# Beyond Degree-Choosability <br> Toward a Local Version of Reed's $\omega, \Delta$, $\chi$ conjecture 

Tom Kelly<br>Joint work with Luke Postle<br>Department of Combinatorics \& Optimization<br>University of Waterloo

CanaDAM, June 12, 2017

## Coloring

## Definition

A graph $G$ is $k$-colorable if there is an assignment of the "colors" $1, \ldots, k$ to $V(G)$ such that adjacent vertices receive different colors.
The chromatic number of $G$, denoted $\chi(G)$, is the smallest $k$ such that $G$ is $k$-colorable.

- $\Delta(G)=$ max degree of a vertex in $G$, and
- $\omega(G)=$ max size of a clique in $G$.

Trivial bounds:

$$
\omega(G) \leq \chi(G) \leq \Delta(G)+1
$$

## Coloring

## Definition

A graph $G$ is $k$-colorable if there is an assignment of the "colors" $1, \ldots, k$ to $V(G)$ such that adjacent vertices receive different colors.
The chromatic number of $G$, denoted $\chi(G)$, is the smallest $k$ such that $G$ is $k$-colorable.

- $\Delta(G)=$ max degree of a vertex in $G$, and
- $\omega(G)=\max$ size of a clique in $G$.

Trivial bounds:

$$
\omega(G) \leq \chi(G) \leq \Delta(G)+1
$$

## Theorem (Brooks (1941))

For every connected graph $G$ that is not a clique or odd cycle,

$$
\chi(G) \leq \Delta(G)
$$

## Reed's $\omega, \Delta, \chi$ Conjecture

## Reed's Conjecture (1998)

For every graph $G$,

$$
\chi(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$



$$
\begin{gathered}
\Delta=3 t-1 \\
\omega=2 t \\
\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil=\left\lceil\frac{5 t}{2}\right\rceil . \\
\alpha=2 .
\end{gathered}
$$

5-cycle blowup

## Reed's $\omega, \Delta, \chi$ Conjecture

## Reed's Conjecture (1998)

For every graph $G$,

$$
\chi(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

As evidence, Reed proved his conjecture holds when $\Delta(G)$ is sufficiently large and

$$
\omega(G) \geq\left(1-7 \cdot 10^{-7}\right) \Delta(G)
$$

## Corollary (Reed)

There exists $\varepsilon>0$ such that for every graph $G$,

$$
\chi(G) \leq(1-\varepsilon)(\Delta(G)+1)+\varepsilon \omega(G) .
$$

## List-Coloring

## Definition

For a graph $G, L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors", and $G$ is $L$-colorable if there is an assignment of colors to $V(G)$ such that adjacent vertices receive different colors and each $v \in V(G)$ receives a color from $L(v)$.

The list-chromatic number of $G$, denoted $\chi_{\ell}(G)$, is the smallest $k$ such that $G$ is $L$-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.

Clearly,

$$
\chi(G) \leq \chi_{\ell}(G)
$$

## List-Coloring

## Definition

For a graph $G, L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors", and $G$ is $L$-colorable if there is an assignment of colors to $V(G)$ such that adjacent vertices receive different colors and each $v \in V(G)$ receives a color from $L(v)$.

The list-chromatic number of $G$, denoted $\chi_{\ell}(G)$, is the smallest $k$ such that $G$ is $L$-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.

Clearly,

$$
\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G)+1 .
$$

## List-Coloring

## Definition

For a graph $G, L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors", and $G$ is $L$-colorable if there is an assignment of colors to $V(G)$ such that adjacent vertices receive different colors and each $v \in V(G)$ receives a color from $L(v)$.

The list-chromatic number of $G$, denoted $\chi_{\ell}(G)$, is the smallest $k$ such that $G$ is $L$-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.

Clearly,

$$
\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G)+1 .
$$

It is natural to ask:

## List-Coloring

## Definition

For a graph $G, L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors", and $G$ is $L$-colorable if there is an assignment of colors to $V(G)$ such that adjacent vertices receive different colors and each $v \in V(G)$ receives a color from $L(v)$.

