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Introduction

If G is a graph, then

χ(G ) = chromatic number of G

∆(G ) = max degree of a vertex in G , and

ω(G ) = max size of a clique in G .

Trivial bounds:

ω ≤ χ ≤ ∆ + 1.

Goal: Improve upper bound when ω is small.

Brooks’ Theorem (1941)

If ∆ ≥ 3 and ω ≤ ∆, then
χ ≤ ∆.
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Reed’s Conjecture

Reed’s Conjecture (1998)

If ω ≤ ∆ + 1− 2k , then
χ ≤ ∆ + 1− k .
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Reed’s Conjecture

Reed’s Conjecture (1998)

If ω ≤ ∆ + 1− 2k , then
χ ≤ ∆ + 1− k .

Why 2k?

Theorem (Spencer, 1977)

The off-diagonal Ramsey number satisfies

R(s, t) = Ω
(

(t/ ln t)
s+1

2

)

Letting s = 3 implies that there exists G on n vertices with χ(G ) ≥ n/2

and ω(G ) = O(n
1
2

+o(1)).
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Reed’s Conjecture

Reed’s Conjecture (1998)

If ω ≤ ∆ + 1− 2k , then
χ ≤ ∆ + 1− k .

Reed proved his conjecture for ∆ ≥ 108 · k .

Corollary

If ω ≤ ∆ + 1− 108 · k , then

χ ≤ ∆ + 1− k .

In 2016, Bonamy, Perrett, and Postle proved it when
ω ≤ ∆ + 1− 26 · k and ∆ is large (not depending on k).

In 2017, Delcourt and Postle improved this to ω ≤ ∆ + 1− 13 · k.
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Triangle-free Graphs (ω ≤ 2)

Theorem (Johansson, 1996)

If ω ≤ 2 (i.e. triangle-free), then

χ = O

(
∆

ln ∆

)
.

Johansson generalized his result for graphs where every vertex’s
neighborhood has χ at most a constant.

In 2014, Pettie and Su improved the leading constant to 4 + o(1).

In 2017, Molloy improved it to 1 + o(1).

Molloy’s bound matches Kim’s bound from ‘95 for girth 5 graphs and
implies Shearer’s bound on R(3, k).

Random ∆-regular graphs can have ω = 2 and χ ≥ ∆
2 ln ∆ .
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Triangle-free Graphs (ω ≤ 2)

Theorem (Molloy, 2017)
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Small ω

Theorem (Johansson, 1996)

If ω is fixed, then

χ ≤ O

(
∆ ln ln ∆

ln ∆

)
.

Possible that ln ln ∆ term is not needed.

Johansson’s result wasn’t published, but Molloy provided a proof that
works for all ω.

Theorem (Molloy, 2017)

χ ≤ 200∆
ω ln ln ∆

ln ∆
.

For this and triangle-free result, Molloy used entropy compression –
Bernshteyn found shorter proofs by sampling a partial coloring
uniformly at random and using the Lovász Local Lemma.
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Summary

ω χ ≤

≤ ∆ ∆ Brooks

≤ ∆ + 1− 13k ∆ + 1− k Delcourt & Postle

≤ ∆ + 1− 2k? Reed

≤ ? ∆/c for c ≥ 2

? o(∆)

200∆ω ln ln ∆
ln ∆

Molloy

= O(1) O(∆ ln ln ∆
ln ∆ ) Johansson

O(∆/ ln ∆)?

= 2 (1 + o(1))∆/ ln ∆ Molloy

∆
2 ln ∆ ?
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Bounding χ by a fraction of ∆

Question

For which ω is χ at most ∆/c or o(∆)?

Theorem (Bonamy, K., Nelson, Postle (2018+))

For ∆ sufficiently large,

χ ≤ 72∆

√
lnω

ln ∆
.

Implies that if ∆ sufficiently large and

if ω ≤ ∆1/(72c)2
, then χ ≤ ∆/c , and

if lnω = o(ln ∆), then χ = o(∆).

Spencer’s Ramsey-theory result implies there exists G on n vertices with

ω(G ) = O
(
n

2
c+2

+o(1)
)

and χ(G ) ≥ n/c ≥ ∆/c .
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The state of the art

ω χ ≤
≤ ∆ ∆ Brooks

≤ ∆ + 1− 13k ∆ + 1− k Delcourt & Postle

≤ ∆ + 1− 2k? Reed

≤ ? ∆/c for c ≥ 2

BKNP

? o(∆)

BKNP

200∆ω ln ln ∆
ln ∆

,72∆
√

lnω
ln ∆

Molloy

, BKNP

= O(1) O(∆ ln ln ∆
ln ∆ ) Johansson

O(∆/ ln ∆)?

