A proof of the Erdős-Faber-Lovász conjecture

Tom Kelly

Joint work with: Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus

CanaDAM 2021 May 25th

0/9

Hypergraph coloring

(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min # colors used in proper edge-coloring, denoted χ'

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

One of Erdős' "three most favorite combinatorial problems":

• Erdős initially offered \$50 for a solution, raised to \$500.

Faber, Lovász and I made this harmless looking conjecture at a party in Boulder Colorado in September 1972. Its difficulty was realised only slowly. I now offer 500 dollars for a proof or disproof. (Not long ago I only offered 50; the increase is not due to inflation but to the fact that I now think the problem is very difficult. Perhaps I am wrong.) –Paul Erdős, 1981

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

- Graphs are linear hypergraphs
- Linear hypergraphs with *n* vertices have maximum degree $\leq n 1$.
- **Vizing's theorem (1964):** If G is a graph of maximum degree Δ , then $\chi'(G) \leq \Delta + 1$.

Corollary: EFL is true for graphs.

2/9

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Extremal examples:

Finite projective plane of order k: (k+1)-uniform intersecting linear hypergraph with $n = k^2 + k + 1$ vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with n-1 size-two edges and one size-(n-1) edge

Complete graph: $\binom{n}{2}$ size-two edges; if $\chi' < n$, then color classes are perfect matchings $\Rightarrow n$ is even

Dual versions

Erdős-Faber-Lovász conjecture ("dual")

If \mathcal{H} is an *n*-uniform, *n*-edge, linear hypergraph, then the vertices of \mathcal{H} can be *n*-colored such that every edge contains a vertex of every color.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved
- proper edge-coloring \leftrightarrow vertex-coloring where no edge contains two vertices of same color

Dual versions

Erdős-Faber-Lovász conjecture ("dual")

If \mathcal{H} is an *n*-uniform, *n*-edge, linear hypergraph, then the vertices of \mathcal{H} can be *n*-colored such that every edge contains a vertex of every color.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved
- proper edge-coloring \leftrightarrow vertex-coloring where no edge contains two vertices of same color

Dual versions

Erdős-Faber-Lovász conjecture ("graphic")

If G is the union of n complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi(G) \leq n$.

Line graph:

- edges \rightarrow vertices: edges that share a vertex are adjacent
- \bullet proper edge-coloring \rightarrow proper vertex-coloring (no monochromatic edge)

Previous results

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Relaxed parameters:

de Bruijn-Erdős (1948): true for intersecting hypergraphs Seymour (1982): \exists a matching of size at least $|\mathcal{H}|/n$ Kahn-Seymour (1992): fractional chromatic index is at most n

4/9

Previous results

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Probabilistic "nibble" approach: **Faber-Harris (2019):** EFL is true if $|e| \in [3, c\sqrt{n}] \quad \forall e \in \mathcal{H} \ (c \ll 1)$ **Kahn (1992):** $\chi'(\mathcal{H}) \leq (1 + o(1))n$

4/9

Previous results

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an *n*-vertex linear hypergraph, then $\chi'(\mathcal{H}) \leq n$.

Probabilistic "nibble" approach:

Faber-Harris (2019): EFL is true if $|e| \in [3, c\sqrt{n}] \quad \forall e \in \mathcal{H} \ (c \ll 1)$ Kahn (1992): $\chi'(\mathcal{H}) \leq (1 + o(1))n$

Both use "list coloring" generalization (proved by Kahn) of:

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes and maximum degree at most Δ , then $\chi'(\mathcal{H}) \leq \Delta + o(\Delta)$.

• \Rightarrow EFL if $|e| \in [3, k] \ \forall e \in \mathcal{H} \text{ and } n \gg k \text{ (since } \Delta(\mathcal{H}) \leq n/2)$

• \Rightarrow EFL "asymptotically" if $|e| \le k \ \forall e \in \mathcal{H}$ and $n \gg k \ (\Delta(\mathcal{H}) \le n)$

Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

I.e., we confirm the EFL conjecture for all but finitely many hypergraphs.