The list-chromatic number of $G$, denoted $\chi_{\ell}(G)$, is the smallest $k$ such that $G$ is $L$-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.

Clearly,

$$
\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G)+1 .
$$

It is natural to ask:

- does Brooks' Theorem hold for $\chi_{\ell}$ ?


## List-Coloring

## Definition

For a graph $G, L=(L(v): v \in V(G))$ is a list-assignment if each $L(v) \subset \mathbb{N}$ is a "list of colors", and $G$ is $L$-colorable if there is an assignment of colors to $V(G)$ such that adjacent vertices receive different colors and each $v \in V(G)$ receives a color from $L(v)$.

The list-chromatic number of $G$, denoted $\chi_{\ell}(G)$, is the smallest $k$ such that $G$ is $L$-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.

Clearly,

$$
\omega(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G)+1 .
$$

It is natural to ask:

- does Brooks' Theorem hold for $\chi_{\ell}$ ?
- is Reed's Conjecture true for $\chi_{\ell}$ ?


## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, <br> $\varepsilon=1.4 \cdot 10^{-8}$ | Reed 98 | N |
|  |  |  |  |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, <br> $\varepsilon=20,000^{-1}$ | Reed 98 | N |
|  |  |  |  |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, <br> $\varepsilon=830^{-1}$ |  |  |
|  |  | Bruhn \& Joos 15+ | N |
|  |  |  |  |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, | Bonamy, Perrett |  |
|  | $\varepsilon=26^{-1}$ | \& Postle 16+ | N |
|  |  |  |  |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, |  |  |
| $\varepsilon=13^{-1}$ | Postle 17+ |  |  |
|  |  |  | Y |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell}$ ? |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, | Delcourt \& |  |
|  | $\varepsilon=13^{-1}$ | Postle 17+ | Y |
| $\leq r$ | $O(r) \frac{\Delta \ln \ln \Delta}{\ln \Delta}$ | Johansson | Y |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell}$ ? |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, | Delcourt \& |  |
|  | $\varepsilon=13^{-1}$ | Postle 17+ | Y |
| $\leq r$ | $O(r) \frac{\Delta \ln \ln \Delta}{\ln \Delta}$ | Molloy 17+ | Y |
|  |  |  |  |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, | Delcourt \& |  |
|  | $\varepsilon=13^{-1}$ | Postle 17+ | Y |
| $\leq r$ | $O(r) \frac{\Delta \ln \ln \Delta}{\ln \Delta}$ | Molloy 17+ | Y |
| $=2$ | $O(1) \frac{\Delta}{\ln \Delta}$ | Johansson | Y |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi \ell ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left[\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, | Delcourt \& |  |
|  | $\varepsilon=13^{-1}$ | Postle 17+ | Y |
| $\leq r$ | $O(r) \frac{\Delta \ln \ln \Delta}{\ln \Delta}$ | Molloy 17+ | Y |
| $=2$ | $\left(67+o(1) \frac{\Delta}{\ln \Delta}\right.$ | Jamall 11 | Y |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, | Delcourt \& |  |
|  | $\varepsilon=13^{-1}$ | Postle 17+ | Y |
| $\leq r$ | $O(r) \frac{\Delta \ln \ln \Delta}{\ln \Delta}$ | Molloy 17+ | Y |
| $=2$ | $(4+o(1)) \frac{\Delta}{\ln \Delta}$ | Pettie \& Su 15 | Y |

## $\omega, \Delta$, and $\chi / \chi_{\ell}$

## Conjecture (List-Coloring Version of Reed's)

For every graph $G$,

$$
\chi_{\ell}(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

| $\omega$ | $\chi \leq$ | proved by: | $\chi_{\ell} ?$ |
| :--- | :--- | :--- | :---: |
| $\geq\left(1-7 \cdot 10^{-7}\right) \Delta$ | $\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$ | Reed 98 | N |
|  | $(1-\varepsilon)(\Delta+1)+\varepsilon \omega$, | Delcourt \& |  |
|  | $\varepsilon=13^{-1}$ | Postle 17+ | Y |
| $\leq r$ | $O(r) \frac{\Delta \ln \ln \Delta}{\ln \Delta}$ | Molloy 17+ | Y |
| $=2$ | $(1+o(1)) \frac{\Delta}{\ln \Delta}$ | Molloy 17+ | Y |

## The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)
Every connected graph $G$ is $L$-colorable if $|L(v)| \geq d(v)$ for all $v \in V(G)$, unless every block of $G$ is a clique or odd cycle.

