chi(G[N(v)])+1)}{\ln d(v)}\right\},\$$

and $d(v) \ge \ln^2 \Delta$, then G is L-colorable.

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$|L(v)| \geq 72d(v) \min\left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln(\chi(G[N(v)])+1)}{\ln d(v)}\right\},\$$

and $d(v) \ge \ln^2 \Delta$, then G is L-colorable.

This simultaneously implies

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$|L(v)| \geq 72d(v) \min\left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln(\chi(G[N(v)]) + 1)}{\ln d(v)}\right\},\$$

and $d(v) \ge \ln^2 \Delta$, then G is L-colorable.

This simultaneously implies

•
$$\chi \leq 72\Delta\sqrt{\ln\omega/\ln\Delta}$$
 (BKNP),

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$|L(v)| \geq 72d(v) \min\left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln(\chi(G[N(v)]) + 1)}{\ln d(v)}\right\},\$$

and $d(v) \ge \ln^2 \Delta$, then G is L-colorable.

This simultaneously implies

•
$$\chi \leq 72\Delta\sqrt{\ln\omega/\ln\Delta}$$
 (BKNP),

•
$$\chi \leq 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$$
 (Molloy), and

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$|L(v)| \geq 72d(v) \min\left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln(\chi(G[N(v)]) + 1)}{\ln d(v)}\right\},\$$

and $d(v) \ge \ln^2 \Delta$, then G is L-colorable.

This simultaneously implies

•
$$\chi \leq 72\Delta\sqrt{\ln\omega/\ln\Delta}$$
 (BKNP),

•
$$\chi \leq 200 \Delta \frac{\omega \ln \ln \Delta}{\ln \Delta}$$
 (Molloy), and

• $\chi \leq O(\Delta \ln r / \ln \Delta)$ if $\chi(G[N(v)]) < r$ for all $v \in V(G)$ (Johansson).

Theorem (BKNP 2018+)

If Δ is sufficiently large, $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$|L(v)| \ge 72d(v) \min\left\{\sqrt{\frac{\ln \omega(v)}{\ln d(v)}}, \frac{\omega(v) \ln \ln d(v)}{\ln d(v)}, \frac{\ln(\chi(G[N(v)]) + 1)}{\ln d(v)}\right\},\$$

and $d(v) \ge \ln^2 \Delta$, then G is L-colorable.

Theorem (BKNP, 2018+)

If Δ is sufficiently large, G has triangle-free and $\Delta(G) \leq \Delta$, and for each $v \in V(G)$,

$$|L(v)| \ge (4 + o(1)) \frac{d(v)}{\log_2(d(v))}$$

and $d(v) \ge \ln^2 \Delta$, then G is L-colorable.

A Metatheorem

For a graph H,

- let $\overline{\alpha}(H)$ be the average size of an independent set in H, and
- let i(H) be the number of independent sets in H.

A Metatheorem

For a graph H,

- let $\overline{\alpha}(H)$ be the average size of an independent set in H, and
- let i(H) be the number of independent sets in H.

Theorem (BKNP 2018+)

Let $\varepsilon > 0$. Let $\alpha_{\min}(v)$ be the minimum of $\overline{\alpha}(H)$ where $H \subseteq G[N(v)]$ and $i(H) \ge d(v)^{(1-\varepsilon)/2}$. If Δ sufficiently large, $\Delta(G) \le \Delta$, and for each $v \in V(G)$,

$$|L(v)| \geq (1+arepsilon) rac{d(v)}{lpha_{min}(v)}$$

and $d(v) \ge \ln^2 \Delta$, then G has an L-coloring.

A Metatheorem

For a graph H,

- let $\overline{\alpha}(H)$ be the average size of an independent set in H, and
- let i(H) be the number of independent sets in H.

Theorem (BKNP 2018+)

Let $\varepsilon > 0$. Let $\alpha_{\min}(v)$ be the minimum of $\overline{\alpha}(H)$ where $H \subseteq G[N(v)]$ and $i(H) \ge d(v)^{(1-\varepsilon)/2}$. If Δ sufficiently large, $\Delta(G) \le \Delta$, and for each $v \in V(G)$,

$$|L(v)| \geq (1+arepsilon) rac{d(v)}{lpha_{\mathit{min}}(v)}$$

and $d(v) \ge \ln^2 \Delta$, then G has an L-coloring.

Lemma

$$\overline{\alpha}(H) \geq \frac{\log(i(H))}{(10\log(\chi(H)+1))}, \quad (Alon) \\ \frac{\log(i(H))}{(2\omega\log(\log(i(H))))}, \quad (Shearer) \\ 24^{-1}\sqrt{\log(i(H))}/\log(\omega). \quad (BKNP)$$

Thanks!