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Abstract. A fundamental theorem of Wilson states that, for every graph F ,
every sufficiently large F -divisible clique has an F -decomposition. Here a graph
G is F -divisible if e(F ) divides e(G) and the greatest common divisor of the de-
grees of F divides the greatest common divisor of the degrees of G, and G has
an F -decomposition if the edges of G can be covered by edge-disjoint copies of
F . We extend this result to graphs G which are allowed to be far from com-
plete. In particular, together with a result of Dross, our results imply that every
sufficiently large K3-divisible graph of minimum degree at least 9n/10 + o(n)
has a K3-decomposition. This significantly improves previous results towards
the long-standing conjecture of Nash-Williams that every sufficiently large K3-
divisible graph with minimum degree at least 3n/4 has a K3-decomposition. We
also obtain the asymptotically correct minimum degree thresholds of 2n/3 + o(n)
for the existence of a C4-decomposition, and of n/2 + o(n) for the existence of
a C2`-decomposition, where ` ≥ 3. Our main contribution is a general ‘itera-
tive absorption’ method which turns an approximate or fractional decomposition
into an exact one. In particular, our results imply that in order to prove an
asymptotic version of Nash-Williams’ conjecture, it suffices to show that every
K3-divisible graph with minimum degree at least 3n/4 + o(n) has an approximate
K3-decomposition.

1. Introduction

Given a graph F , a graph G has an F -decomposition (is F -decomposable), if the
edges of G can be covered by edge-disjoint copies of F . In this paper, we always
consider decomposing a large graph G into edge-disjoint copies of some small fixed
graph F . The first such result was given by Kirkman [20] in 1847, who proved that
the complete graph Kn has a K3-decomposition if and only if n ≡ 1, 3 mod 6. To see
that n ≡ 1, 3 mod 6 is a necessary condition, note that if G has a K3-decomposition,
then the degree of each vertex of G is even and e(G) is divisible by 3.

There are similar necessary conditions for the existence of an F -decomposition.
For a graph G, let gcd(G) be the largest integer dividing the degree of every vertex
of G. Given a graph F , we say that G is F -divisible if e(G) is divisible by e(F )
and gcd(G) is divisible by gcd(F ). Being F -divisible is a necessary condition for
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being F -decomposable. However, it is not sufficient: for example, C6 does not have
a K3-decomposition. In this terminology, Kirkman proved that every K3-divisible
clique has a K3-decomposition. The analogue of this for general graphs F instead of
K3 was an open problem for a century until it was solved by Wilson [30, 31, 32, 33]
in 1975. Wilson proved that, for every graph F , there exists an integer n0 = n0(F )
such that every F -divisible Kn with n ≥ n0 has an F -decomposition.

1.1. Decompositions of non-complete graphs. In contrast, it is well known that
the problem of deciding whether a general graph G has an F -decomposition is NP-
complete for every graph F that contains a connected component with at least three
edges [5]. So a major question has been to determine the smallest minimum degree
that guarantees an F -decomposition in any sufficiently large F -divisible graph G.
Gustavsson [14] showed that, for every fixed graph F , there exists ε = ε(F ) > 0 and
n0 = n0(F ) such that every F -divisible graph G on n ≥ n0 vertices with minimum
degree δ(G) ≥ (1− ε)n has an F -decomposition. (This proof has not been without
criticism.) In a recent breakthrough, Keevash [18] proved a hypergraph generalisa-
tion of Gustavsson’s theorem. His result actually states that every sufficiently large
dense quasirandom hypergraph G has a decomposition into cliques (subject to the
necessary divisibility conditions). The special case when G is a complete hypergraph
settles a question regarding the existence of designs going back to the 19th century.
Yuster [34] determined the asymptotic minimum degree threshold which guaran-
tees an F -decomposition in the case when F is a bipartite graph with δ(F ) = 1
(which includes trees). More recently, he [39] studied the problem of finding many
edge-disjoint copies of a given graph F . For a survey regarding F -decomposition of
hypergraphs, directed graphs and oriented graphs, we recommend [37].

In this paper, we substantially improve existing decomposition results when F
is an arbitrary graph. For F = K3, Nash-Williams [24] conjectured that every
sufficiently large K3-divisible graph G on n vertices with δ(G) ≥ 3n/4 has a K3-
decomposition. This conjecture is still wide open. For a general Kr, the following
(folklore) conjecture is a natural extension of Nash-Williams’ conjecture. We describe
the corresponding extremal construction in Proposition 1.5.

Conjecture 1.1. For every r ∈ N with r ≥ 2, there exists an n0 = n0(r) such that
every Kr+1-divisible graph G on n ≥ n0 vertices with δ(G) ≥ (1− 1/(r + 2))n has a
Kr+1-decomposition.

Together with results by Dukes [7, 8] as well as Barber, Kühn, Lo, Montgomery
and Osthus [2], our main result (Theorem 1.3) implies the following theorem, which
gives the first significant step towards the conjectured bound and extends to decom-
positions into arbitrary graphs.

Theorem 1.2. Let F be a graph, let

C := min{9χ(F )2(χ(F )− 1)2/2, 104χ(F )3/2} and let t := max{C, 6e(F )}.

Then for each ε > 0, there is an n0 = n0(ε, F ) such that every F -divisible graph G
on n ≥ n0 vertices with δ(G) ≥ (1− 1/t+ ε)n has an F -decomposition.

Note that, for any F , we have t ≤ min{9|F |2(|F |−1)2/2, 104|F |2}. So t = O(|F |2).
The best previous bound in this direction is the one given by Gustavsson [14], who
claimed that, if F is complete, then a minimum degree bound of (1− 10−37|F |−94)n
suffices.
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We also obtain substantial further improvements for several families of graphs, in
particular for cycles (see Sections 1.3 and 12).

1.2. Approximate F -decompositions. The main contribution of this paper is
actually a result that turns an ‘approximate’ F -decomposition into an exact F -
decomposition. Let G be a graph on n vertices. For a graph F and η ≥ 0, an
η-approximate F -decomposition of G is a set of edge-disjoint copies of F covering
all but at most ηn2 edges of G. Note that a 0-approximate F -decomposition is
an F -decomposition. For n ∈ N and η > 0, let δηF (n) be the infimum over all δ
such that every graph G on n vertices with δ(G) ≥ δn has an η-approximate F -
decomposition. We define δ0F (n) in a similar way, except that we only consider F -
divisible graphs. Let δηF := lim supn→∞ δ

η
F (n) be the η-approximate F -decomposition

threshold. Clearly δη
′

F ≥ δηF for all η′ ≤ η. It turns out that there are F -divisible
graphs with limη→0 δ

η
F = δ0F , and graphs for which this equality does not hold (see

Section 12 for a further discussion).
Our main result relates the ‘decomposition threshold’ to the ‘approximate de-

composition threshold’ and an additional minimum degree condition for r-regular
graphs F . The dependence on r is not far from best possible, since Proposition 1.5
shows that the term 1/3r cannot be replaced by anything larger than 1/(r + 2).

Theorem 1.3. Let F be an r-regular graph. Then for each ε > 0, there exists an
n0 = n0(ε, F ) and an η = η(ε, F ) such that every F -divisible graph G on n ≥ n0
vertices with δ(G) ≥ (δ+ε)n, where δ := max{δηF , 1−1/3r}, has an F -decomposition.

To derive Theorem 1.2 from Theorem 1.3, we will use a result of Haxell and
Rödl [16] as well as a result of Yuster [36]. Roughly speaking, the result in [16]
implies that the minimum degree which guarantees a fractional F -decomposition
in a graph also guarantees an η-approximate F -decomposition. This allows us to
replace the η-approximate F -decomposition threshold δηF in Theorem 1.3 by the
‘fractional F -decomposition threshold’ (see Section 4 for more details). A result of
Yuster [38] implies that we can consider the fractionalKχ(F )-decomposition threshold
instead of the fractional F -decomposition threshold. We will then use the results
from [7, 8] as well as from [2], which guarantee a fractional Kr-decomposition of
any graph on n vertices with minimum degree at least (1 − 2/(9r2(r − 1)2))n and

minimum degree at least (1 − 1/104r3/2)n, respectively. Any improvement in the
fractional Kr-decomposition threshold would immediately imply better bounds in
Theorem 1.2 (see Theorem 6.3).

Our proof of Theorem 1.3 gives a polynomial time randomized algorithm which
produces a decomposition with high probability (see Section 11 for more details).
Our argument here and that in [2] is purely combinatorial. In particular, the proofs
of Theorems 4.7 and 6.3 together yield a combinatorial proof of Wilson’s theorem [30,
31, 32, 33] that every large F -divisible clique has an F -decomposition. (The original
proof as well as that in Keevash [18] relied on algebraic tools.)

1.3. Further improvements: cycle decompositions. In Section 11, we state a
version of Theorem 1.3 which is more technical but can be applied to give better
bounds for many specific choices of F (Theorem 11.1). For example, in Section 12,
we apply this to derive the following result on cycle decompositions.
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Theorem 1.4. (i) Let ` ∈ N with ` ≥ 4 be even, and let

δ :=

{
1/2 if ` ≥ 6;

2/3 if ` = 4.

Then for each ε > 0, there exists an n0 = n0(ε, `) such that every C`-divisible graph
G on n ≥ n0 vertices with δ(G) ≥ (δ + ε)n has a C`-decomposition.

(ii) Let ` ∈ N with ` ≥ 3 be odd. Then for each ε > 0, there exists an n0 = n0(ε, `)
and an η = η(ε, `) such that every C`-divisible graph G on n ≥ n0 vertices with
δ(G) ≥ (δηC` + ε)n has a C`-decomposition. Moreover, every C`-divisible graph G on

n ≥ n0 vertices with δ(G) ≥ (9/10 + ε)n has a C`-decomposition.

Thus by Theorem 1.4(ii), it suffices to show that δηC3
≤ 3/4 in order to prove Con-

jecture 1.1 for r = 2 asymptotically. The value of the constant δ in Theorem 1.4(i) is
the best possible (see Propositions 12.1 and 12.2). The special case of Theorem 1.4(i)
when ` = 4 improves a result of Bryant and Cavenagh [4], who showed that every
C4-divisible graph G on n vertices with minimum degree at least (31/32 + o(1))n
has a C4-decomposition.

Related results on clique-decompositions of r-partite graphs have been obtained
by Barber, Kühn, Lo, Osthus and Taylor [3]. (These can be combined with results
on fractional decompositions of r-partite graphs by Dukes [9] and Montgomery [23].)
Clique-decompositions in the r-partite setting are of particular interest since they
translate into results on the completion of (mutually orthogonal) latin squares. There
is also further work in progress (by Glock, Kühn, Lo, Montgomery and Osthus) on
general decomposition results in the non-partite setting.

1.4. Extremal graphs for Conjecture 1.1. The following example from [27]
shows that the minimum degree condition in Conjecture 1.1 is optimal. We include
a proof for completeness.

Proposition 1.5. For every r ∈ N with r ≥ 2, there exist infinitely many n such that
there exists a Kr+1-divisible graph G on n vertices with δ(G) = d(1−1/(r+2))ne−1
without a Kr+1-decomposition.