## The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)
Every connected graph $G$ is $L$-colorable if $|L(v)| \geq d(v)$ for all $v \in V(G)$, unless every block of $G$ is a clique or odd cycle.

Conjecture (Local Version of Reed's)
Every graph $G$ is $L$-colorable if $|L(v)| \geq\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil$ for every $v \in V(G)$, where $\omega(v)=\omega(G[N(v) \cup\{v\}])$.

## The Local Paradigm

Theorem (Erdős, Rubin, Taylor, 1979)
Every connected graph $G$ is L-colorable if $|L(v)| \geq d(v)$ for all $v \in V(G)$, unless every block of $G$ is a clique or odd cycle.

## Conjecture (Local Version of Reed's)

Every graph $G$ is $L$-colorable if $|L(v)| \geq\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil$ for every $v \in V(G)$, where $\omega(v)=\omega(G[N(v) \cup\{v\}])$.

Our main result:
Theorem (K, Postle (2017+))
For $\varepsilon \leq \frac{1}{52}$, if $\Delta(G)$ sufficiently large and for all $v \in V(G)$,

1. $|L(v)| \geq(1-\varepsilon)(d(v)+1)+\varepsilon \omega(v)$, and
2. $|L(v)|-\omega(v) \geq \log ^{14}(\Delta(G))$,
then $G$ has an $L$-coloring.

## An Application

## King's Conjecture (2009)

For every graph $G$,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil .
$$

## An Application

## King's Conjecture (2009)

For every graph $G$,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil .
$$

- In 2000, McDiarmid observed King's Conjecture is true fractionally.


## An Application

## King's Conjecture (2009)

For every graph $G$,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil .
$$

- In 2000, McDiarmid observed King's Conjecture is true fractionally.
- In 2013, Chudnovsky, King, Plumettaz, and Seymour proved King's Conjecture for quasi-line graphs.


## An Application

## King's Conjecture (2009)

For every graph $G$,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil .
$$

- In 2000, McDiarmid observed King's Conjecture is true fractionally.
- In 2013, Chudnovsky, King, Plumettaz, and Seymour proved King's Conjecture for quasi-line graphs.
- In 2015, King and Reed proved Reed's Conjecture for claw-free graphs and King's Conjecture for claw-free graphs with a three-colorable complement.


## An Application

## King's Conjecture (2009)

For every graph $G$,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil .
$$

Our result implies

## Corollary (K, P)

Let $\varepsilon \leq \frac{1}{52}$. If $\Delta(G)$ sufficiently large and $\omega(G) \leq(1-\varepsilon-o(1)) \Delta(G)$, then

$$
\chi_{\ell}(G) \leq \max _{v \in V(G)}(1-\varepsilon)(d(v)+1)+\varepsilon \omega(v) .
$$

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

1. Choose $\phi(v)$ uniformly at random from $L(v)$.

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

1. Choose $\phi(v)$ uniformly at random from $L(v)$.
2. If $\exists u \in N(v)$ such that $|L(u)| \leq|L(v)|$ and $\phi(u)=\phi(v)$, "uncolor" $v$.

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

1. Choose $\phi(v)$ uniformly at random from $L(v)$.
2. If $\exists u \in N(v)$ such that $|L(u)| \leq|L(v)|$ and $\phi(u)=\phi(v)$, "uncolor" $v$.
3. For each colored $u \in N(v)$, remove $\phi(u)$ from $L^{\prime}(v)$.

