A proof of the Erdős-Faber-Lovász conjecture

Tom Kelly
Joint work with:
Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus

CanaDAM 2021
May 25th

Hypergraph coloring

(proper) edge-coloring: no two edges of same color share a vertex chromatic index: min \# colors used in proper edge-coloring, denoted χ^{\prime}

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
One of Erdős' "three most favorite combinatorial problems":

- Erdős initially offered $\$ 50$ for a solution, raised to $\$ 500$.

Faber, Lovász and I made this harmless looking conjecture at a party in Boulder Colorado in September 1972. Its difficulty was realised only slowly. I now offer 500 dollars for a proof or disproof. (Not long ago I only offered 50; the increase is not due to inflation but to the fact that I now think the problem is very difficult. Perhaps I am wrong.) -Paul Erdős, 1981

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge
Erdős-Faber-Lovász conjecture (1972)
If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.

- Graphs are linear hypergraphs
- Linear hypergraphs with n vertices have maximum degree $\leq n-1$.

Vizing's theorem (1964): If G is a graph of maximum degree Δ, then $\chi^{\prime}(G) \leq \Delta+1$.
Corollary: EFL is true for graphs.

The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Extremal examples:

Finite projective plane of order $k:(k+1)$-uniform intersecting linear hypergraph with $n=k^{2}+k+1$ vertices and edges
Degenerate plane / near pencil: intersecting linear hypergraph with $n-$ 1 size-two edges and one size- $(n-1)$ edge
Complete graph: $\binom{n}{2}$ size-two edges; if $\chi^{\prime}<n$, then color classes are perfect matchings $\Rightarrow n$ is even

Dual versions

Erdős-Faber-Lovász conjecture ("dual")

If \mathcal{H} is an n-uniform, n-edge, linear hypergraph, then the vertices of \mathcal{H} can be n-colored such that every edge contains a vertex of every color.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved
- proper edge-coloring \leftrightarrow vertex-coloring where no edge contains two vertices of same color

Dual versions

Erdős-Faber-Lovász conjecture ("dual")

If \mathcal{H} is an n-uniform, n-edge, linear hypergraph, then the vertices of \mathcal{H} can be n-colored such that every edge contains a vertex of every color.

Hypergraph duality:

- edges \rightarrow vertices and vertices \rightarrow edges
- linearity is preserved
- proper edge-coloring \leftrightarrow vertex-coloring where no edge contains two vertices of same color

Dual versions

Erdős-Faber-Lovász conjecture ("graphic")

If G is the union of n complete graphs, each on at most n vertices, such that every pair shares at most one vertex, then $\chi(G) \leq n$.

Line graph:

- edges \rightarrow vertices: edges that share a vertex are adjacent
- proper edge-coloring \rightarrow proper vertex-coloring (no monochromatic edge)

Previous results

Erdős-Faber-Lovász conjecture (1972)
If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Relaxed parameters:
de Bruijn-Erdős (1948): true for intersecting hypergraphs
Seymour (1982): \exists a matching of size at least $|\mathcal{H}| / n$
Kahn-Seymour (1992): fractional chromatic index is at most n

Previous results

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Probabilistic "nibble" approach:
Faber-Harris (2019): EFL is true if $|e| \in[3, c \sqrt{n}] \forall e \in \mathcal{H}(c \ll 1)$
Kahn (1992): $\chi^{\prime}(\mathcal{H}) \leq(1+o(1)) n$

Previous results

Erdős-Faber-Lovász conjecture (1972)

If \mathcal{H} is an n-vertex linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq n$.
Probabilistic "nibble" approach:
Faber-Harris (2019): EFL is true if $|e| \in[3, c \sqrt{n}] \forall e \in \mathcal{H}(c \ll 1)$
Kahn (1992): $\chi^{\prime}(\mathcal{H}) \leq(1+o(1)) n$
Both use "list coloring" generalization (proved by Kahn) of:

Pippenger-Spencer theorem (1989)

If \mathcal{H} is a linear hypergraph with bounded edge-sizes and maximum degree at most Δ, then $\chi^{\prime}(\mathcal{H}) \leq \Delta+o(\Delta)$.

- $\Rightarrow \mathrm{EFL}$ if $|e| \in[3, k] \forall e \in \mathcal{H}$ and $n \gg k$ (since $\Delta(\mathcal{H}) \leq n / 2$)
- \Rightarrow EFL "asymptotically" if $|e| \leq k \forall e \in \mathcal{H}$ and $n \gg k(\Delta(\mathcal{H}) \leq n)$

Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.
I.e., we confirm the EFL conjecture for all but finitely many hypergraphs.

Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.
I.e., we confirm the EFL conjecture for all but finitely many hypergraphs. We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+) $\forall \delta>0, \exists \sigma>0$ such that the following holds for n sufficiently large. If \mathcal{H} is an n-vertex linear hypergraph such that

- $\Delta(\mathcal{H}) \leq(1-\delta) n$ and
- at most $(1-\delta) n$ edges have size $(1 \pm \delta) \sqrt{n}$, then $\chi^{\prime}(\mathcal{H}) \leq(1-\sigma) n$.