Proof. Let `, s ∈ N. We first consider the case when r := 2`. Let h := (sr+1)(r+1).
Let K2`+2 −M be the subgraph of K2`+2 left after removing a perfect matching.
Let G2`

h be the graph constructed by blowing up each vertex of Kr+2−M to a copy

of Kh. Thus G2`
h has n := (r+ 2)h vertices and is d-regular with d := (h− 1) + rh =

(r + 1)n/(r + 2) − 1. Since r divides d and r + 1 divides h,
(
r+1
2

)
divides e(G2`

h ),

implying that G2`
h is Kr+1-divisible. Call an edge internal in G2`

h if it lies entirely

within one of the copies of Kh. The number of internal edges is I2`h := (r + 2)
(
h
2

)
.

Since G2`
h is a blow-up of Kr+2−M , each copy of Kr+1 in G2`

h must contain at least

r/2 internal edges. Thus the number of edge-disjoint copies of Kr+1 in G2`
h is at

most I2`h /(r/2) < e(G2`
h )/

(
r+1
2

)
. Therefore G2`

h does not have a Kr+1-decomposition.

For r := 2` + 1, let h := (s(r + 1) + 1)r. Let G2`+1
h be the graph obtained from

G2`
h by adding a set W of h + 1 new vertices and joining each new vertex to each

vertex in V (G2`
h ). Note that G2`+1

h has n := (r + 2)h + 1 vertices and is d-regular
with d := (r + 1)h = (r + 1)(n− 1)/(r + 2) = d(1− 1/(r + 2))ne − 1. Since r(r + 1)

divides d,
(
r+1
2

)
divides e(G2`+1

h ), implying that G2`+1
h is Kr+1-divisible. Let the

internal edges of G2`+1
h be the internal edges of G2`

h . Thus the number of internal
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edges is I2`+1
h := (r + 1)

(
h
2

)
. Note that each copy of Kr+1 in G2`+1

h must contain
at least (r − 1)/2 internal edges. Moreover, if Kr+1 contains precisely (r − 1)/2
internal edges, then Kr+1 must contain a vertex in W . Hence there are at most
d|W |/r = (r + 1)(h + 1)(s(r + 1) + 1) edge-disjoint copies of Kr+1 in G2`+1

h that
contain precisely (r − 1)/2 internal edges. Therefore, the number of edge-disjoint

copies of Kr+1 in G2`+1
h is at most

(r + 1)(h+ 1)(s(r + 1) + 1) +
I2`+1
h − (r + 1)(h+ 1)(s(r + 1) + 1) r−12

(r + 1)/2

= h(h− 1) + 2(h+ 1)(s(r + 1) + 1) = (s(r + 1) + 1)((r + 2)h− (r − 2))

< (s(r + 1) + 1)((r + 2)h+ 1) =
e(G2`+1

h )(
r+1
2

) .

Therefore G2`+1
s does not have a Kr+1-decomposition. �

2. Sketches of proofs

2.1. Proof of Theorem 1.2 using Theorem 1.3. The idea of this proof is quite
natural. Given graphs F and G as in Theorem 1.2, we find an F -decomposable
regular graph R such that both the degree r of R and the η-approximate decompo-
sition threshold δηR are not too large. By removing a small number of copies of F
from G, we may assume that G is also R-divisible. By Theorem 1.3, G has an
R-decomposition and so an F -decomposition, provided δ(G) ≥ max{δηR, 1 − 1/3r}.
This reduction is carried out in Section 6.

To obtain the explicit bound on δ(G), we apply results of Dukes [7, 8] as well
as Barber, Kühn, Lo, Montgomery and Osthus [2] on fractional decompositions in
graphs of large minimum degree together with a result of Haxell and Rödl [16]
relating fractional decompositions to approximate decompositions. We collect these
tools in Section 4.

2.2. Proof of Theorem 1.3. The proof of Theorem 1.3 develops an ‘iterative ab-
sorbing’ approach. The original absorbing method was first used for finding K3-
factors (that is, a spanning union of vertex-disjoint copies of K3) by Krivelevich [21]
and for finding Hamilton cycles in hypergraphs by Rödl, Ruciński and Szemerédi [26].
An absorbing approach for finding decompositions was first used by Kühn and Os-
thus [22].

More precisely, the basic idea behind the proof of Theorem 1.3 can be described as
follows. Let G be a graph as in Theorem 1.3. Suppose that we can find an F -divisible
subgraphA∗ ofG with small maximum degree which is an F -absorber in the following
sense: A∗∪H∗ has an F -decomposition whenever H∗ is a sparse F -divisible graph on
V (G) which is edge-disjoint from A∗. Let G′ be the subgraph of G remaining after
removing the edges of A∗. Since A∗ has small maximum degree, δ(G′) ≥ (δηF +ε/2)n.
By the definition of δηF , G′ has an η-approximate F -decomposition F . Let H∗ be
the leftover (that is, the subgraph of G′ remaining after removing all edges in F).
Note that H∗ is also F -divisible. Since A∗ ∪H∗ has an F -decomposition, so does G.

Unfortunately, this naive approach fails for the following reason: we have no
control on the leftover H∗. A first attempt at obtaining A∗ would be to construct it
as the edge-disjoint union of graphs A such that each such A has an F -decomposition
and, for each possible leftover graph H∗, there is a distinct A so that A ∪ H∗ has
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an F -decomposition. However, a typical leftover graph H∗ has ηn2 edges, so the
number of possibilities for H∗ is exponential in n. So we have no hope of finding all
the required graphs A in G (and thus to construct A∗). To overcome this problem,
we reduce the number of possible configurations of H∗ (in turn reducing the number
of graphs A required) as follows. Roughly speaking, we iteratively find approximate
decompositions of the leftover so that eventually our final leftover H∗ only has O(n)
edges whose location is very constrained—so one can view this step as finding a ‘near
optimal’ F -decomposition.

To illustrate this, suppose that m ∈ N is bounded and n is divisible by m. Let
P := {V1, . . . , Vq} be a partition of V (G) into parts of size m (so q = n/m). We
further suppose that H∗ is a vertex-disjoint union of F -divisible graphs H∗1 , . . . ,H

∗
q

such that V (H∗i ) ⊆ Vi for each i. Hence to construct A∗, we only need to find one
A for each possible H∗i . (To be more precise, A∗ will now consist of edge-disjoint
graphs A such that each A has an F -decomposition and, for each possible H∗i , there
is a distinct A so that A ∪H∗i has an F -decomposition.) For a fixed i, there are at

most 2(|Vi|2 ) = 2(m2 ) possible configurations of H∗i . Since m is bounded, in order to

construct A∗ we would only need to find q2(m2 ) = 2(m2 )n/m different A. Essentially,
this is what Lemma 8.1 achieves.

We now describe in more detail the iterative approach which achieves the above
setting. Recall that G′ is the subgraph of G remaining after removing all the edges
of A∗. Since A∗ has small maximum degree, G′ has roughly the same properties
as G. Our new objective is to find edge-disjoint copies of F covering all edges of G′

that do not lie entirely within Vi for some i. Since each Vi has bounded size, these
edge-disjoint copies of F will cover all but at most a linear number of edges of G′.
As indicated above, we use an iterative approach to achieve this. We proceed as
follows. Let k ∈ N. Let P1 be an equipartition of V (G) into k parts, and let G1 be
the k-partite subgraph of G′ induced by P1 (here k is large but bounded). Suppose
that we can cover the edges of G1 by copies of F which use only a small proportion of
the edges not in G1. Call the leftover graph H1. Let P2 be an equipartition of V (G)
into k2 parts obtained by dividing each V ∈ P1 into k parts. Let G2 be the k2-partite
subgraph of H1 induced by P2. Each component of G2 will form a k-partite graph
lying within some V ∈ P1. So by applying the same argument to each component
of G2 in turn and iterating logk(n/m) times we obtain an equipartition P = P` of
V (G) with |V | = m for each V ∈ P such that all edges of G′ that do not lie entirely
within some V ∈ P can be covered by edge-disjoint copies of F .

In Section 5 we prove an embedding lemma that allows us to find certain subgraphs
in a dense graph. We will use this throughout the paper. The formal definition of
P1,P2, . . . ,P` is given in Section 7. We construct the absorber graph A∗ in Section 8.
The ‘near optimal’ decomposition result is proved in Sections 9 and 10. Finally, we
prove Theorem 1.3 in Section 11.

3. Notation

Let G be a graph, and let P = {V1, . . . , Vk} be a partition of V (G). We write
G[V1] for the subgraph of G induced by the vertex set V1, G[V1, V2] for the bipartite
subgraph induced by the vertex classes V1 and V2, and G[P] := G[V1, . . . , Vk] for the
k-partite subgraph of G induced by the k-partition P. Write V<i for V1 ∪ · · · ∪ Vi−1
and V≤i for V1∪· · ·∪Vi. We say that P is equitable (or k-equitable) if

∣∣|Vi|−|Vj |∣∣ ≤ 1
for all 1 ≤ i, j ≤ k. For V ⊆ V (G), P[V ] denotes the restriction of P to V . Note
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that a k-equitable refinement of a k-equitable partition P (obtained by taking a
k-equitable partition of each V ∈ P) is a k2-equitable partition of V (G).

Given a graph G and disjoint U, V ⊆ V (G), let eG(U) := e(G[U ]) and eG(U, V ) :=
e(G[U, V ]). For sets S, V ⊆ V (G), we writeNG(S, V ) := {v ∈ V : xv ∈ E(G) for all x ∈
S}, and dG(S, V ) := |NG(S, V )|. If S = {v} is a singleton, we instead write NG(v, V )
and dG(v, V ). We sometimes omit the subscript G if it is clear from the context.

For graphs G and H, we write G − H for the graph with vertex set V (G) and
edge set E(G) \ E(H), and G \H for the subgraph of G induced by the vertex set
V (G) \ V (H). For a set of edges E, we write V (E) for the set of all endvertices of
edges in E. We write G ∪ E for the graph with vertex set V (G) ∪ V (E) and edge
set E(G) ∪ E.

For r ∈ N, a graph G is r-divisible if r divides the degree d(v) of v for all v ∈ V (G).
For an integer p and a graph F , we write pF for the graph consisting of p vertex-

disjoint copies of F . If G is a graph and pF is a spanning subgraph of G, then pF
is an F -factor in G.

The constants in the hierarchies used to state our results are chosen from right
to left. For example, if we claim that a result holds whenever 0 < 1/n � a � b �
c ≤ 1 (where n is the order of the graph), then there is a non-decreasing function
f : (0, 1]→ (0, 1] such that the result holds for all 0 < a, b, c ≤ 1 and all n ∈ N with
b ≤ f(c), a ≤ f(b) and 1/n ≤ f(a). Hierarchies with more constants are defined in
a similar way. We write a = b± c to mean a ∈ [b− c, b+ c].

4. Fractional and approximate F -decompositions

Let F and G be graphs. Define pF (G) to be the maximum number of edges in G
that can be covered by edge-disjoint copies of F . So if G has an η-approximate
F -decomposition, then e(G)− pF (G) ≤ ηn2 (where G has n vertices).