= 2 (1 + o(1))∆/ ln ∆ Molloy
∆

2 ln ∆ ?
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List-Coloring

For a graph G ,

L = (L(v) : v ∈ V (G )) is a list-assignment if each L(v) ⊂ N is a “list
of colors”,

G is L-colorable if there is a proper coloring in which each v ∈ V (G )
receives a color from L(v), and

the list-chromatic number of G , denoted χ`(G ), is the smallest k
such that G is L-colorable whenever |L(v)| ≥ k for all v ∈ V (G ).

Clearly,

ω(G ) ≤

χ(G ) ≤ χ`(G )

≤ ∆(G ) + 1.

What if |L(v)| depends on local parameters, such as

d(v), the degree of v and

ω(v), the size of a largest clique containing v?
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of colors”,

G is L-colorable if there is a proper coloring in which each v ∈ V (G )
receives a color from L(v), and

the list-chromatic number of G , denoted χ`(G ), is the smallest k
such that G is L-colorable whenever |L(v)| ≥ k for all v ∈ V (G ).

Clearly,
ω(G ) ≤ χ(G ) ≤ χ`(G ) ≤ ∆(G ) + 1.

What if |L(v)| depends on local parameters, such as

d(v), the degree of v and

ω(v), the size of a largest clique containing v?

Tom Kelly Bounding χ by a fraction of ∆ when ω is small 9 / 13



The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)

Every connected graph G is L-colorable if |L(v)| ≥ d(v) for all v ∈ V (G ),
unless every block of G is a clique or odd cycle.

Conjecture (Local Version of Reed’s)

Every graph G is L-colorable if |L(v)| ≥
⌈

1
2 (d(v) + 1 + ω(v))

⌉
for every

v ∈ V (G ).

What if

|L(v)| = Ω
(
d(v)

√
lnω(v)
ln d(v)

)
or Ω

(
d(v)ω(v) ln ln d(v)

ln d(v)

)
, or

|L(v)| = Ω(d(v)/ ln d(v)) and G is triangle-free?
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Our Local Versions

Theorem (BKNP 2018+)

If ∆ is sufficiently large, ∆(G ) ≤ ∆, and for each v ∈ V (G ),

|L(v)| ≥ 72d(v) min

{√
lnω(v)

ln d(v)
,
ω(v) ln ln d(v)

ln d(v)
,

ln(χ(G [N(v)]) + 1)

ln d(v)

}
,

and d(v) ≥ ln2 ∆, then G is L-colorable.
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ln d(v)
,
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ln d(v)

}
,

and d(v) ≥ ln2 ∆, then G is L-colorable.

This simultaneously implies

χ ≤ 72∆
√

lnω/ ln ∆ (BKNP),

χ ≤ 200∆ω ln ln ∆
ln ∆ (Molloy), and

χ ≤ O(∆ ln r/ ln ∆) if χ(G [N(v)]) < r for all v ∈ V (G ) (Johansson).
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ln(χ(G [N(v)]) + 1)
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}
,

and d(v) ≥ ln2 ∆, then G is L-colorable.

Theorem (BKNP, 2018+)

If ∆ is sufficiently large, G has triangle-free and ∆(G ) ≤ ∆, and for each
v ∈ V (G ),

|L(v)| ≥ (4 + o(1))
d(v)

log2(d(v))

and d(v) ≥ ln2 ∆, then G is L-colorable.
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A Metatheorem
For a graph H,

let α(H) be the average size of an independent set in H, and
let i(H) be the number of independent sets in H.

Theorem (BKNP 2018+)

Let ε > 0. Let αmin(v) be the minimum of α(H) where H ⊆ G [N(v)] and
i(H) ≥ d(v)(1−ε)/2. If ∆ sufficiently large, ∆(G ) ≤ ∆, and for each
v ∈ V (G ),

|L(v)| ≥ (1 + ε)
d(v)

αmin(v)

and d(v) ≥ ln2 ∆, then G has an L-coloring.

Lemma

α(H) ≥ log(i(H))/(10 log(χ(H) + 1)), (Alon)
log(i(H))/(2ω log(log(i(H)))), (Shearer)

24−1
√

log(i(H))/ log(ω). (BKNP)
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Thanks!
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