MapClass

May 2011

Adam James
Kay Magaard
Sergey Shpectorov
Helmut Volklein

Adam James — Email: jamesa@maths.bham.ac.uk
Kay Magaard — Email: K.Magaard@maths.bham.ac.uk
Sergey Shpectorov — Email: s. shpectorov@bham.ac.uk

Helmut Volklein — Email: voelkle@iem.uni-due.de

mailto://jamesa@maths.bham.ac.uk
mailto://K.Magaard@maths.bham.ac.uk
mailto://s.shpectorov@bham.ac.uk
mailto://voelkle@iem.uni-due.de

MapClass

Copyright

(© 2004-2011 by Adam James, Kay Magaard Sergey Shpectorov, and Helmut Volklein
We adopt the copyright regulations of GAP as detailed in the copyright notice in the GAP manual.

Contents

1 Introduction and Main Functions
1.1 Background Material
1.2 Overview of Main Functions
1.2.1 AIMCOTIDits o
1.2.2 AIMCOrbitsCore o .o e
1.2.3 GeneratingMCOrbits e
1.2.4 GeneratingMCOrbitsCore e
1.2.5 MappingClassOrbit e
1.2.6 PrepareMinTree
1.2.7 MinimizeTuple
1.2.8 EasyMinimizeTuple
1.29 IsInOrbit e
1.2.10 FindTupleInOrbit o L
1.2.11 IsEqualOrbit e
1.2.12 SelectTuple e
1.2.13 NumberGeneratingTuples
1.2.14 TotalNumberTuples.
1.2.15 CalculateTuplePartition.
1.2.16 RestoreOrbitFromFile
1.2.17 SaveOrbitToFile
1.3 Key Data Structures e e e
1.3.1 TheOrbitRecord
1.32 TheTupleTable
1.4 ASample Sessiono e

Nelie e i B R BN N BN BN e e) Ne Nie Wi e WY BRY R R

A Installation

[S=
N

Chapter 1

Introduction and Main Functions

This chapter provides an overview of the background material, and provides documentation for the
main functions and data structures of the MAPCLASS package.

1.1 Background Material

Let G be a finite group, and let 6 = (67, ..., G24+,) (for natural numbers g and r) be a tuple of elements

of G satisifying the relation
8 r

H[Gi, Ggti H02g+i =1

i=1 i=1

If we associate the elements of the tuple ¢ with the standard generators of the fundamental group
of a compact connected surface (genus g, r punctures), then the mapping class group acts on the
fundamental group generators inducing an action on the set of tuples. The mapping class orbit is
then the orbit under this action. Note that we take these orbits up to conjugation. Often we are only
concerned with tuples which generate the group G, such tuples are said to be generating

The package can be used to compute the mapping class orbits for given G and a set of conjugacy
classes (Cy,...,C,) (although the programs expect a tuple of class representatives). We call the tuple
(g:C1,...,C;) the signature. The package is an extension of the Braid package for GAP

1.2 Overview of Main Functions

The following are the principal ways for calculating the mapping class orbits for a given signature and
group. We require our groups to be permutation groups, and the tuple in question to have length at
least two.

1.2.1 AIIMCOTrbits
Q Al1MCOrbits (group, genus, tuple) (function)

This function calculates the orbit for the given group, genus and tuple. This function is a wrapper
for the function A11MCOrbitsCore (1.2.2), and so can make use of GAP’s OptionsStack. The
options are described in more detail in the documentation for A11MCOrbitsCore (1.2.2)

MapClass 5

1.2.2 AIIMCOrbitsCore

Q Al11MCOrbitsCore (group, genus, tuple, partition, constant) (function)

This function calculates the orbit for the given group, genus and tuple, with the r branch points
partitioned as in partition. It uses the given constant to determine how many of the tuples
it want to account for before exiting. This function also make use of GAP’s OptionsStack if one
desires to alter the algorithm runs. The following options and their defaults are given below.