Theorem 4.1 (Yuster [38]). Let F be a graph with χ := χ(F ). For all η > 0,
there exists an n0 = n0(η, F ) such that every graph G on n ≥ n0 vertices satisfies
pF (G) ≥ pKχ(G)− ηn2.

Corollary 4.2. Let F be a graph with χ := χ(F ). Then δηF ≤ δ
η/2
Kχ

for all η > 0.

Proof. Let η > 0 and let G be a sufficiently large graph on n vertices with δ(G) >

δ
η/2
Kχ

(n)n. By the definition of δ
η/2
Kχ

(n) and Theorem 4.1,

e(G) ≤ pKχ(G) + ηn2/2 ≤ pF (G) + ηn2.

Therefore δηF (n) ≤ δη/2Kχ
(n) for all sufficiently large n, implying δηF ≤ δ

η/2
Kχ

. �

Write νF (G) := pF (G)/e(F ) for the maximum number of edge-disjoint copies of F
in G. If G has an F -decomposition, then νF (G) = e(G)/e(F ). We now introduce a

fractional version of νF (G). Let
(
G
F

)
denote the set of copies of F in G. A function ψ

from
(
G
F

)
to [0, 1] is a fractional F -packing of G if

∑
F ′∈(GF):e∈F ′ ψ(F ′) ≤ 1 for each

e ∈ E(G). The weight of ψ is |ψ| :=
∑

F ′∈(GF) ψ(F ′). Let ν∗F (G) be the maximum

value of |ψ| over all fractional F -packings ψ of G. Clearly, ν∗F (G) ≥ νF (G). If
ν∗F (G) = e(G)/e(F ), then we say that G has a fractional F -decomposition.

In fact, νF (G) and ν∗F (G) are closely related. Haxell and Rödl [16] proved that
any fractional packing can be converted into a genuine integer packing that covers
only slightly fewer edges. (An alternative proof was given by Yuster [36].)
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Theorem 4.3. [16] Let F be a graph and let η > 0. Then there is an n0 = n0(F, η)
such that for every graph G on n ≥ n0 vertices, νF (G) ≥ ν∗F (G)− ηn2.

For a graph F and n ∈ N, let δ∗F (n) be the infimum over all δ such that ev-
ery graph G on n vertices with δ(G) ≥ δn has a fractional F -decomposition. Let
δ∗F := lim supn→∞ δ

∗
F (n) be the fractional F -decomposition threshold. The following

corollary is an immediate consequence of Theorem 4.3 and the definitions of δηF and
δ∗F .

Corollary 4.4. For every graph F and every η > 0, we have δηF ≤ δ∗F .

Together with Corollary 4.2, we get the following corollary.

Corollary 4.5. For every graph F and every η > 0, we have δηF ≤ δ∗Kχ(F )
.

For F = Kr+1, Yuster [35] proved that δ∗Kr+1
≤ 1−1/(9(r+1)10). The best known

bound on δ∗Kr+1
is given in [7, 8] for small values of r and in [2] for large values of r.

Theorem 4.6 (Dukes [7, 8]). For r ∈ N with r ≥ 2, δ∗Kr+1
≤ 1− 2/(9(r + 1)2r2).

Theorem 4.7 (Barber, Kühn, Lo, Montgomery, Osthus [2]). For r ∈ N with r ≥ 2,

δ∗Kr+1
≤ 1− 1/(104(r + 1)3/2).

For the case when r = 2 (that is δ∗K3
), Garaschuk [13] improved the bound to

δ∗K3
< 0.956. Recently this was further improved by Dross [6].

Theorem 4.8 (Dross [6]). We have that δ∗K3
≤ 9/10.

5. Finding subgraphs

In this section we will prove a result guaranteeing that in our given graph G we
can always remove certain subgraphs that we need without significantly reducing the
minimum degree of G. (These subgraphs might for example be the absorbers and
parity graphs defined in Sections 8 and 9.)

Let G and H be graphs. Suppose that for each vertex of H we specify a set of
vertices of G. We will seek a copy of H in G that is compatible with this specification.
More formally, let P be a partition of V (G). We say that a graph H is a P-labelled
graph if

• each vertex of H is labelled either V (G), {v} for some v ∈ V (G), or V for
some V ∈ P;
• the vertices labelled by singletons have distinct labels and form an indepen-

dent set in H.

We call the vertices labelled by singletons root vertices; the other vertices are free
vertices.

An embedding of H into G compatible with its labelling is an injective graph
homomorphism φ : H → G such that each vertex gets mapped to an element of its
label.

Given a graph H and U ⊆ V (H) with e(H[U ]) = 0, we define the degeneracy of H
rooted at U to be the least d for which there is an ordering v1, . . . , vb of the vertices
of H such that

• there is an a such that U = {v1, . . . , va};
• for a < j ≤ b, vj is adjacent to at most d of the vi with i < j.
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The order of v1, . . . , va is not important as U is an independent set of H. Note that
the requirement that the vertices in U come first means that the degeneracy of H
rooted at U might be larger than the usual degeneracy of H. The degeneracy of a
P-labelled graph H is the degeneracy of H rooted at U , where U is the set of root
vertices of H.

We now prove a very general lemma guaranteeing that, provided the common
neighbourhoods of sets of up to d vertices are sufficiently large, we can embed any
collection of P-labelled graphs that does not use any root label too many times.

Lemma 5.1. Let n, k, d, b, s,m ∈ N with 1/n � 1/k, 1/d, 1/b. Let G be a graph
on n vertices and let P = {V1, . . . , Vk} be an equitable partition of V (G) such that
dG(S, Vi) ≥ 2db(

√
m + s + 1) for each 1 ≤ i ≤ k and S ⊆ V (G) with |S| ≤ d. Let

H1, . . . ,Hm be P-labelled graphs such that

(i) for each 1 ≤ i ≤ m, |Hi| ≤ b;
(ii) the degeneracy of each Hi is at most d;
(iii) for each v ∈ V (G), the number of indices 1 ≤ i ≤ m such that some vertex

of Hi is labelled {v} is at most s.

Then there exist edge disjoint embeddings φ(H1), . . . , φ(Hm) of H1, . . . ,Hm com-
patible with their labellings such that the subgraph H :=

⋃m
i=1 φ(Hi) of G satisfies

∆(H) ≤ 2b(
√
m+ s).

Proof. For each v ∈ V (G) and each 0 ≤ j ≤ m, let s(v, j) be the number of indices
1 ≤ i ≤ j such that some vertex of Hi is labelled {v}; so s(v, j) ≤ s.

Suppose that, for some 1 ≤ j ≤ m, we have already embedded H1, . . . ,Hj−1 such
that

dGj−1(v) ≤ b(
√
m+ s(v, j − 1) + 1), (5.1)

where Gj−1 consists of the subgraph of G used to embed H1, . . . ,Hj−1. Our next aim
is to embed Hj into G−Gj−1 such that (5.1) holds with j replaced by j+ 1. By (ii),
we can order the vertices of Hj such that root vertices of Hj precede free vertices of
Hj and each free vertex is preceded by at most d of its neighbours. Suppose that we
have already embedded some vertices of Hj one by one in this order and that the
next vertex of Hj to be embedded is x.

Let B := {v ∈ V (G) : dGj−1(v) ≥ b
√
m} be the set of vertices that are in danger

of being used too many times. Since e(Hi) ≤
(|Hi|

2

)
≤
(
b
2

)
for each i, we have

2e(Gj−1) ≤ b2m. So we have that

|B| ≤ b2m/b
√
m = b

√
m. (5.2)

If x is a root vertex, then we can embed x at its assigned position because we
have yet to embed any of its neighbours.

If x is a free vertex, then at most d of its neighbours have already been embedded.
Let U be the set of images of these neighbours, and let V be the label of x. Now

dG−Gj−1(U, V ) ≥ dG(U, V )−
∑

u∈U dGj−1(u, V )
(5.1)

≥ 2db(
√
m+ s+ 1)− db(

√
m+ s+ 1) > b

√
m+ b

(5.2)

≥ |B|+ |Hj |.

So we can choose a suitable image for x outside of B.
Suppose that we have completed the embedding of Hj . We will now check that

(5.1) holds with j replaced by j+ 1. Clearly (5.1) holds for every v ∈ V (G)\B. But
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if v ∈ B, then (5.1) holds for v as well because free vertices of Hj were embedded
outside of B and, if v is the image of a root vertex of Hj , then s(v, j) = s(v, j−1)+1.

Finally observe that, by (5.1), ∆(H) = ∆(Gm) ≤ b(
√
m+s(v,m)+1) ≤ 2b(

√
m+

s). �

The following lemma follows immediately from Lemma 5.1, but has conditions
that will be slightly more convenient to check.

Lemma 5.2. Let n, k, d, b ∈ N and let η, ε > 0 with 1/n� η � ε, 1/d, 1/b, 1/k. Let
G be a graph on n vertices, and let P = {V1, . . . , Vk} be an equitable partition of V (G)
such that, for each 1 ≤ i ≤ k and each S ⊆ V (G) with |S| ≤ d, dG(S, Vi) ≥ ε|Vi|.
Let m ≤ ηn2 and let H1, . . . ,Hm be P-labelled graphs such that

(i) for each 1 ≤ i ≤ m, |Hi| ≤ b;
(ii) the degeneracy of each Hi is at most d;
(iii) for each v ∈ V (G), the number of indices 1 ≤ i ≤ m such that some vertex

of Hi is labelled {v} is at most ηn.

Then there exist edge-disjoint embeddings φ(H1), . . . , φ(Hm) of H1, . . . ,Hm com-
patible with their labellings such that the subgraph H :=

⋃m
i=1 φ(Hi) of G satisfies

∆(H) ≤ εn.

6. Deriving Theorem 1.2 from Theorem 1.3

In this section we extend Theorem 1.3, which applies to regular graphs F , to
Theorem 1.2, which does not require the assumption of regularity. Our approach is
to combine multiple copies of F into a regular graph R and then apply Theorem 1.3
to R. We cannot do this immediately, as an F -divisible graph G need not in general
also be R-divisible. We can however ensure that the extra divisibility conditions
hold by removing a small number of copies of F from G.

We first prove that we can combine multiple copies of F to obtain a regular graph
whose degree and chromatic number are not too large.

Lemma 6.1. Let F be a graph. There is an F -decomposable r-regular graph R with
r = 2e(F ) and χ(R) = χ(F ).

We now give the main idea of the proof. Throughout the proof of the lemma, we
write [a] := {0, 1, . . . , a − 1}, thought of as the set of residue classes modulo a. Let
k := χ(F ) and fix a k-colouring of F . Let t be the size of the largest colour class.
By adding isolated vertices to F if necessary, we may assume that V (F ) = [k] × [t]
with the k colour classes of F being {i} × [t] for each i ∈ [k] (so there is no edge
between (x1, y1) and (x2, y2) if x1 = x2).

For any injective function θ defined on the vertex set of a graph H, let θ(H) be the
graph on the vertex set θ(V (H)) for which θ : V (H)→ θ(V (H)) is an isomorphism.
Thus for w ∈ [k]× [t], F +w is the graph obtained from F by translating each vertex
by w inside [k]× [t]. (To be precise, F +w := θw(F ), where θw : (a, b) 7→ (a+ i, b+ j)
with w = (i, j).) Note that F + w is still k-partite with the k colour classes being
{i}× [t] for each i ∈ [k]. Since each vertex of F is assigned to each possible position
in [k]× [t] = V (F ) exactly once under these translations, for each x ∈ V (F ) we have
that

∑
w∈[k]×[t] dF+w(x) = 2e(F ). We would like to take R to be

⋃
w∈[k]×[t] F + w.

