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Hypergraph coloring

(proper) edge-coloring: no two edges of same color share a vertex

chromatic index: min # colors used in proper edge-coloring, denoted χ′

χ′ = 3
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The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

One of Erdős’ “three most favorite combinatorial problems”:

• Erdős initially offered $50 for a solution, raised to $500.

Faber, Lovász and I made this harmless looking conjecture at a
party in Boulder Colorado in September 1972. Its difficulty was
realised only slowly. I now offer 500 dollars for a proof or disproof.
(Not long ago I only offered 50; the increase is not due to inflation
but to the fact that I now think the problem is very difficult.
Perhaps I am wrong.) –Paul Erdős, 1981
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The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

• Graphs are linear hypergraphs

• Linear hypergraphs with n vertices have maximum degree ≤ n − 1.

Vizing’s theorem (1964): If G is a graph of maximum degree ∆, then
χ′(G ) ≤ ∆ + 1.

Corollary: EFL is true for graphs.
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The Erdős-Faber-Lovász conjecture

linear hypergraph: every pair of vertices contained in at most one edge

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Extremal examples:

Finite projective plane of order k: (k+1)-uniform intersecting linear hy-
pergraph with n = k2 + k + 1 vertices and edges

Degenerate plane / near pencil: intersecting linear hypergraph with n−
1 size-two edges and one size-(n − 1) edge

Complete graph:
(n

2

)
size-two edges; if χ′ < n, then color classes are

perfect matchings ⇒ n is even
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Dual versions

Erdős-Faber-Lovász conjecture (“dual”)

If H is an n-uniform, n-edge, linear hypergraph, then the vertices of H can
be n-colored such that every edge contains a vertex of every color.

Hypergraph duality:

• edges → vertices and vertices → edges

• linearity is preserved

• proper edge-coloring ↔ vertex-coloring where no edge contains two
vertices of same color
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Dual versions

Erdős-Faber-Lovász conjecture (“graphic”)

If G is the union of n complete graphs, each on at most n vertices, such
that every pair shares at most one vertex, then χ(G ) ≤ n.

Line graph:

• edges → vertices: edges that share a vertex are adjacent

• proper edge-coloring → proper vertex-coloring (no monochromatic
edge)
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Previous results

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Relaxed parameters:

de Bruijn-Erdős (1948): true for intersecting hypergraphs

Seymour (1982): ∃ a matching of size at least |H|/n
Kahn-Seymour (1992): fractional chromatic index is at most n
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Previous results

Erdős-Faber-Lovász conjecture (1972)

If H is an n-vertex linear hypergraph, then χ′(H) ≤ n.

Probabilistic “nibble” approach:

Faber-Harris (2019): EFL is true if |e| ∈ [3, c
√
n] ∀e ∈ H (c � 1)

Kahn (1992): χ′(H) ≤ (1 + o(1))n

Both use “list coloring” generalization (proved by Kahn) of:

Pippenger-Spencer theorem (1989)

If H is a linear hypergraph with bounded edge-sizes and maximum degree
at most ∆, then χ′(H) ≤ ∆ + o(∆).

• ⇒ EFL if |e| ∈ [3, k] ∀e ∈ H and n� k (since ∆(H) ≤ n/2)

• ⇒ EFL “asymptotically” if |e| ≤ k ∀e ∈ H and n� k (∆(H) ≤ n)
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Our results

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic
index at most n.

I.e., we confirm the EFL conjecture for all but finitely many hypergraphs.

We also prove a stability result, predicted by Kahn:

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

∀δ > 0, ∃σ > 0 such that the following holds for n sufficiently large.
If H is an n-vertex linear hypergraph such that

• ∆(H) ≤ (1− δ)n and

• at most (1− δ)n edges have size (1± δ)
√
n,

then χ′(H) ≤ (1− σ)n.
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Overview of the proof

Theorem (Kang, K., Kühn, Methuku, and Osthus, 2021+)

For sufficiently large n, every n-vertex linear hypergraph has chromatic
index at most n.