5/9

Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

I.e., we confirm the EFL conjecture for all but finitely many hypergraphs. We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

 $\forall \delta > 0$, $\exists \sigma > 0$ such that the following holds for n sufficiently large. If \mathcal{H} is an n-vertex linear hypergraph such that

• $\Delta(\mathcal{H}) \leq (1-\delta)n$ and

• at most
$$(1-\delta)n$$
 edges have size $(1\pm\delta)\sqrt{n}$,

then $\chi'(\mathcal{H}) \leq (1 - \sigma)n$.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

• find structure in line graph - reduce to tractable vtx-coloring problem

6/9

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

• find structure in line graph – reduce to tractable vtx-coloring problem **Phase 2:** Color "small" edges (with the same colors, avoiding conflicts):

• "nibble" + "absorption" reduces to edge-coloring a graph

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

• find structure in line graph – reduce to tractable vtx-coloring problem **Phase 2:** Color "small" edges (with the same colors, avoiding conflicts):

• "nibble" + "absorption" reduces to edge-coloring a graph

Upshot: Reduce to the "right" **graph** coloring problem in each case.

- Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.
- Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U \coloneqq \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$.

Low degree: more flexibility

High degree: more graph-like

- Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.
- Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n \}.$

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

High degree: more graph-like

- Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.
- Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U := \{ v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n \}.$

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Proof that $\chi'(\mathcal{H}) \leq n$ (assuming Vizing reduction)

• vertices in U have leftover degree $\leq (n-1) - k < n - k$;

• vertices not in U have leftover degree $\leq (1/2 + \gamma)(1 - \varepsilon)n < n - k$. Uncolored edges comprise a **graph** of max degree < n - k. (*) Finish with Vizing's theorem!

- Let \mathcal{H} be a linear hypergraph such that $|e| \in \{2,3\} \ \forall e \in \mathcal{H}$.
- Fix $0 < \gamma \ll \varepsilon \ll 1$, and let $U \coloneqq \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$.

Vizing-reduction: Using $k := \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq (1/2 \gamma)$ -proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Perfect coverage of U not always possible (e.g. K_n for n odd). Instead, find coloring with **nearly perfect coverage**:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove $\chi' \leq n$.

Simplified proof with one extra color Recall: $U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$

Aim: Using $k = \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have **nearly perfect coverage** of *U*.

8/9

Simplified proof with one extra color Recall: $U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$

Aim: Using $k = \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Proof (sketch) of $\chi' \leq n+1$

Put each graph edge in a "reservoir" R independently with probability 1/2;

- ▶ with high probability $\Delta(\mathcal{H} \setminus R) \leq (1/2 + o(1))n$, so
 - $\chi'(\mathcal{H}\setminus R) \leq (1/2+\gamma)n$ by the Pippenger-Spencer theorem.

To obtain nearly perfect coverage, "re-run" Pippenger-Spencer proof (**nibble**) but apply **absorption** for each color class.

Nibble: Randomly construct matching in $\mathcal{H} \setminus R$ covering $\approx (1 - \gamma)n$ vtcs. **Absorption:** Augment with matching in R covering remaining U-vtcs.

Simplified proof with one extra color Recall: $U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$

Aim: Using $k = \lfloor (1/2 + \gamma)n \rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored; \checkmark
- the color classes have **nearly perfect coverage** of *U*.

Proof (sketch) of $\chi' \leq n+1$

Put each graph edge in a "reservoir" R independently with probability 1/2; **Nibble + absorption:** using $k = (1/2 + \gamma)n$ colors, color some $\mathcal{H}' \supseteq \mathcal{H} \setminus R$ with **nearly perfect coverage** of U:

• vertices in U have leftover degree $\leq (n-1) - (k-1) \leq n-k$;

• vertices not in U have leftover degree $\leq (1 - \varepsilon)n/2 + o(n) < n - k$.

Thus $\mathcal{H} \setminus \mathcal{H}'$ is a **graph** and $\Delta(\mathcal{H} \setminus \mathcal{H}') \leq n - k$, so by Vizing's thm

 $\chi'(\mathcal{H}) \leq \chi'(\mathcal{H}') + \chi'(\mathcal{H} \setminus \mathcal{H}') \leq k + (n-k+1) = n+1.$

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished))

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

common generalization of Vizing's theorem and EFL

9/9

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished))

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

9/9

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished))

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

"Restricted" Larman's conjecture '81

If \mathcal{H} is an *n*-vertex **intersecting** hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{H}$ such that $|F \cap F'| \ge \mathbf{2} \ \forall \ F, F' \in \mathcal{F}_i$ and $i \in [n]$.