Option Name | Default Value

InitialSizeCutOff 128
MaximumWeight 40
MinimumWeight 20
InitialWeight 20
BumpUp 7
KnockDown 7
InitialNumberOfRandomTuples 20
InitialCutOffvalue 0

HashLength 5000

SaveOrbit False

The majority of the options are uninteresting and only subtly alter the running of the rou-
tine.The options InitialSizeCutOff, MaximumWeight, MinimumWeight, InitialWeight,BumpUp,
KnockDown, are the options controlling how the code handles the subgroup weighting discussed
in the algorithm overview. The option InitialNumberOfRandomTuples decides how many tu-
ples the routine collects before trying to see if they are in some pre-existing orbit. The option
InitialCutOffValue decides at what point we stop searching for new orbits - if only large or-
bits are of interest then this can be set larger to ignore smaller orbits. Finally the option SaveOrbit
which is by default False can be set to the name of a directory in which you want to save orbits.
This option then saves the orbits to files in the folder with ”_name”. So for example if you wish to
save your orbits into the file _example then you would run A11MCOrbits (group, genus, tuple:
SaveOrbit:="example");. The orbits are then saved in orbits which are named numerically. Fol-
lowing on from the above example then the first orbit will be saved as “example/0”.

1.2.3 GeneratingMCOrbits

{Q GeneratingMCOrbits (group, genus, tuple) (function)

This calculates the orbits for the given arguments. Unlike the A11MCOrbits (1.2.1) function,
GeneratingMCOrbits calculates only those orbits whose tuples generate the whole of our original

group.

1.2.4 GeneratingMCOrbitsCore

{ GeneratingMCOrbitsCore (group, genus, tuple, partition, constant) (func-

tion)

MapClass 6

This calculates the orbits for the given arguments. Unlike the A11MCOrbits (1.2.1) function,
GeneratingMCOrbitsCore calculates only those orbits whose tuples generate the whole of our orig-
inal group. As with A11MCOrbitsCore (1.2.2), the argument partition must be a partition of the
conjugacy classes represented in list form. We also have access to the full value of the options stack
asin A11MCOrbitsCore (1.2.2).

1.2.5 MappingClassOrbit

O MappingClassOrbit (group, genus, principaltuple, partition, tuple)
(function)

Returns: an orbit record for an orbit containing tuple or returns fail

Calculates the orbit of the tuple with respect to the given group, principaltuple and
genus.

1.2.6 PrepareMinTree

Q PrepareMinTree (principaltuple, group, ourR, genus) (function)

Returns: a record with two keys MinimizationTree and MinimumSet. If record is the re-
turned record then record.MinimizationTree is the list encoding the tree used to help minimize
tuples.The list record.MinimumSet is a list of minimal elements which is also used to speed up
tuple minimization.

1.2.7 MinimizeTuple

O MinimizeTuple (tuple, minimizationTree, minimumSet,
numberOfGenerators) (function)
Returns: the minimal tuple in the same orbit of tuple.
Take the minimisation data provided by PrepareMinTree (1.2.6) and minimizes the given
tuple.

1.2.8 EasyMinimizeTuple

{Q EasyMinimizeTuple (group, genus, tuple) (function)
Returns: the minimal tuple in the same orbit as tuple.

1.2.9 IsInOrbit

Q IsInOrbit (orbit, tuple) (function)
Returns: True if the tuple liesin the orbit.

1.2.10 FindTupleInOrbit

Q FindTupleInOrbit (orbit, tuple) (function)
Returns: the index of tuple in orbit.TupleTable if in the orbit. If the tuple is not in
orbit returns fail.

MapClass 7

1.2.11 IsEqualOrbit

{Q IsEqualOrbit (orbitl, orbit2) (function)
Returns: true if the two orbits are equal else returns fail.

1.2.12 SelectTuple

O SelectTuple (orbit, index) (function)
Returns: the tuple orbit.TupleTable[index] .tuple.