Phase 1: Color all “large” edges (size ≥ r where r � 1) with ≤ n colors:

• find structure in line graph – reduce to tractable vtx-coloring problem

Phase 2: Color “small” edges (with the same colors, avoiding conflicts):

• “nibble” + “absorption” reduces to edge-coloring a graph

Upshot: Reduce to the “right” graph coloring problem in each case.
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Vizing-reduction strategy for bounded edge-sizes

• Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

• Fix 0 < γ � ε� 1, and let U := {v ∈ V (H) : d(v) > (1− ε)n}.

Vizing-reduction: Using k := b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• ≥ (1/2− γ)-proportion of graph edges at each vtx are colored;

• every color class covers U (perfect coverage of U).

Low degree: more flexibility High degree: more graph-like
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Vizing-reduction strategy for bounded edge-sizes

• Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

• Fix 0 < γ � ε� 1, and let U := {v ∈ V (H) : d(v) > (1− ε)n}.

Vizing-reduction: Using k := b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• ≥ (1/2− γ)-proportion of graph edges at each vtx are colored;

• every color class covers U (perfect coverage of U).

Proof that χ′(H) ≤ n (assuming Vizing reduction)

• vertices in U have leftover degree ≤ (n − 1)− k < n − k;

• vertices not in U have leftover degree ≤ (1/2 + γ)(1− ε)n < n − k .

Uncolored edges comprise a graph of max degree < n − k . (?)

Finish with Vizing’s theorem!
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Vizing-reduction strategy for bounded edge-sizes

• Let H be a linear hypergraph such that |e| ∈ {2, 3} ∀e ∈ H.

• Fix 0 < γ � ε� 1, and let U := {v ∈ V (H) : d(v) > (1− ε)n}.

Vizing-reduction: Using k := b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• ≥ (1/2− γ)-proportion of graph edges at each vtx are colored;

• every color class covers U (perfect coverage of U).

Perfect coverage of U not always possible (e.g. Kn for n odd).
Instead, find coloring with nearly perfect coverage:

• every color class covers all but one vertex of U and

• each vertex of U is covered by all but one color class.

Works with one extra color; additional ideas needed to prove χ′ ≤ n.
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Simplified proof with one extra color
Recall: U = {v ∈ V (H) : d(v) > (1− ε)n} (0 < γ � ε� 1)

Aim: Using k = b(1/2 + γ)nc colors, color H such that:

• all size-3 edges are colored;

• for each vertex, nearly half of graph edges containing it are colored;

• the color classes have nearly perfect coverage of U.

Proof (sketch) of χ′ ≤ n + 1

Put each graph edge in a “reservoir” R independently with probability 1/2;

Nibble + absorption: using k = (1/2 + γ)n colors, color some
H′ ⊇ H \ R with nearly perfect coverage of U:

• vertices in U have leftover degree ≤ (n − 1)− (k − 1) ≤ n − k;

• vertices not in U have leftover degree ≤ (1− ε)n/2 + o(n) < n − k .

Thus H \H′ is a graph and ∆(H \H′) ≤ n − k, so by Vizing’s thm

χ′(H) ≤ χ′(H′) + χ′(H \H′) ≤ k + (n − k + 1) = n + 1.
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Open problems

Conjecture (Berge ‘89, Füredi ‘86, Meyniel (unpublished))

If H is a linear hypergraph, then χ′(H) ≤ maxv∈V (H) |
⋃

e3v e|.

• common generalization of Vizing’s theorem and EFL

maxv |
⋃

e3v e| = 5 ∆(“shadow”) + 1 = 5

“Restricted” Larman’s conjecture ‘81

If H is an n-vertex intersecting hypergraph, then H can be decomposed
into F1, . . . ,Fn ⊆ H such that |F ∩ F ′| ≥ 2 ∀ F ,F ′ ∈ Fi and i ∈ [n].