However, that might produce multiple edges, so we will actually take more copies
of F spread across a larger vertex set. In this way, we can achieve a similar result
without producing multiple edges.
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More precisely, the vertex set of R will be V := [k] × [t] × [k2t]. (The length of
the third dimension is chosen so that the multiplication maps x 7→ ax from [kt] to
[k2t] are injective for a ∈ [k] \ {0}.) We will embed copies of F in k2t sets of disjoint
[k]× [t] ‘slices’ of V . Intuitively, these sets of slices will be taken at different angles
to ensure that we do not create multiple edges.

Proof of Lemma 6.1. Let k := χ(F ) and fix a k-colouring of F . Let t be the size
of the largest colour class. By adding isolated vertices to F if necessary, we may
assume that V (F ) = [k] × [t] with the k colour classes of F being {i} × [t] for each
i ∈ [k]. Let V := [k]× [t]× [k2t].

For ` ∈ [k2t] and s ∈ [kt], let φ`,s : [k] × [t] → V be defined by φ`,s(x, y) :=
(x, y, ` + xs). Define the slice Φ`,s to be {φ`,s(x, y) : (x, y) ∈ [k] × [t]}. Note that,
for fixed s, the set {Φ0,s, . . . ,Φk2t−1,s} of slices forms a partition of V .

For w ∈ [k]× [t], observe that φ`,s(F + w) is k-partite with k-colourings induced
by projections onto the first coordinate of V . Indeed, recall that F + w has colour
classes {0} × [t], {1} × [t], . . . , {k − 1} × [t] and φ`,s preserves first coordinates. So
φ`,s(F + w) has no edges between vertices which agree in the first coordinate.

We will show that, given two points v1 = (x1, y1, z1) and v2 = (x2, y2, z2) with
x1 6= x2, there is at most one pair (`, s) such that v1 and v2 are contained in
Φ`,s. Indeed, suppose that v1 and v2 are contained in both Φ`,s and Φ`′,s′ . Then
z1 = `+x1s = `′+x1s

′ and z2 = `+x2s = `′+x2s
′, so z2−z1 = (x2−x1)s = (x2−x1)s′.

It follows that s = s′ since the map u 7→ (x1 − x2)u from [kt] to [k2t] is injective,
hence also that ` = z1 − x1s = z1 − x1s′ = `′. Recall that φ`,s(F + w) never has an
edge between two vertices which agree in the first coordinate. So for any w,w′, we
have that φ`,s(F + w) and φ`′,s′(F + w′) are edge-disjoint whenever (`, s) 6= (`′, s′).

Now fix an enumeration w0, . . . , wkt−1 of [k]×[t]. DefineR :=
⋃
`∈[k2t],s∈[kt] φ`,s(F+

ws) with vertex set V . Clearly, R has an F -decomposition, is k-partite (with colour
classes {i}× [t]× [k2t] for i ∈ [k]), and has no multiple edges. Since Φ0,s, . . . ,Φk2t−1,s
partition V for each s ∈ [kt], for any vertex v = (x, y, z) ∈ V and any s ∈ [kt] there
is precisely one ` ∈ [k2t] such that v is a vertex of φ`,s(F + ws). Thus

dR(v) =
∑
s∈[kt]

dF+ws((x, y)) =
∑

u∈V (F )

dF (u) = 2e(F ).

Hence R is 2e(F )-regular. �

We next show that, given a graph F , we can turn an F -divisible graph into an
R-divisible graph by removing a small number of copies of F .

Lemma 6.2. Let F be a graph and let R be an F -decomposable r-regular graph
with r = 2e(F ). Let ε > 0. Then there exists an n0 = n0(ε, F,R) such that,
for n ≥ n0, the following holds. Let G be an F -divisible graph on n vertices with
δ(G) ≥ (1 − 1/r + 2ε)n. Then there is an F -decomposable subgraph H of G such
that ∆(H) ≤ εn and G−H is R-divisible.

Proof. Choose 0 ≤ t < e(R)/e(F ) such that e(G) ≡ te(F ) mod e(R). Let F1, F2, . . . , Ft
be t vertex-disjoint copies of F in G, and let G0 := G − F1 − · · · − Ft. Then G0

remains F -divisible and e(G0) is divisible by e(R). Note that δ(G0) ≥ (1−1/r+ε)n.
Consider an F -decomposition F of R and fix an F ′ ∈ F . Let D ⊆ N be the set

of vertex degrees of F . For each d ∈ D, let vd be a vertex of F ′ with dF ′(vd) = d,
and let Sd be the star consisting of vd together with the incident edges of F ′. Let
Rd be the graph obtained from R − Sd by adding a new vertex v′d attached to the
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neighbours of vd in F ′. By construction, Rd is F -decomposable, |Rd| = |R| + 1,
e(Rd) = e(R) and every vertex of Rd has degree r except for v′d, which has degree d,
and vd, which has degree r − d.

Fix an enumeration u1, . . . , un of V (G) and, for each 1 ≤ i ≤ n − 1, choose

0 ≤ ai < r such that
∑i

j=1 dG0(uj) ≡ ai mod r. Since both R and G0 are F -

divisible, each ai is divisible by gcd(F ), so there exists a multiset Ti with d ∈ D for
all d ∈ Ti such that

∑
d∈Ti d ≡ ai mod r. Moreover, since there exist only r possible

values for ai, we may assume that there exists a c = c(F ) such that |Ti| ≤ c for all i.
Let P0 := {V (G)} be the trivial partition of V (G).For each 1 ≤ i ≤ n − 1 and

each d ∈ Ti, choose a P0-labelled copy of Rd such that the copy of v′d is labelled {ui},
the copy of vd is labeled {ui+1} and all other vertices are labelled V (G) (we may
assume that these copies are vertex disjoint). Let Ri be the set of copies of Rd (one

for each d ∈ Ti). Let R :=
⋃n−1
i=1 Ri. So |Ri| = |Ti| ≤ c for all i and |R| ≤ c(n− 1).

For each i, the number of indices such that some vertex of Rd in R is labelled {ui}
is at most |Ti|+ |Ti−1| ≤ 2c. (Here |T0| = |Tn| = 0.) Recall that each copy of Rd has
degeneracy at most r since ∆(Rd) = r. Pick η such that 1/n� η � ε, 1/r, 1/f and
apply Lemma 5.2 with G0, 1, |R|+ 1, r, ε/2, P0, R playing the roles of G, k, b, d, ε,
P, {H1, . . . ,Hm}. We obtain edge-disjoint embeddings φ(Rd) for all Rd ∈ R into G0,
which are compatible with their labelling and such that ∆(

⋃
Rd∈R φ(Rd)) ≤ εn/2.

Let H0 :=
⋃
Rd∈R φ(Rd); so ∆(H0) ≤ εn/2.

Let G1 := G0 − H0. Note that, for each 1 ≤ i ≤ n − 1 and each Rd ∈ Ri, we
have dφ(Rd)(ui) ≡ d mod r, dφ(Rd)(ui+1) ≡ −d mod r, and dφ(Rd)(uj) ≡ 0 mod r

for each j /∈ {i, i + 1}. Recall that
∑

d∈Ti d ≡ ai ≡
∑i

j=1 dG0(uj) mod r for each
1 ≤ i ≤ n− 1. We have that

dH0(u1) ≡
∑

Rd∈R1

dφ(Rd)(u1) ≡
∑
d∈T1

d ≡ dG0(u1) mod r,

so r divides dG1(u1). Similarly, for 2 ≤ i ≤ n− 1 we have that

dH0(ui) =
n−1∑
j=1

∑
Rd∈Rj

dφ(Rd)(ui) ≡
∑

Rd∈Ri−1

dφ(Rd)(ui) +
∑

Rd′∈Ri

dφ(Rd′ )(ui) mod r

≡ −
∑

d∈Ti−1

d+
∑
d′∈Ti

d′ ≡ −ai−1 + ai ≡ dG0(ui) mod r,

so r divides dG1(ui). Recall that e(R) divides e(G0) and r = 2e(F ), so r divides
2e(G0). Finally, for i = n we have that

dH0(un) ≡
∑

Rd∈Rn−1

dφ(Rd)(un) ≡ −
∑

d∈Tn−1

d ≡ −
n−1∑
j=1

dG0(uj) mod r,

so dG1(un) ≡
∑n

j=1 dG0(uj) ≡ 2e(G0) ≡ 0 mod r. Hence G1 is r-divisible. Since

G1 was obtained from G0 by deleting graphs with e(R) edges, e(G1) is divisible
by e(R), so G1 is R-divisible. Take H := H0 ∪ F1 ∪ · · · ∪ Ft and observe that
∆(H) ≤ εn/2 + tr ≤ εn. �

We now prove the following theorem, which together with Theorems 4.6 and 4.7
implies Theorem 1.2.
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Theorem 6.3. Let F be a graph. Then for each ε > 0, there exists an n0 = n0(ε, F )
and an η = η(ε, F ) such that every F -divisible graph G on n ≥ n0 vertices with
δ(G) ≥ (δ + ε)n, where δ := max{δ∗Kχ(F )

, 1− 1/6e(F )}, has an F -decomposition.

Proof. Choose n0 ∈ N and η > 0 such that 1/n0 � η � ε, 1/|F |. Let n ≥ n0 and
let G be an F -divisible graph on n vertices with δ(G) ≥ (δ + ε)n. By Lemma 6.1,
there is an F -decomposable r-regular graph R with r = 2e(F ) and χ(R) = χ(F ). By
Lemma 6.2, there is an F -decomposable subgraph H of G such that ∆(H) ≤ εn/2
and G′ := G−H is R-divisible.

Corrollary 4.5 implies that δηR ≤ δ∗Kχ(R). Thus δ(G′) ≥ δ(G)−∆(H) ≥ (δηR+ε/2)n.

Moreover, 1/6e(F ) = 1/3r. So Theorem 1.3 implies that G′ has an R-decomposition,
hence also an F -decomposition. �

7. Random subgraphs and partitions

Let m,n,N ∈ N with max{m,n} < N . Recall that the hypergeometric distri-
bution with parameters N,n and m is the distribution of the random variable X
defined as follows. Let S be a random subset of {1, 2, . . . , N} of size n and let
X := |S ∩{1, 2, . . . ,m}|. We use the following simple form of Hoeffding’s inequality,
which we shall apply to both binomial and hypergeometric random variables.

Lemma 7.1 (see [17, Remark 2.5 and Theorem 2.10]). Let X ∼ B(n, p) or let X
have a hypergeometric distribution with parameters N,n,m. Then

P(|X − E(X)| ≥ t) ≤ 2e−2t
2/n.

The following lemma is a simple consequence of Lemma 7.1.