1.2.13 NumberGeneratingTuples

{ NumberGeneratingTuples (group, partition, tuple, genus) (function)
Returns: the total number of possible generating tuples for the group and tuple.

1.2.14 TotalNumberTuples

Q TotalNumberTuples (group, tuple, genus) (function)
Returns: the total number of tuples we have to account for.

1.2.15 CalculateTuplePartition

Q CalculateTuplePartition(group, tuple) (function)
Returns: A partition of 1,...,r where r is the length of the tuple.
The function returns a partition of 1,...,r such that i and j lie in the same block if and only if the

elements tuple[i] and tuple[7j] are member of the same conjugacy class. The program currently
requires that the elements of the tuple be ordered such that if tuple[i] and tuple[j] are in the same
conjugacy class with i < j then so istuple[k] forall i <k < j.

1.2.16 RestoreOrbitFromFile

Q RestoreOrbitFromFile (n, name/[, path]) (function)

Returns: the n-th orbit record from the project with project "name"

By default the function searches the current working directory for the saved project folder and
searches inside this for the n-th orbit. If no such orbit exists it returns fail. If an optional argument
pathis provided then it searches this path for a folder with the name specified (note that path expects
aDirectory object). If an orbit exists then it is returned as a record as outlined in the data structure
section.

1.2.17 SaveOrbitToFile
) SaveOrbitToFile(orbit, n, name) (function)

999

Saves the orbit to filename ”n” in the directory ' _name’. The directory must already exist.

1.3 Key Data Structures

Many of the above functions require or return key data structures which we aim to document.

MapClass 8

1.3.1 The Orbit Record

Many of the functions return or expect an orbit ”object”. This object is in fact record with the following
values:

PrincipalFiniteGroup - the finite group

OurG - genus

OurR - length of our primary tuple

OurN - number of points on which our group acts
NumberOfGenerators -2 OurG+ OurR

OurFreeGroup - a free group on NumberOfGenerators letters
AbsGens - generators for OurFreeGroup

OurAlpha - generators of OurFreeGroupcorresponding to the a; type loops in the fundamental
group (the first g elements of AbsGens)

OurBeta - elements of OurFreeGroup corresponding to B type loops

OurGamma - generators of OurFreeGroup corresponding to the loops around branch points
TupleTable - atable containing all the tuples in the orbit

HashLength

Hash

PrimeCode

OurAction

ActionOnOrbit

MinimizationTree- minimization structure

MinimumSet- minimizaton structure

1.3.2 The Tuple Table

The tuple table is a list. Each element of the list is a record with the names, tuple and next. If orbit
is an orbit object then orbit.TupleTable [n] .tuple returns the tuple at index n of the tuple table.

MapClass

1.4 A Sample Session

We demonstate how one might use the package.

Example
gap> group:=AlternatingGroup(5);
Alt([1 ..51)

gap> tuple:=[(1,2) (3,4
[(1,2)(3,4), (1,2)(3,4
gap> orbits:=Al11MCOrbit

)r (1,2)(3,4), (1,2)(3,4)]
)r (1,2)(3,4)]

s (group, 1, tuple);;

Total Number of Tuples: 189120

Collecting 20 random tuples... done

Cleaning done; 20 random tuples remaining

Orbit 1:

Length=3072
Generating Tuple =[(1,2,4,5,3), (1,4,5,2,3), (1,2)(4,5),
(1,4)(2,3), (2,5)(3,4)]

Generated subgroup size=60

Centralizer size=1

4800 tuples remaining

Cleaning current orbit...

Cleaning a list of 20 tuples

Random Tuples Remaining: 0

Cleaning done; 0 random tuples remaining

Collecting 20 random tuples... done
Cleaning orbit 1
Cleaning a list of 20 tuples

Random Tuples Remaining: 0

Cleaning done; 0 random tuples remaining

Collecting 40 random tuples... done
Cleaning orbit 1
Cleaning a list of 40 tuples

Random Tuples Remaining: 3

Cleaning done; 3 random tuples remaining

Orbit 2:

Length=32

MapClass

Generating Tuple =[(1,4)(2,3), (1,2)(3,4), (1,4)(2,3), (1,2)(3,4),
(1,3)(2,4)]

Generated subgroup size=4

Centralizer size=4

4320 tuples remaining

Cleaning current orbit...