Thanks for listening!
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Nibble + absorption
• U = {v ∈ V (H) : d(v) > (1− ε)n} (0 < γ � ε� 1)
• R = random “reservoir” – graph edges included with prob 1/2

Alternate applications of “nibble” & “absorption”; construct k matchings

Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1− γ)n vertices are covered.

Vertices uncovered ≈ independently with probability γ
Absorption: Augment with a matching in R covering all but at most one

vertex of U. ⇒ nearly perfect coverage
If |U| is small, use “crossing” edges

× ×

U
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Nibble + absorption
• U = {v ∈ V (H) : d(v) > (1− ε)n} (0 < γ � ε� 1)
• R = random “reservoir” – graph edges included with prob 1/2

Alternate applications of “nibble” & “absorption”; construct k matchings

Nibble: Randomly select each color class in H \ R, in small “bites”, until
(1− γ)n vertices are covered.

Vertices uncovered ≈ independently with probability γ
Absorption: Augment with a matching in R covering all but at most one

vertex of U. ⇒ nearly perfect coverage
If |U| is small, use “crossing” edges

×

×

U

Tom Kelly A proof of the Erdős-Faber-Lovász conjecture
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Vertices uncovered ≈ independently with probability γ

Absorption: Augment with a matching in R covering all but at most one
vertex of U. ⇒ nearly perfect coverage

If |U| is small, use “crossing” edges

× ×

U

Tom Kelly A proof of the Erdős-Faber-Lovász conjecture
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Coloring the large edges

Let H be a linear hypergraph such that |e| ≥ r ∀e ∈ H, where r � 1.

Trivial: ∀e ∈ H, at most |e|(n− |e|)/(|e| − 1) ≤ n + o(n) edges of size at
least |e| intersect e.

I.e. d�(e) ≤ n + o(n) ∀e ∈ H if � is a
size-monotone decreasing ordering of the line graph.

Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

|e|

n − |e|
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Coloring the large edges

Let H be a linear hypergraph such that |e| ≥ r ∀e ∈ H, where r � 1.

Trivial: ∀e ∈ H, at most |e|(n− |e|)/(|e| − 1) ≤ n + o(n) edges of size at
least |e| intersect e. I.e. d�(e) ≤ n + o(n) ∀e ∈ H if � is a
size-monotone decreasing ordering of the line graph.

Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

−→−→ e

“forward degree”: d�(e)
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Coloring the large edges

Let H be a linear hypergraph such that |e| ≥ r ∀e ∈ H, where r � 1.

Trivial: ∀e ∈ H, at most |e|(n− |e|)/(|e| − 1) ≤ n + o(n) edges of size at
least |e| intersect e. I.e. d�(e) ≤ n + o(n) ∀e ∈ H if � is a
size-monotone decreasing ordering of the line graph.

Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

−→−→ ef

d� < n
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Coloring the large edges

Let H be a linear hypergraph such that |e| ≥ r ∀e ∈ H, where r � 1.

Trivial: ∀e ∈ H, at most |e|(n− |e|)/(|e| − 1) ≤ n + o(n) edges of size at
least |e| intersect e. I.e. d�(e) ≤ n + o(n) ∀e ∈ H if � is a
size-monotone decreasing ordering of the line graph.

Corollary: χ′(H) ≤ n + o(n): color greedily.

Reordering: Let e be the last edge with d�(e) ≥ n. If f intersects e and
< n edges preceding e intersect f , then move f immediately after e.

If reordering “finishes”, then d�(e) < n ∀e ∈ H, so χ′(H) ≤ n.

“Reordering lemma” (informal)

If reordering “gets stuck”, then there is a highly structured W ⊆ H: either

• W ≈ projective plane (i.e. its line graph is close to complete), or

• line graph of W is locally sparse (i.e. nbrhoods far from complete).

Use structure to color H with ≤ n colors (via graph theoretical techniques)
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