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

1. Choose $\phi(v)$ uniformly at random from $L(v)$.
2. If $\exists u \in N(v)$ such that $|L(u)| \leq|L(v)|$ and $\phi(u)=\phi(v)$, "uncolor" $v$.
3. For each colored $u \in N(v)$, remove $\phi(u)$ from $L^{\prime}(v)$.

Let $G^{\prime}$ be the graph induced by $G$ on "uncolored" vertices.

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

1. Choose $\phi(v)$ uniformly at random from $L(v)$.
2. If $\exists u \in N(v)$ such that $|L(u)| \leq|L(v)|$ and $\phi(u)=\phi(v)$, "uncolor" $v$.
3. For each colored $u \in N(v)$, remove $\phi(u)$ from $L^{\prime}(v)$.

Let $G^{\prime}$ be the graph induced by $G$ on "uncolored" vertices.
Proposition: If $G^{\prime}$ is $L^{\prime}$-colorable with non-zero probability, then $G$ is L-colorable.

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

1. Choose $\phi(v)$ uniformly at random from $L(v)$.
2. If $\exists u \in N(v)$ such that $|L(u)| \leq|L(v)|$ and $\phi(u)=\phi(v)$, "uncolor" $v$.
3. For each colored $u \in N(v)$, remove $\phi(u)$ from $L^{\prime}(v)$.

Let $G^{\prime}$ be the graph induced by $G$ on "uncolored" vertices.
Proposition: If $G^{\prime}$ is $L^{\prime}$-colorable with non-zero probability, then $G$ is L-colorable.

Key Fact: Every vertex is colored with some constant probability!

## A Naive Random Coloring Procedure

Let $L$ be a list-assignment for a graph $G$, and set $L^{\prime}=L$. For each $v \in V(G)$ :

1. Choose $\phi(v)$ uniformly at random from $L(v)$.
2. If $\exists u \in N(v)$ such that $|L(u)| \leq|L(v)|$ and $\phi(u)=\phi(v)$, "uncolor" $v$.
3. For each colored $u \in N(v)$, remove $\phi(u)$ from $L^{\prime}(v)$.

Let $G^{\prime}$ be the graph induced by $G$ on "uncolored" vertices.
Proposition: If $G^{\prime}$ is $L^{\prime}$-colorable with non-zero probability, then $G$ is L-colorable.

Key Fact: Every vertex is colored with some constant probability!
Ideally we would show that in some instance of $G^{\prime}$ and $L^{\prime}$, for each $v \in V\left(G^{\prime}\right),\left|L^{\prime}(v)\right|>d_{G^{\prime}}(v)$, but this doesn't work.

## Local Difficulties



A pathological case:

$$
d_{G^{\prime}}(v)-\left|L^{\prime}(v)\right| \approx d_{G}(v)-|L(v)| .
$$

## Local Difficulties



A pathological case:

$$
d_{G^{\prime}}(v)-\left|L^{\prime}(v)\right| \approx d_{G}(v)-|L(v)| .
$$

Let $v \in V(G)$ and $u \in N(v)$. We say $u$ is

## Local Difficulties



A pathological case:

$$
d_{G^{\prime}}(v)-\left|L^{\prime}(v)\right| \approx d_{G}(v)-|L(v)| .
$$

Let $v \in V(G)$ and $u \in N(v)$. We say $u$ is

- a subservient neighbor of $v$ if $|L(u)|<|L(v)|$,


## Local Difficulties



A pathological case:

$$
d_{G^{\prime}}(v)-\left|L^{\prime}(v)\right| \approx d_{G}(v)-|L(v)| .
$$

Let $v \in V(G)$ and $u \in N(v)$. We say $u$ is

- a subservient neighbor of $v$ if $|L(u)|<|L(v)|$,
- an egalitarian neighbor of $v$ if $|L(u)| \in[|L(v)|, 1.4|L(v)|]$.