Cleaning a list of 3 tuples

Random Tuples Remaining: 2

Cleaning done; 2 random tuples remaining

Orbit 3:

Length=72

Generating Tuple =[(1,5,2), (1,3,2), (1,2)(3,5), (1,3)(2,5),
(1,3)(2,5)]

Generated subgroup size=12

Centralizer size=1

0 tuples remaining

Cleaning current orbit...

Cleaning a list of 2 tuples

Random Tuples Remaining: 0

Cleaning done; 0 random tuples remaining

gap> # Check we have as many orbits as it says...

gap> Length (orbits);

3

gap> # Inspect the first orbit..

gap> orbl:=orbits[l];;

gap> # How long is orbl?

gap> Length (orbl.TupleTable);

3072

gap> # Select element 42

gap> SelectTuple (orbl, 42);

[(1,3,4), (1,5,3,2,4), (1,5)(2,4), (1,2)(3,5), (2,3)(4,5)
gap> # Save the orbit to a file...

gap> SaveOrbitToFile (orbl, 1, "test");

gap> #If the folder doesn’t exist we get an error..

gap> SaveOrbitToFile (orbl, 1, "foo");

AppendTo: cannot open ’_foo/l’ for output at
CallFuncList (APPEND_TO, arg);

gap> #

gap> # Now we try find generating orbits

gap> group:=SymmetricGroup (5);

Sym([1 ..51)

gap> # And we will save them using the ‘SaveOrbit‘ option
gap> GeneratingMCOrbits (group,l,tuple : SaveOrbit:="example");;

Total Number of Tuples: 607680

Collecting 20 generating tuples .. done

10

MapClass

Cleaning done; 20 random tuples remaining

Orbit 1:
Length=5064

Generating Tuple =[(1,3,2,5), (2,4,3), (1,4)(3,5), (1,3)(2,5),

(1,4)(3,5)]

Generated subgroup size=120

Saving orbit to file _example/0
Centralizer size=1

0 tuples remaining

Cleaning current orbit...

Cleaning a list of 20 tuples

Random Tuples Remaining: 0

Cleaning done; 0 random tuples remaining

gap> generatingorbits:=last;;

gap> # How many generating orbits are there?
gap> Length (generatingorbits);

1

gap> # Is this orbit equal to the other one we found earlier
gap> IsEqualOrbit (orbl, generatingorbits[l1]);
fail

gap> # We can reload the orbits...

gap> orb2:=RestoreOrbitFromFile (0, "example");;
gap> Length (orb2.TupleTable);

5064

11

Appendix A

Installation

To Install the package place the "MapClass” folder into your GAP system’s "pkg’ directory. If you
do not have permission to modify the gap package then the package can be included by append-
ing a local directory to GAP’s root directory using the -1’ flag. For more information on GAP’s
root directory process try *?GAP root” in a GAP session. Or see the online help at http://www.gap-
system.org/Manuals/doc/htm/ref/CHAP009.htm#SECT002 To Load the package simply type ’Load-
Package(’mapclass”);’. If the load has been successful the package banner will be shown.

12

Index

Al1MCOrbits, 4
Al1MCOrbitsCore, 5

CalculateTuplePartition,7
FasyMinimizeTuple, 6
FindTupleInOrbit, 6

GeneratingMCOrbits, 5
GeneratingMCOrbitsCore, 5

IsEqualOrbit, 7
IsInOrbit, 6

MappingClassOrbit, 6
MinimizeTuple, 6

NumberGeneratingTuples, 7
Overview, 4
PrepareMinTree, 6
RestoreOrbitFromFile, 7

SaveOrbitToFile, 7
SelectTuple, 7

TotalNumberTuples, 7

13