Overview of the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Overview of the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)
For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

- find structure in line graph - reduce to tractable vtx-coloring problem

Overview of the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

- find structure in line graph - reduce to tractable vtx-coloring problem Phase 2: Color "small" edges (with the same colors, avoiding conflicts):
- "nibble" + "absorption" reduces to edge-coloring a graph

Overview of the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic index at most n.

Phase 1: Color all "large" edges (size $\geq r$ where $r \gg 1$) with $\leq n$ colors:

- find structure in line graph - reduce to tractable vtx-coloring problem Phase 2: Color "small" edges (with the same colors, avoiding conflicts):
- "nibble" + "absorption" reduces to edge-coloring a graph Upshot: Reduce to the "right" graph coloring problem in each case.

Vizing-reduction strategy for bounded edge-sizes

- Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.
- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Low degree: more flexibility

High degree: more graph-like

Vizing-reduction strategy for bounded edge-sizes

- Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.
- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Low degree: more flexibility

High degree: more graph-like

Vizing-reduction strategy for bounded edge-sizes

- Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.
- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Proof that $\chi^{\prime}(\mathcal{H}) \leq n$ (assuming Vizing reduction)

- vertices in U have leftover degree $\leq(n-1)-k<n-k$;
- vertices not in U have leftover degree $\leq(1 / 2+\gamma)(1-\varepsilon) n<n-k$. Uncolored edges comprise a graph of max degree $<n-k$.

Finish with Vizing's theorem!

Vizing-reduction strategy for bounded edge-sizes

- Let \mathcal{H} be a linear hypergraph such that $|e| \in\{2,3\} \forall e \in \mathcal{H}$.
- Fix $0<\gamma \ll \varepsilon \ll 1$, and let $U:=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$.

Vizing-reduction: Using $k:=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- $\geq(1 / 2-\gamma)$-proportion of graph edges at each vtx are colored;
- every color class covers U (perfect coverage of U).

Perfect coverage of U not always possible (e.g. K_{n} for n odd). Instead, find coloring with nearly perfect coverage:

- every color class covers all but one vertex of U and
- each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove $\chi^{\prime} \leq n$.

Simplified proof with one extra color Recall: $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\} \quad(0<\gamma \ll \varepsilon \ll 1)$

Aim: Using $k=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Simplified proof with one extra color
Recall: $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\} \quad(0<\gamma \ll \varepsilon \ll 1)$
Aim: Using $k=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Proof (sketch) of $\chi^{\prime} \leq n+1$

Put each graph edge in a "reservoir" R independently with probability $1 / 2$;

- with high probability $\Delta(\mathcal{H} \backslash R) \leq(1 / 2+o(1)) n$, so $\chi^{\prime}(\mathcal{H} \backslash R) \leq(1 / 2+\gamma) n$ by the Pippenger-Spencer theorem.
To obtain nearly perfect coverage, "re-run" Pippenger-Spencer proof (nibble) but apply absorption for each color class.
Nibble: Randomly construct matching in $\mathcal{H} \backslash R$ covering $\approx(1-\gamma) n$ vtcs. Absorption: Augment with matching in R covering remaining U-vtcs.

Simplified proof with one extra color
Recall: $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\} \quad(0<\gamma \ll \varepsilon \ll 1)$
Aim: Using $k=\lfloor(1 / 2+\gamma) n\rfloor$ colors, color \mathcal{H} such that:

- all size-3 edges are colored;
- for each vertex, nearly half of graph edges containing it are colored;
- the color classes have nearly perfect coverage of U.

Proof (sketch) of $\chi^{\prime} \leq n+1$

Put each graph edge in a "reservoir" R independently with probability $1 / 2$; Nibble + absorption: using $k=(1 / 2+\gamma) n$ colors, color some $\mathcal{H}^{\prime} \supseteq \mathcal{H} \backslash R$ with nearly perfect coverage of U :

- vertices in U have leftover degree $\leq(n-1)-(k-1) \leq n-k$;
- vertices not in U have leftover degree $\leq(1-\varepsilon) n / 2+o(n)<n-k$. Thus $\mathcal{H} \backslash \mathcal{H}^{\prime}$ is a graph and $\Delta\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq n-k$, so by Vizing's thm

$$
\chi^{\prime}(\mathcal{H}) \leq \chi^{\prime}\left(\mathcal{H}^{\prime}\right)+\chi^{\prime}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq k+(n-k+1)=n+1 .
$$

Open problems

Conjecture (Berge ‘89, Füredi '86, Meyniel (unpublished))
If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

$$
\max _{v}\left|\bigcup_{e \ni v} e\right|=5
$$

Open problems

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
I.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

Open problems

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
I.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

"Restricted" Larman's conjecture '81

If \mathcal{H} is an n-vertex intersecting hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \subseteq \mathcal{H}$ such that $\left|F \cap F^{\prime}\right| \geq \mathbf{2} \forall F, F^{\prime} \in \mathcal{F}_{i}$ and $i \in[n]$.