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished))

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

"Restricted" Larman's conjecture '81

If \mathcal{H} is an *n*-vertex **intersecting** hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{H}$ such that $|F \cap F'| \ge \mathbf{2} \ \forall \ F, F' \in \mathcal{F}_i$ and $i \in [n]$.

Thanks for listening!

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished))

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

"Restricted" Larman's conjecture '81

If \mathcal{H} is an *n*-vertex **intersecting** hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{H}$ such that $|F \cap F'| \ge \mathbf{2} \ \forall \ F, F' \in \mathcal{F}_i$ and $i \in [n]$.

Thanks for listening!

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished))

If \mathcal{H} is a linear hypergraph, then $\chi'(\mathcal{H}) \leq \max_{v \in V(\mathcal{H})} |\bigcup_{e \ni v} e|$.

• common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an *n*-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.

I.e. if C(e) is a "list of colors" such that $|C(e)| \ge n \ \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from C(e).

• Implies EFL if $C(e) = \{1, \ldots, n\} \ \forall e \in \mathcal{H}.$

"Restricted" Larman's conjecture '81

If \mathcal{H} is an *n*-vertex **intersecting** hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{H}$ such that $|F \cap F'| \ge \mathbf{2} \ \forall \ F, F' \in \mathcal{F}_i$ and $i \in [n]$.

Thanks for listening!

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Tom Kelly A proof of the Erdős-Faber-Lovász conjecture

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Tom Kelly A proof of the Erdős-Faber-Lovász conjecture

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Tom Kelly A proof of the Erdős-Faber-Lovász conjecture

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings **Nibble:** Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

If |U| is small, use "crossing" edges

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

If |U| is small, use "crossing" edges, o/w use "internal" edges.

U

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

•
$$U = \{v \in V(\mathcal{H}) : d(v) > (1 - \varepsilon)n\}$$
 $(0 < \gamma \ll \varepsilon \ll 1)$

• R = random "reservoir" – graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

- $U = \{v \in V(\mathcal{H}) : d(v) > (1 \varepsilon)n\}$ $(0 < \gamma \ll \varepsilon \ll 1)$
- R = random "reservoir" graph edges included with prob 1/2

Alternate applications of "nibble" & "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \setminus R$, in small "bites", until

 $(1 - \gamma)n$ vertices are covered.

Vertices uncovered \approx independently with probability γ

Absorption: Augment with a matching in *R* covering all but at most one vertex of $U_{\cdot} \Rightarrow$ **nearly perfect coverage**

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$. **Trivial:** $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \le n + o(n)$ edges of size at

least |e| intersect e.

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$. Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \le n + o(n)$ edges of size at least |e| intersect e. I.e. $d^{\preceq}(e) \le n + o(n) \ \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Let $\mathcal H$ be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal H$, where $r \gg 1$.

Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \leq n + o(n)$ edges of size at least |e| intersect e. I.e. $d^{\preceq}(e) \leq n + o(n) \ \forall e \in \mathcal{H}$ if \preceq is a

size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Reordering: Let *e* be the last edge with $d^{\leq}(e) \geq n$. If *f* intersects *e* and < n edges preceding *e* intersect *f*, then move *f* immediately after *e*.

Let \mathcal{H} be a linear hypergraph such that $|e| \ge r \ \forall e \in \mathcal{H}$, where $r \gg 1$.

Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n - |e|)/(|e| - 1) \leq n + o(n)$ edges of size at least |e| intersect e. I.e. $d^{\preceq}(e) \leq n + o(n) \ \forall e \in \mathcal{H}$ if \preceq is a

size-monotone decreasing ordering of the line graph.

Corollary: $\chi'(\mathcal{H}) \leq n + o(n)$: color greedily.

Reordering: Let *e* be the last edge with $d^{\preceq}(e) \ge n$. If *f* intersects *e* and < n edges preceding *e* intersect *f*, then move *f* immediately after *e*. If reordering "finishes", then $d^{\preceq}(e) < n \ \forall e \in \mathcal{H}$, so $\chi'(\mathcal{H}) \le n$.

"Reordering lemma" (informal)

If reordering "gets stuck", then there is a highly structured $\mathcal{W}\subseteq\mathcal{H}:$ either

- $\mathcal{W}\approx$ projective plane (i.e. its line graph is close to complete), or
- line graph of \mathcal{W} is **locally sparse** (i.e. nbrhoods far from complete).

Use structure to color \mathcal{H} with $\leq n$ colors (via graph theoretical techniques)