Lemma 7.2. Let k, s ∈ N and let 0 < γ, ρ < 1. There is an n0 = n0(k, s, γ) such
that the following holds. Let G be a graph on n ≥ n0 vertices and let V1, . . . , Vk be
an equitable partition of its vertex set. Let H be a graph on V (G). Then there is a
subgraph R of G such that, for each 1 ≤ i ≤ k and each S ⊆ V (G) with |S| ≤ s,

dR(S, Vi) = ρ|S|dG(S, Vi)± γ|Vi|

and for each x, y ∈ V (G),

dH(y,NR(x, Vi)) = ρdH(y,NG(x, Vi))± γn.

Proof. Let R be a random subgraph of G in which each edge is retained with proba-
bility ρ, independently from all other edges. By Lemma 7.1, for each 1 ≤ i ≤ k and
each S ⊆ V (G) with |S| ≤ s,

P(|dR(S, Vi)− ρ|S|dG(S, Vi)| ≥ γ|Vi|) ≤ 2e−2(γ|Vi|)
2/|Vi| ≤ 2e−2γ

2bn/kc.

Similarly, for each x, y ∈ V (G),

P(|dH(y,NR(x, Vi))− ρdH(y,NG(x, Vi))| ≥ γn) ≤ 2e−2γ
2n.

Since there are only at most k(n+ 1)s + kn2 conditions to check and each fails with
probability exponentially small in n, some choice of R has the required properties if
n is sufficiently large. �

Let G be a graph. For k ∈ N and δ > 0, a (k, δ)-partition for G is an equitable
partition P = {V1, . . . , Vk} of V (G) such that, for each 1 ≤ i ≤ k and each v ∈ V (G),
dG(v, Vi) ≥ δ|Vi|. We will often use the fact that if P is a (k, δ + ε)-partition for
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G and H is a subgraph of G with ∆(H) ≤ εn/2k, then P is a (k, δ)-partition for
G−H.

Proposition 7.3. Let k ∈ N, and let 0 < δ < 1. Then there exists an n0 = n0(k)

such that any graph G on n ≥ n0 vertices with δ(G) ≥ δn has a (k, δ − 2n−1/3)-
partition.

Proof. Consider a random equitable partition of V (G) into V1, . . . , Vk with |V1| ≤
|V2| ≤ · · · ≤ |Vk|. Consider any 1 ≤ i ≤ k and any v ∈ V (G). Note that d(v, Vi) =
|Vi∩N(v)| has a hypergeometric distribution with parameters n, |Vi| and d(v). Thus,
for each 1 ≤ i ≤ k and for each v ∈ V (G), by Lemma 7.1 we have that

P(d(v, Vi) ≤ δ|Vi| − n2/3/k) ≤ 2e−2n
1/3/k.

So for n sufficiently large we can choose an equitable partition V1, . . . , Vk such that,
for each i ≤ k and v ∈ V (G),

d(v, Vi) ≥ δ|Vi| − n2/3/k ≥ (δ − 2n−1/3)|Vi|,
as required. �

Let P1 be a partition of V (G) and for each 1 < i ≤ `, let Pi be a refinement of
Pi−1. We call P1, . . . ,P` a (k, δ,m)-partition sequence for G if

(i) P1 is a (k, δ)-partition for G;
(ii) for each 2 ≤ i ≤ ` and each V ∈ Pi−1, Pi[V ] is a (k, δ)-partition for G[V ];

(iii) for each V ∈ P`, |V | = m or m− 1.

Note that (i) and (ii) imply that each Pi is an equitable partition of V (G).

Lemma 7.4. Let k ∈ N with k ≥ 2, and let δ, ε > 0. There exists an m0 = m0(k, ε)
such that for all m′ ≥ m0, any graph G on n ≥ m′ vertices with δ(G) ≥ δn has a
(k, δ − ε,m)-partition sequence for some m′ ≤ m ≤ km′.

Proof. Take m0 ≥ max{n0(k), 1000/ε3}, where n0 is the function from Proposi-
tion 7.3, and let m′ ≥ m0. Let ` := blogk(n/m

′)c. Define P0, . . . ,P` as follows.

Let P0 := {V (G)}. For j ∈ N, let aj := n−1/3 + (n/k)−1/3 + · · · + (n/kj−1)−1/3.
Suppose that for some 1 ≤ i ≤ ` we have already chosen P0, . . . ,Pi−1 such that,
for each 1 ≤ j ≤ i − 1 and each V ∈ Pj−1, Pj [V ] is a (k, δ − 2aj)-partition for

G[V ]. Since |V |+ 1 ≥ n/ki−1 ≥ n/k`−1 ≥ m0, for each V ∈ Pi−1 we can choose by
Proposition 7.3 a (k, δ − 2ai)-partition for G[V ]. Observing that

a` ≤
(n/k`)−1/3

k1/3 − 1
≤ (m′)−1/3

21/3 − 1
≤ m

−1/3
0

21/3 − 1
≤ ε

2

completes the proof with m = dn/k`e. �

8. Absorbers

Let F be an r-regular graph. Suppose that G is an F -divisible graph on n vertices
with large minimum degree. Let P1, . . . ,P` be a (k, δ,m)-partition sequence for G
given by Lemma 7.4. In our proof of Theorem 1.3, we will choose the partition so
that m is bounded (i.e. each V ∈ P` has bounded size). In Section 10 we will show
that G can be decomposed into many copies of F and a leftover graph H∗ such that
e(H∗[P`]) = 0. Our aim in this section is to prove the following lemma. It guarantees
the existence of an ‘absorber’ A∗ in a dense graph G, which can absorb this leftover
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graph H∗ (i.e. A∗ ∪ H∗ has an F -decomposition whatever the precise structure of
H∗).

Lemma 8.1. Suppose that n,m, r, f ∈ N and ε > 0 with 1/n� 1/m� 1/r, 1/f, ε.
Let δ := 1 − 1/3r + ε, and let q := dn/me. Suppose that F is an r-regular graph
on f vertices and G is a graph on n vertices. Let P = {V1, . . . , Vq} be an equitable
partition of V (G) such that, for each 1 ≤ i ≤ q, |Vi| = m or m − 1. Suppose
that δ(G[P]) ≥ δn and δ(G[Vi]) ≥ δ|Vi| for each 1 ≤ i ≤ q. Then G contains an
F -divisible subgraph A∗ such that

(i) ∆(A∗[P]) ≤ ε2n and ∆(A∗[Vi]) ≤ r for each 1 ≤ i ≤ q, and
(ii) if H∗ is an F -divisible graph on V (G) that is edge-disjoint from A∗ and has

e(H∗[P]) = 0, then A∗ ∪H∗ has an F -decomposition.

Note that Lemma 8.1 implies that A∗ itself has an F -decomposition (by taking H∗

to be the empty graph). The crucial building blocks for the graph A∗ in Lemma 8.1
are F -absorbers. An F -absorber for a graph H is a graph A such that

• A and H ∪A each have F -decompositions;
• A[V (H)] is empty.

Here, we sketch the proof of Lemma 8.1. The graph A∗ given by Lemma 8.1 will
consist of an edge-disjoint union of a set A of F -absorbers and a set M of ‘edge-
movers’. These graphs have low degeneracy and will be found using Lemma 5.2. The
edge-movers will ensure that each H∗[Vi] can be assumed to be F -divisible. Then
for each 1 ≤ i ≤ q, A will contain an F -absorber Ai for H∗[Vi].

In the next subsection we explicitly construct an F -absorber for a given F -divisible
graph H (where we may think of H as one of the possibilities for H∗[Vi]). We will
construct this F -absorber A in a series of steps: A will consist of two ‘transformers’
T1 and T2, where T1 will transform H into a specific graph Lh with h := e(H)
and T2 will transform Lh into p vertex-disjoint copies of F , where p := e(H)/e(F ).
This latter graph is trivially F -decomposable. Notice that if an F -absorber for H
exists, then H is F -divisible. Therefore, for the rest of this section, all graphs H are
assumed to be F -divisible.

8.1. An F -absorber for a given graph H. Given an r-regular graph F and two
vertex-disjoint graphs H and H ′, an (H,H ′)F -transformer is a graph T such that

• T ∪H and T ∪H ′ each have F -decompositions;
• V (H ∪H ′) ⊆ V (T ) and T [V (H ∪H ′)] is empty.

Thus if ∅ is an empty graph, then an (H, ∅)F -transformer is an F -absorber for H.
Write H ∼F H ′ if there exists an (H,H ′)F -transformer. The relation ∼F is clearly
symmetric. We now show that it is transitive on collections of vertex-disjoint graphs.

Proposition 8.2. Let r ∈ N and let F be an r-regular graph. Suppose that H, H ′

and H ′′ are vertex-disjoint graphs. Let T1 be an (H,H ′)F -transformer, and let T2 be
an (H ′, H ′′)F -transformer such that V (T1)∩V (T2) = V (H ′). Then T := T1∪H ′∪T2
is an (H,H ′′)F -transformer.

Proof. Observe that T ∪H = (T1∪H)∪(T2∪H ′) and T ∪H ′′ = (T1∪H ′)∪(T2∪H ′′)
each have F -decompositions. �

We will show that in fact H ∼F H ′ for all vertex-disjoint F -divisible graphs H
and H ′. Since the empty graph is F -divisible, this in turn implies that every such
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H has an F -absorber. We will further show that, for each such H, we can find an
F -absorber for H which has low degeneracy (rooted at V (H)).

We say that a graph H ′ is obtained from a graph H by identifying vertices if there
is a sequence of graphs H0, . . . ,Hs and vertices xi, yi ∈ V (Hi) such that

(i) H0 = H and Hs = H ′;
(ii) (NHi(xi) ∪ {xi}) ∩ (NHi(yi) ∪ {yi}) = ∅ for all i;
(iii) for each 0 ≤ i < s, Hi+1 is obtained from Hi by identifying the vertices xi

and yi.

Condition (ii) ensures that the identifications do not produce multiple edges. Note
that if H ′ can be obtained from H by identifying vertices, then there exists a graph
homomorphism φ : H → H ′ from H to H ′ that is edge-bijective. Recall that a graph
H is r-divisible if r divides d(v) for all v ∈ V (H).

Fact 8.3. Let r ∈ N and let H be an r-divisible graph. Then there is an r-regular
graph H0 such that H can be obtained from H0 by identifying vertices.

Proof. Split each vertex of degree sr in H into s new vertices each of degree r. �

Fact 8.3 and the next lemma together imply that, for every F -divisible graph H ′,
there is some r-regular graph H such that H ∼F H ′. Recall that the degeneracy of
a graph H ′ rooted at U ⊆ V (H ′) was defined in Section 5.

Lemma 8.4. Let r, f ∈ N and let F be an r-regular graph on f vertices. Let H be an
r-regular graph. Let H ′ be a copy of a graph obtained from H by identifying vertices.
Suppose that H and H ′ are vertex-disjoint. Then H ∼F H ′. Moreover, there exists
an (H,H ′)F -transformer T such that the degeneracy of T rooted at V (H ∪H ′) is at
most 3r and |T | ≤ fr|H|+ |H ′|+ fe(H).

Proof. Let uv be an edge of F and let u, v, z1, . . . , zf−2 be the vertices of F . Let
NF (u) = {v, za1 , . . . , zar−1} and NF (v) = {u, zb1 , . . . , zbr−1}. (The indices ai and bi
will be fixed throughout the rest of the proof.)