Open problems

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
I.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

"Restricted" Larman's conjecture '81

If \mathcal{H} is an n-vertex intersecting hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \subseteq \mathcal{H}$ such that $\left|F \cap F^{\prime}\right| \geq \mathbf{2} \forall F, F^{\prime} \in \mathcal{F}_{i}$ and $i \in[n]$.

Thanks for listening!

Open problems

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
I.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

"Restricted" Larman's conjecture '81

If \mathcal{H} is an n-vertex intersecting hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \subseteq \mathcal{H}$ such that $\left|F \cap F^{\prime}\right| \geq \mathbf{2} \forall F, F^{\prime} \in \mathcal{F}_{i}$ and $i \in[n]$.

Thanks for listening!

Open problems

Conjecture (Berge '89, Füredi '86, Meyniel (unpublished)) If \mathcal{H} is a linear hypergraph, then $\chi^{\prime}(\mathcal{H}) \leq \max _{v \in V(\mathcal{H})}\left|\bigcup_{e \ni v} e\right|$.

- common generalization of Vizing's theorem and EFL

List EFL

If \mathcal{H} is an n-vertex linear hypergraph, then \mathcal{H} has list chromatic index $\leq n$.
I.e. if $C(e)$ is a "list of colors" such that $|C(e)| \geq n \forall e \in \mathcal{H}$, then \mathcal{H} can be properly edge-colored s.t. every e is assigned a color from $C(e)$.

- Implies EFL if $C(e)=\{1, \ldots, n\} \forall e \in \mathcal{H}$.

"Restricted" Larman's conjecture '81

If \mathcal{H} is an n-vertex intersecting hypergraph, then \mathcal{H} can be decomposed into $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \subseteq \mathcal{H}$ such that $\left|F \cap F^{\prime}\right| \geq \mathbf{2} \forall F, F^{\prime} \in \mathcal{F}_{i}$ and $i \in[n]$.

Thanks for listening!

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$ Alternate applications of "nibble" \& "absorption"; construct k matchings

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Nibble + absorption

- $U=\{v \in V(\mathcal{H}): d(v)>(1-\varepsilon) n\}$

$$
(0<\gamma \ll \varepsilon \ll 1)
$$

- $R=$ random "reservoir" - graph edges included with prob $1 / 2$

Alternate applications of "nibble" \& "absorption"; construct k matchings Nibble: Randomly select each color class in $\mathcal{H} \backslash R$, in small "bites", until $(1-\gamma) n$ vertices are covered.
Vertices uncovered \approx independently with probability γ
Absorption: Augment with a matching in R covering all but at most one vertex of $U . \Rightarrow$ nearly perfect coverage
If $|U|$ is small, use "crossing" edges, o/w use "internal" edges.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+o(n)$ edges of size at least $|e|$ intersect e.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+o(n)$ edges of size at least $|e|$ intersect e. I.e. $d \preceq(e) \leq n+o(n) \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+o(n)$ edges of size at least $|e|$ intersect e. I.e. $d \preceq(e) \leq n+o(n) \forall e \in \mathcal{H}$ if \preceq is a size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.
Reordering: Let e be the last edge with $d \preceq(e) \geq n$. If f intersects e and $<n$ edges preceding e intersect f, then move f immediately after e.

Coloring the large edges

Let \mathcal{H} be a linear hypergraph such that $|e| \geq r \forall e \in \mathcal{H}$, where $r \gg 1$.
Trivial: $\forall e \in \mathcal{H}$, at most $|e|(n-|e|) /(|e|-1) \leq n+o(n)$ edges of size at
least $|e|$ intersect e. I.e. $d^{\preceq}(e) \leq n+o(n) \forall e \in \mathcal{H}$ if \preceq is a
size-monotone decreasing ordering of the line graph.
Corollary: $\chi^{\prime}(\mathcal{H}) \leq n+o(n)$: color greedily.
Reordering: Let e be the last edge with $d \preceq(e) \geq n$. If f intersects e and $<n$ edges preceding e intersect f, then move f immediately after e. If reordering "finishes", then $d^{\preceq}(e)<n \forall e \in \mathcal{H}$, so $\chi^{\prime}(\mathcal{H}) \leq n$.

"Reordering lemma" (informal)

If reordering "gets stuck", then there is a highly structured $\mathcal{W} \subseteq \mathcal{H}$: either

- $\mathcal{W} \approx$ projective plane (i.e. its line graph is close to complete), or
- line graph of \mathcal{W} is locally sparse (i.e. nbrhoods far from complete).

Use structure to color \mathcal{H} with $\leq n$ colors (via graph theoretical techniques)