## Local Difficulties



A pathological case:

$$
d_{G^{\prime}}(v)-\left|L^{\prime}(v)\right| \approx d_{G}(v)-|L(v)| .
$$

Let $v \in V(G)$ and $u \in N(v)$. We say $u$ is

- a subservient neighbor of $v$ if $|L(u)|<|L(v)|$,
- an egalitarian neighbor of $v$ if $|L(u)| \in[|L(v)|, 1.4|L(v)|]$.

Say $v$ is lordly if $v$ has many subservient neighbors.

## New Ways to Save

To deal with lordly vertices, color $G^{\prime}$ in the order of original list size, i.e. color vertices before their subservient neighbors.

## New Ways to Save

To deal with lordly vertices, color $G^{\prime}$ in the order of original list size, i.e. color vertices before their subservient neighbors.

We say a vertex $v$ is:

## New Ways to Save

To deal with lordly vertices, color $G^{\prime}$ in the order of original list size, i.e. color vertices before their subservient neighbors.

We say a vertex $v$ is:

- egalitarian-sparse if it has many non-edges between egalitarian neighbors


## New Ways to Save

To deal with lordly vertices, color $G^{\prime}$ in the order of original list size, i.e. color vertices before their subservient neighbors.

We say a vertex $v$ is:

- egalitarian-sparse if it has many non-edges between egalitarian neighbors
- aberrant if it has many neighbors $u$ with $L(u)$ significantly different from $L(v)$ :
- some neighbors with much bigger list, or
- many neighbors with somewhat bigger list.


## New Ways to Save

To deal with lordly vertices, color $G^{\prime}$ in the order of original list size, i.e. color vertices before their subservient neighbors.

We say a vertex $v$ is:

- egalitarian-sparse if it has many non-edges between egalitarian neighbors
- aberrant if it has many neighbors $u$ with $L(u)$ significantly different from $L(v)$ :
- some neighbors with much bigger list, or
- many neighbors with somewhat bigger list.

Key Fact: If a vertex is lordly, egalitarian-sparse, or aberrant, the expected number of "saved" colors is $\Omega(d(v)-\omega(v))$.

## Proof Overview

Theorem (K, Postle (2017+))
For $\varepsilon \leq \frac{1}{52}$, if $\Delta$ sufficiently large, $\Delta(G) \leq \Delta$, and for all $v \in V(G)$,

1. $|L(v)| \geq(1-\varepsilon)(d(v)+1)+\varepsilon \omega(v)$, and
2. $|L(v)|-\omega(v) \geq \log ^{14}(\Delta)$,
then $G$ has an L-coloring.

## Proof Overview

Theorem (K, Postle (2017+))
For $\varepsilon \leq \frac{1}{52}$, if $\Delta$ sufficiently large, $\Delta(G) \leq \Delta$, and for all $v \in V(G)$,

1. $|L(v)| \geq(1-\varepsilon)(d(v)+1)+\varepsilon \omega(v)$, and
2. $|L(v)|-\omega(v) \geq \log ^{14}(\Delta)$,
then $G$ has an L-coloring.

## Main Structural Lemma

Every vertex of a minimum counterexample is either aberrant, lordly, or egalitarian-sparse.

## Proof Overview

Theorem (K, Postle (2017+))
For $\varepsilon \leq \frac{1}{52}$, if $\Delta$ sufficiently large, $\Delta(G) \leq \Delta$, and for all $v \in V(G)$,

1. $|L(v)| \geq(1-\varepsilon)(d(v)+1)+\varepsilon \omega(v)$, and
2. $|L(v)|-\omega(v) \geq \log ^{14}(\Delta)$,
then $G$ has an L-coloring.

## Main Structural Lemma

Every vertex of a minimum counterexample is either aberrant, lordly, or egalitarian-sparse.

## Main Probabilistic Lemma

If a vertex $v$ is either aberrant, lordly, or egalitarian-sparse, then with high enough probability,

$$
\left|L^{\prime}(v)\right|>\left|\left\{u \in N(v) \cap V\left(G^{\prime}\right):|L(u)| \geq|L(v)|\right\}\right| .
$$

## Thanks!