Let φ : H → H ′ be a graph homomorphism from H to H ′ that is edge-bijective.
Orient the edges of H arbitrarily. Then φ induces an orientation of H ′. Throughout
the rest of the proof, we view H and H ′ as oriented graphs and we write xy for the
oriented edge from x to y.

For each e ∈ E(H), let Ze := {z(e)1 , . . . , z
(e)
f−2} be a set of f − 2 vertices such that

V (H), V (H ′), Ze and Ze
′

are disjoint for all distinct e, e′ ∈ E(H). Define a graph
T1 as follows:

(i) V (T1) := V (H) ∪ V (H ′) ∪
⋃
e∈E(H) Z

e;

(ii) E1 := {xz(xy)ai , yz
(xy)
bi

: 1 ≤ i ≤ r − 1 and xy ∈ E(H)};
(iii) E2 := {z(xy)i z

(xy)
j : zizj ∈ E(F ) and xy ∈ E(H)};

(iv) E3 := {φ(x)z
(xy)
ai , φ(y)z

(xy)
bi

: 1 ≤ i ≤ r − 1 and xy ∈ E(H)};
(v) E(T1) := E1 ∪ E2 ∪ E3.

Note that T1[V (H ∪H ′)] is empty. Note also that H ∪ E1 ∪ E2 can be decomposed

into e(H) copies of F , where each copy of F has vertex set {x, y} ∪ Z(xy) for some
edge xy ∈ E(H). Similarly, H ′ ∪E2 ∪E3 can be decomposed into e(H) copies of F .
In summary,

H ∪ E1 ∪ E2 and H ′ ∪ E2 ∪ E3 each have F -decompositions. (8.1)
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Note that every vertex z ∈ V (T1) \ V (H ∪H ′) satisfies

dT1(z) ≤ max{r, 1 + (r − 1) + 1, 2 + (r − 2) + 2} = r + 2. (8.2)

We will now construct an additional graph T2 such that both T2 ∪E1 and T2 ∪E3

have an F -decomposition. It will then follow that T1∪T2 is an (H,H ′)F -transformer.
Note that E1 is the edge-disjoint union of |H| stars K1,r(r−1) with centres in V (H).
We will obtain T2 by viewing each star K1,r(r−1) as the union of r − 1 smaller stars
K1,r, whose leaves form independent sets in T1, and extending each of the smaller
stars to a copy of F .

For each x ∈ V (H), each neighbour y of x in H and each 1 ≤ j ≤ r − 1, let

u
(xy)
j := z

(xy)
aj if the edge between x and y in H is directed toward y; otherwise let

u
(xy)
j := z

(yx)
bj

. For each x ∈ V (H) and each 1 ≤ j ≤ r − 1, let Nx
j := {u(xy)j : y ∈

NH(x)}. The Nx
j partition NT1(x) and each Nx

j forms an independent set in T1.

For each x ∈ V (H) and each 1 ≤ j ≤ r − 1, let W x
j be a set of f − (r + 1) new

vertices, disjoint from both V (T1) and the other W x′
j′ . Fix a vertex x0 ∈ V (F ). Define

a graph T xj on vertex set V (T xj ) := Nx
j ∪W x

j such that T xj is isomorphic to F \x0 and

the image of NF (x0) is precisely Nx
j . Then the T xj are edge-disjoint and, for each

x ∈ V (H) and each 1 ≤ j ≤ r− 1, both T1[{x}∪Nx
j ]∪T xj and T1[{φ(x)}∪Nx

j ]∪T xj
are copies of F . Let T2 :=

⋃
x∈V (H)

⋃r−1
j=1 T

x
j and let T := T1 ∪ T2. See Figure 1 for

an example with F = C6.
We now claim that T is an (H,H ′)F -transformer. Note that T2 is edge-disjoint

from T1. Since T2[V (H ∪H ′)] is empty, T [V (H ∪H ′)] is empty. Note that T2 ∪ E1

has an F -decomposition into (r−1)|H| copies of F , where each copy of F has vertex
set {x} ∪ V (T xj ) for some x ∈ V (H) and some 1 ≤ j ≤ r − 1. Together with (8.1),

this implies that T ∪ H ′ = (T2 ∪ E1) ∪ (E2 ∪ E3 ∪ H ′) has an F -decomposition.
Similarly T2 ∪ E3 has an F -decomposition into (r − 1)|H| copies of F , where each
F has vertex set {φ(x)} ∪ V (T xj ) for some x ∈ V (H) and some 1 ≤ j ≤ r − 1. So

T ∪H = (T2 ∪E3)∪ (H ∪E1 ∪E2) also has an F -decomposition. Hence T is indeed
an (H,H ′)F -transformer.

Note that each vertex in W x
j has degree r in T . By (8.2), each vertex z ∈ V (T1) \

V (H∪H ′) has degree at most r+2+2(r−1) = 3r in T . Therefore, T has degeneracy at
most 3r rooted at V (H∪H ′) and |T | = |H|+|H ′|+(f−2)e(H)+(f−r−1)(r−1)|H| ≤
fr|H|+ |H ′|+ fe(H). �

We remark that if the girth of F is large, then the degeneracy of the (H,H ′)F -
transformer constructed in the proof of Lemma 8.4, rooted at V (H ∪ H ′), is in
fact smaller than 3r. We will use this fact, captured by the following lemma, in
Section 12.

Lemma 8.5. Let r, f ∈ N and let F be an r-regular graph on f vertices. Suppose
that F contains a vertex which is not contained in any triangle in F . Let H be an
r-regular graph. Let H ′ be a copy of a graph obtained from H by identifying vertices.
Suppose that H and H ′ are vertex-disjoint. Then H ∼F H ′. Moreover, there exists
an (H,H ′)F -transformer T such that

(i) the degeneracy of T rooted at V (H ∪H ′) is at most r + 1;
(ii) if F contains an edge uv that is not contained in any triangle or cycle of

length 4 in F , then the degeneracy of T rooted at V (H ∪H ′) is at most r.
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φ(x1)

φ(x2)

φ(x3)

φ(x4)

φ(x5)

φ(x6)

φ(x7)

φ(x8)

x1

x2
x3

x4

x5

x6
x7

x8

H ′

H

E1

E2

E3

E(T2)

Figure 1. An (H,H ′)C6- transformer, where H and H ′ are vertex-
disjoint copies of C8.

Proof. Let x0 be a vertex of F which is not contained in any triangle in F . So
NF (x0) is an independent set in F . Also, F must contain an edge uv which is not
contained in a triangle (since r ≥ 1, we can take any edge incident to x0). So NF (u)
and NF (v) are disjoint. Moreover, if uv is not contained in any cycle of length 4,
then NF (u) \ {v} and NF (v) \ {u} are disjoint sets of vertices with no edges between
them.

Let u, v, z1, . . . , zf−2 be the vertices of F . Let NF (u) = {v, za1 , . . . , zar−1} and
NF (v) = {u, zb1 , . . . , zbr−1}. Let T be the (H,H ′)F -transformer as defined in the
proof of Lemma 8.4 (with x0 playing the role of x0 in the proof of Lemma 8.4). To
see that the degeneracy of T rooted at V (H∪H ′) is as desired, consider the vertices in
H, H ′, T1\(H∪H ′) and T2\T1 in that order with the vertices of T1\(H∪H ′) ordered

such that for each edge xy ∈ E(H), the vertices z
(xy)
a1 , . . . , z

(xy)
ar−1 , z

(xy)
b1

, . . . , z
(xy)
br−1

come

before z
(xy)
j for j /∈ {a1, . . . , ar−1, b1, . . . , br−1}. �

Recall that the relation ∼F is transitive (on vertex-disjoint graphs) by Proposi-
tion 8.2. By Lemma 8.4, to show that H ∼F H ′ it suffices to show that there exists
an r-regular graph H0 (vertex-disjoint from both H and H ′) so that we can obtain
both H and H ′ from a copy of H0 by identifying vertices. In Lemma 8.7 we will
construct such an H0 for r-divisible graphs H and H ′ with the same number of edges.
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x yu v

xy

u v

Figure 2. A K4-expanded edge and a K4-expanded loop.

Fix an edge uv ∈ E(F ). The following construction will enable us to identify
vertices even if they are adjacent. Given a graph H and an edge xy of H, the F -
expansion of xy via (u, v) is defined as follows. Consider a copy F ′ of F which is
vertex-disjoint from H. Delete xy from H and uv from F ′ and join x to u and join
y to v (see Figure 2).

If x ∈ V (H), then H with a copy of F attached to x via v is the graph obtained
from F ′ ∪ H by identifying x and v (where as before, F ′ is a copy of F which is
vertex-disjoint from H).

Fact 8.6. Let F be an r-regular graph and let uv ∈ E(F ). Suppose that the graph
H ′ is obtained from a graph H by F -expanding an edge xy ∈ E(H) via (u, v). Then
the graph obtained from H ′ by identifying x and v is H with a copy of F attached to
x via v.

Recall that we have fixed an edge uv of F . An F -expanded loop L is the F -
expansion of an edge xy via (u, v) with the vertices x and y identified (see Figure 2).
Write Lh for h vertex-disjoint copies of L with their distinguished vertices identified.
(The edge uv ∈ E(F ) used in F -expansions is always the same, so Lh is uniquely
defined.)

Lemma 8.7. Let r, f ∈ N and let F be an r-regular graph on f vertices. Suppose
that H is an r-divisible graph with h := e(H), and that Lh is vertex-disjoint from H.
Then H ∼F Lh. Moreover, there exists an (H,Lh)F -transformer T such that the
degeneracy of T rooted at V (H ∪ Lh) is at most 3r and |T | ≤ |H|+ |Lh|+ 7f2rh.

Proof. Recall that we have fixed an edge uv of F . For each edge e ∈ E(H), attach a
copy of F to one of its endpoints (chosen arbitrarily) via v; call the resulting graph
Hatt. Note that |Hatt| = |H|+ (f − 1)h and e(Hatt) = (e(F ) + 1)h. Let Hexp be the
graph obtained from H by F -expanding every edge in H via (u, v). By Fact 8.6, we
can choose Hexp and Hatt such that Hatt can be obtained from Hexp by identifying
vertices. By Fact 8.3, there is an r-regular graph H0 such that Hexp (and so also
Hatt) can be obtained from (a copy of) H0 by identifying vertices.

Lemma 8.4 implies thatH0 ∼F Hatt and that there exists an (H0, Hatt)F -transformer
T1 such that the degeneracy of T1 rooted at V (H0 ∪Hatt) is at most 3r and

|T1| ≤ fr|H0|+ |Hatt|+ fe(H0). (8.3)

Furthermore, we can choose T1 such that V (T1) ∩ V (Lh) = ∅.
In Hexp the original vertices of H are non-adjacent with disjoint neighbourhoods,

so by identifying all original vertices of H we obtain a copy of Lh from Hexp. Hence
Lh can also be obtained from H0 by identifying vertices, so Lemma 8.4 implies that
there exists an (H0, Lh)F -transformer T2 such that the degeneracy of T2 rooted at
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V (H0 ∪ Lh) is at most 3r and

|T2| ≤ fr|H0|+ |Lh|+ fe(H0). (8.4)

Furthermore, we can choose T2 such that V (T1)∩V (T2) = V (H0). So T1 and T2 are
edge-disjoint.

By Proposition 8.2, T1 ∪H0 ∪ T2 is an (Hatt, Lh)F -transformer. Define the graph
T to be (Hatt−H)∪T1∪H0∪T2. Since Hatt−H trivially has an F -decomposition, it
follows that T is an (H,Lh)F -transformer. To see that T has degeneracy at most 3r
rooted at V (H ∪Lh), consider the vertices in H ∪Lh, Hatt \H, H0, T1 \ (Hatt ∪H0)
and T2 \ (Lh ∪H0) in that order.

Recall that |Hatt| = |H| + (f − 1)h and e(H0) = e(Hatt) = (e(F ) + 1)h ≤ rfh.
Since H0 is r-regular, |H0| = 2e(H0)/r ≤ 2fh. By (8.3) and (8.4),

|T | = |T1|+ |T2| − |H0| ≤ |Hatt|+ |Lh|+ 2fr|H0|+ 2fe(H0)

≤ |H|+ |Lh|+ 7f2rh.

This completes the proof of the lemma. �

We can now combine Lemma 8.7 and Proposition 8.2 to show that every F -
divisible graph H has an F -absorber. Recall that pF consists of p vertex-disjoint
copies of F .

Lemma 8.8. Let r, f ∈ N and let F be an r-regular graph on f vertices. Let H be
an F -divisible graph. Then there is an F -absorber A for H such that the degeneracy
of A rooted at V (H) is at most 3r and |A| ≤ 9f2r|H|2.

Proof. Let h := e(H) and let p := e(H)/e(F ). Let H, Lh and pF be vertex-disjoint.
By Lemma 8.7, there exists an (H,Lh)F -transformer T1 such that the degeneracy
of T1 rooted at V (H ∪ Lh) is at most 3r and

|T1| ≤ |H|+ |Lh|+ 7f2rh ≤ |Lh|+ 4f2r|H|2.

Similarly by Lemma 8.7, there exists an (Lh, pF )F -transformer T2 such that the
degeneracy of T2 rooted at V (Lh ∪ pF ) is at most 3r and

|T2| ≤ |pF |+ |Lh|+ 7f2rh = pf + hf + 1 + 7f2rh ≤ 5f2r|H|2.

Furthermore, we can choose T1 and T2 such that V (T1) ∩ V (T2) = V (Lh). Let
A′ := T1 ∪ Lh ∪ T2 and let A := A′ ∪ pF . By Proposition 8.2, A′ is an (H, pF )F -
transformer. Thus A is an F -absorber for H with |A| = |T1|+ |T2|−|Lh| ≤ 9f2r|H|2.
To see that the degeneracy of A rooted at V (H) is at most 3r, consider the vertices
in H, Lh, pF and T1 \ (H ∪ Lh) and T2 \ (pF ∪ Lh) in that order (with the vertices
of Lh ordered such that the distinguished vertex comes first). �

8.2. Proof of Lemma 8.1. Let H be an F -divisible graph and let P = {V1, . . . , Vq}
be a partition of its vertex set with e(H[P]) = 0. (So H is the disjoint union of the
H[Vi].) We would like to absorb H by using Lemma 8.8 to find an F -absorber
for each graph H[Vi] separately. However, note that some H[Vi] might not be F -
divisible, as e(H[Vi]) might not be divisible by e(F ) for some 1 ≤ i ≤ q. We will use
‘edge-movers’ to fix this problem. We first make the following simple observation,
which will be used in the construction of these edge-movers.
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Proposition 8.9. Let r ∈ N and let

a := ar =

{
r if r is odd,

r/2 if r is even.

(i) Let H be an r-divisible graph. Then e(H) is divisible by a.
(ii) Let f ∈ N and let F be an r-regular graph on f vertices. If r is odd, then let

Q be an r-regular bipartite graph with each vertex class having size f + 1. If
r is even, then let Q be an r-regular graph on 2f + 1 vertices consisting of
r/2 edge-disjoint Hamilton cycles on V (Q). Then e(Q) ≡ a mod e(F ).

Proof. (i) holds since 2e(H) =
∑

v∈V (H) dH(v) = pr for some p ∈ N.

To see (ii), note that e(F ) = rf/2. If r is odd, then e(Q) = rf + r; if r is even,
then e(Q) = rf + r/2. �

Let U and V be disjoint vertex sets. Let r, f ∈ N and let F be an r-regular graph
on f vertices. A (U, V )F -edge-mover is a graph M such that

(i) E(M) can be partitioned into E(Q), E(Q̃) and E(A);
(ii) Q is r-regular and V (Q) ⊆ U ;

(iii) Q̃ is r-regular and V (Q̃) ⊆ V ;

(iv) e(Q) ≡ a mod e(F ) and e(Q̃) ≡ −a mod e(F ), where a is as defined in
Proposition 8.9;

(v) A is an F -absorber for Q ∪ Q̃.

Since A is an F -absorber for Q∪Q̃, both M and A have F -decompositions. Roughly
speaking, a (U, V )F -edge-mover allows us to move a mod e(F ) edges from V to U

(by adding Q and Q̃ to the existing graph).
We are now ready to prove Lemma 8.1. In the proof, we find the copies of Q

and Q̃ in G−G[P], and the F -absorbers in G[P].

Proof of Lemma 8.1. Let a andQ be as defined in Proposition 8.9. Let Q̃ := (f−1)Q.

Thus χ(Q) = χ(Q̃) ≤ r + 1. Note that δ(G[Vi]) ≥ (1 − 1/r + ε)|Vi| and 1/|Vi| �
1/r, 1/f . So by the Erdős–Stone–Simonovits theorem [10, 28], for each 1 ≤ i < q,

we can find f copies of Q in G[Vi], and, for each 1 < i ≤ q, we can find f copies of Q̃
in G[Vi] so that all of these copies are vertex-disjoint. Call these copies Qi1, . . . , Q

i
f

and Q̃i1, . . . , Q̃
i
f respectively.

Proposition 8.9(ii) implies that Qij ∪ Q̃
i+1
j is F -divisible for all 1 ≤ i < q and all

1 ≤ j ≤ f . Apply Lemma 8.8 to obtain an F -absorber Aij for Qij ∪ Q̃
i+1
j such that

the degeneracy of Aij rooted at V (Qij ∪ Q̃
i+1
j ) is at most 3r and |Aij | ≤ 9f2rm2 (with

room to spare).
Let H1, . . . ,Hp be an enumeration of all F -divisible graphs H such that V (H) ⊆ Vi

for some 1 ≤ i ≤ q. Since |Vi| ≤ m for all 1 ≤ i ≤ q, for each i there are at most 2(m2 )

many Hj′ with V (Hj′) ⊆ Vi. Thus p ≤ 2(m2 )q. For each 1 ≤ j′ ≤ p, apply Lemma 8.8
to obtain an F -absorber Aj′ for Hj′ such that the degeneracy of Aj′ rooted at V (Hj′)
is at most 3r and |Aj′ | ≤ 9f2rm2.

We now find the F -absorbers Aij and Aj′ in G[P] as follows. The number of F -

absorbers we need to find is (q − 1)f + p, and each of these F -absorbers has order
at most b := 9f2rm2. Let P0 := {V (G)} be the trivial partition of V (G). Note
that we can view each of the Aij and Aj′ as a P0-labelled graph. (For example,
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the P0-labelled graph Aij is such that each v ∈ V (Qij ∪ Q̃
i+1
j ) is labelled {v} and

every other vertex of Aij is labelled V (G).) Note that each v ∈ V (G) is a root for

at most 1 + 2(m2 ) of the Aij and Aj′ . Since δ(G[P]) ≥ (1 − 1/3r + ε)n, we have

dG[P](S) ≥ εn for any S ⊆ V (G) with |S| ≤ 3r. Pick η with 1/n � η � 1/m

and apply Lemma 5.2 with G[P], 1, 3r, ε2,P0, A1
1, A

1
2, . . . , A

q−1
f , A1, . . . , Ap playing

the roles of G, k, d, ε,P, H1, . . . ,Hm. We obtain edge-disjoint embeddings φ(A1
1),

φ(A1
2), . . . , φ(Aq−1f ), φ(A1), . . . , φ(Ap) of A1

1, A
1
2, . . . , A

q−1
f , A1, . . . , Ap into G[P],

which are compatible with their labellings and, moreover,

∆
( q−1⋃
i=1

f⋃
j=1

φ(Aij) ∪
p⋃

j′=1

φ(Aj′)
)
≤ ε2n. (8.5)

For each 1 ≤ i < q and each 1 ≤ j ≤ f , let M i
j := Qij ∪ Q̃

i+1
j ∪ φ(Aij). Using

Proposition 8.9 it is easy to check that M i
j is a (Vi, Vi+1)F -edge-mover. Let M :=⋃q−1

i=1

⋃f
j=1M

i
j , and let A∗ := M ∪

⋃p
j′=1 φ(Aj′).

We now show that A∗ has the desired properties. Since A∗ is an edge-disjoint union

of F -absorbers and edge-movers, A∗ is F -divisible. Note that A∗[V1] =
⋃f
j=1Q

1
j ,

A∗[Vq] =
⋃f
j=1 Q̃

q
j and, for each 1 < i < q, A∗[Vi] =

⋃f
j=1Q

i
j ∪ Q̃ij . Thus ∆(A∗[Vi]) =

r for each 1 ≤ i ≤ q. Moreover, ∆(A∗[P]) ≤ ε2n by (8.5).
Let H∗ be an F -divisible graph on V (G) that is edge-disjoint from A∗ and has

e(H∗[P]) = 0. First we show that H∗ ∪ M can be decomposed into a graph H ′

and a set F of edge-disjoint copies of F such that e(H ′[P]) = 0 and for each
1 ≤ i ≤ q, H ′[Vi] is F -divisible. Recall the definition of a from Proposition 8.9.
Proposition 8.9(i) applied to H∗[V≤i] tells us that, for each 1 ≤ i ≤ q, we have
e(H∗[V≤i]) ≡ −pia mod e(F ) for some integer pi with 0 ≤ pi < f . Set p0 := 0.

For each 1 ≤ i < q, add Qi1, . . . , Q
i
pi , Q̃

i+1
1 , . . . , Q̃i+1

pi to H∗ to obtain H ′. Since each

Qij ∪ Q̃
i+1
j is F -divisible, so is H ′. Also, for each 1 ≤ i < q,

e(H ′[Vi]) = e(H∗[Vi]) +

pi∑
j=1

e(Qij) +

pi−1∑
j′=1

e(Q̃ij′)

≡ e(H∗[Vi]) + pia− pi−1a mod e(F )

≡ e(H∗[Vi])− e(H∗[V≤i]) + e(H∗[V≤i−1]) ≡ 0 mod e(F ).

Moreover, since H∗ is F -divisible,

e(H ′[Vq]) = e(H∗[Vq]) +

pq−1∑
j′=1

e(Q̃ij′) ≡ e(H∗[Vq])− pq−1a mod e(F )

≡ e(H∗[Vq]) + e(H∗[V<q]) ≡ e(H∗) ≡ 0 mod e(F ).

Therefore H ′[Vi] is F -divisible for each 1 ≤ i ≤ q. Note that M − H ′ can be
decomposed into φ(Ai1), . . . , φ(Aipi),M

i
pi+1, . . . ,M

i
f for each 1 ≤ i < q, each of which

has an F -decomposition. Hence H∗ ∪M can be decomposed into a graph H ′ and
a set F of edge-disjoint copies of F such that e(H ′[P]) = 0 and for each 1 ≤ i ≤ q,
H ′[Vi] is F -divisible as claimed.

Since each H ′[Vi] is F -divisible, there exists a 1 ≤ j′i ≤ p such that Aj′i is an

F -absorber for H ′[Vi]. Note that the indices j′i are distinct for different 1 ≤ i ≤ q.
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Therefore H ′ ∪
⋃p
j′=1 φ(Aj′) has an F -decomposition F ′, so H∗ ∪ A∗ has an F -

decomposition F ∪ F ′. This completes the proof of the lemma. �

8.3. A strengthening of Lemma 8.1 for certain graphs F . Let F be an r-
regular graph on f vertices. Define dF to be the smallest integer d such that for every
pair of vertex-disjoint graphs H, H ′ such that H is r-regular and H ′ can be obtained
from a copy of H by identifying vertices, there exists an (H,H ′)F -transformer T such
that the degeneracy of T rooted at V (H ∪H ′) is at most d.

With this terminology, Lemma 8.4 has the following immediate corollary.

Corollary 8.10. Let r, f ∈ N and let F be an r-regular graph on f vertices. Then
dF ≤ 3r.

Our argument in Section 8.1 actually gives the following lemma, which corresponds
to Lemma 8.8. We omit its proof since it is virtually identical to the proof of
Lemma 8.8 (with dF in place of 3r).

Lemma 8.11. Let r, f ∈ N and let F be an r-regular graph on f vertices. Let H be
an F -divisible graph. Then there is an F -absorber A for H such that the degeneracy
of A rooted at V (H) is at most dF .

Furthermore, by replacing Lemma 8.8 with Lemma 8.11 in the proof of Lemma 8.1,
we get the following stronger lemma. Note that we do not have an explicit bound
on the number of vertices of F -absorbers A for H of degeneracy dF . However, there
is a function g so that |A| ≤ g(|H|), and such a bound is all we need to apply
Lemma 5.2.

Lemma 8.12. Suppose that n,m, r, f ∈ N and ε > 0 with 1/n� 1/m� 1/r, 1/f, ε.
Suppose that F is an r-regular graph on f vertices. Let δ := 1−min{1/r, 1/dF }+ ε,
and let q := dn/me. Let G be a graph on n vertices. Let P = {V1, . . . , Vq} be an
equitable partition of V (G) such that, for each 1 ≤ i ≤ q, |Vi| = m or m−1. Suppose
that δ(G[P]) ≥ δn and δ(G[Vi]) ≥ δ|Vi| for each 1 ≤ i ≤ q. Then G contains an
F -divisible subgraph A∗ such that

(i) ∆(A∗[P]) ≤ ε2n and ∆(A∗[Vi]) ≤ r for each 1 ≤ i ≤ q, and
(ii) if H∗ is an F -divisible graph on V (G) that is edge-disjoint from A∗ and has

e(H∗[P]) = 0, then A∗ ∪H∗ has an F -decomposition.

9. Parity graphs

Let F be an r-regular graph, let x be a vertex of F , and let Fx := F [NF (x)].
Let G be an F -divisible graph with a (k, δ)-partition P = {V1, . . . , Vk}, and suppose
that G[P] is sparse. Our aim is to use a small number of edges from G − G[P] to
cover all edges of G[P] by copies of F . We will do this by, for each 1 ≤ i < j ≤ k
and each v ∈ Vi, finding an Fx-factor in NG(v, Vj). We will then extend each copy
of Fx to a copy of F − x using Lemma 5.2. Together with the edges incident to v,
these copies of F − x will form copies of F . An obvious necessary condition for this
to work is that each dG(v, Vj) is divisible by r. In this section we show that we can
find certain structures, which we call parity graphs, that can be used to ensure that
this divisibility condition holds.

Let U and V be disjoint vertex sets and let x, y ∈ U . Let F be an r-regular graph.
An xy-shifter with parameters U, V, F is a graph S with V (S) ⊆ U ∪ V such that
xy /∈ E(S) and
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(i) dS(x, V ) ≡ −1 mod r, dS(y, V ) ≡ 1 mod r and, for all u ∈ U \ {x, y},
dS(u, V ) ≡ 0 mod r;

(ii) S has an F -decomposition.

Condition (i) allows us to move excess degree (mod r) from x to y.
Let uv ∈ E(F ). For a graph H and an edge xy ∈ E(H), H with a copy of F

glued along xy via uv is a graph obtained from H by adding a copy F ′ of F that is
vertex-disjoint from H and identifying u with x and v with y.

Proposition 9.1. Let r, f ∈ N and let F be an r-regular graph on f vertices. Let U
and V be disjoint vertex sets with |U | ≥ r+2 and |V | ≥

(
r+1
2

)
(f−2), and let x, y ∈ U .

Then there exists an xy-shifter S with parameters U, V, F with r + 2 vertices in U ,(
r+1
2

)
(f − 2) vertices in V and degeneracy at most r rooted at {x, y}.

Proof. Pick r distinct vertices u1, . . . , ur in U \ {x, y}. We first define a subgraph
S0 of S on vertex set {x, y, u1, . . . , ur} ⊆ U . Join x to u1, join y to u2, . . . , ur and
join u1, . . . , ur completely. (So if x and y were identified we would obtain a copy
of Kr+1.) Thus dS0(x) = 1, dS0(y) = r − 1, and dS0(uj) = r for 1 ≤ j ≤ r.

Let uv ∈ E(F ). Let S be the graph obtained from S0 by gluing a copy of F
along each edge of S0 via uv such that V (F ) \ {u, v} ⊆ V (and these sets are
disjoint for different copies). Then S has an F -decomposition, dS(x, V ) = r − 1,
dS(y, V ) = (r−1)2 and dS(uj , V ) = r(r−1) for each 1 ≤ j ≤ r. Ordering V (S) such
that x and y are the first two vertices, and all other vertices in S0 precede those in
S \ S0, shows that the degeneracy of S is at most r. �

Let P = {V1, . . . , Vk} be an equitable partition of a vertex set V . An F -parity
graph with respect to P is an F -decomposable graph P on V such that, for every
r-divisible graph G on V that is edge-disjoint from P , there is a subgraph P ′ of P
such that

(P1) for each 2 ≤ i ≤ k and each x ∈ V<i, r divides dG∪P ′(x, Vi);
(P2) P − P ′ has an F -decomposition.

Next we show that F -parity graphs exist.

Proposition 9.2. Let r, f, k ∈ N and let F be an r-regular graph on f vertices.
Let P = {V1, . . . , Vk} be an equitable partition of a vertex set V . Let P2, . . . , Pk be
edge-disjoint graphs on V such that, for each 2 ≤ i ≤ k,

• Pi is the edge-disjoint union of Ei and Di;
• Ei is the edge-disjoint union of r−1 copies of F , each with 2 adjacent vertices

in Vi and f − 2 vertices in Vi−1;
• Di is the edge-disjoint union of r−1 ujuj+1-shifters with parameters V<i, Vi, F

for each 1 ≤ j < |V<i|, where u1, . . . , u|V<i| is an enumeration of V<i.

Then P := P2 ∪ · · · ∪ Pk is an F -parity graph with respect to P.

Proof. The proof is by induction on k. If k = 1, then there is nothing to prove, so
assume that k ≥ 2. Since each Di has an F -decomposition, so does P .

Let G be an r-divisible graph on V that is edge-disjoint from P . First we show
that there is a subgraph P ′k of P such that

(i) for each x ∈ V<k, r divides dG∪P ′k(x, Vk);

(ii) Pk − P ′k has an F -decomposition.



EDGE-DECOMPOSITIONS OF GRAPHS WITH HIGH MINIMUM DEGREE 25

Suppose that eG(Vk) ≡ t mod r, where 0 < t ≤ r. Form a graph G0 from G by
adding r − t of the copies of F from Ek to G. Then 2eG0(Vk) ≡ 0 mod r, so∑

v∈V<k

dG0(v, Vk) = eG0(V<k, Vk) =
∑
v∈Vk

dG0(v)− 2eG0(Vk) ≡ 0 mod r. (9.1)

Let ` := |V<k| and let u1, . . . , u` be the enumeration of V<k used in the definition
of Dk.

Let 0 ≤ t1 < r be such that dG0(u1, Vk) ≡ t1 mod r. Add t1 of the u1u2-shifters in
Dk to G0 to obtain G1 in which dG1(u1, Vk) ≡ 0 mod r and dG1(ui, Vk) ≡ dG0(ui, Vk)
mod r for all 3 ≤ i ≤ `.

Let 0 ≤ t2 < r be such that dG1(u2, Vk) ≡ t2 mod r. Add t2 of the u2u3-
shifters in Dk to G1 to obtain G2 in which dG2(u1, Vk) ≡ dG2(u2, Vk) ≡ 0 mod r
and dG2(ui, Vk) ≡ dG1(ui, Vk) ≡ dG0(ui, Vk) mod r for all 4 ≤ i ≤ `.

Continuing in this way, we eventually obtain G`−1 in which dG`−1
(ui, Vk) ≡ 0

mod r for each 1 ≤ i ≤ `− 1. Note that

dG`−1
(u`, Vk) ≡ dG`−2

(u`, Vk) + dG`−2
(u`−1, Vk) mod r

≡ dG0(u`, Vk) + dG`−3
(u`−1, Vk) + dG`−3

(u`−2, Vk) mod r

≡
∑
v∈V<k

dG0(v, Vk) ≡ 0 mod r,

where the last equality holds by (9.1). Let P ′k := G`−1 −G; then (i) holds. Observe
also that Pk − P ′k consists of some copies of F from Ek and some shifters from Dk,
each of which has an F -decomposition, so (ii) holds.

Let G∗ := (G∪P ′k)[V≤k−1], P ∗ := P2 ∪ · · · ∪Pk−1 and P∗ := {V1, . . . , Vk−1}. Note
that G∗ and P ∗ are edge-disjoint. Recall that G, Pk and Pk − P ′k are r-divisible. So
G ∪ P ′k is r-divisible. Thus (i) implies that G∗ is also r-divisible. By the induction
hypothesis, P ∗ is an F -parity graph with respect to P∗. Therefore, there exists a
subgraph P0 of P ∗ such that for each 2 ≤ i ≤ k − 1 and each x ∈ V<i, r divides
dG∗∪P0(x, Vi) and P ∗ − P0 has an F -decomposition. Let P ′ := P0 ∪ P ′k. Then P ′

satisfies (P2). Note that (G∪P ′)[V<k, Vk] = (G∪P ′k)[V<k, Vk] and (G∪P ′)[V<i, Vi] =
(G∗∪P0)[V<i, Vi] for all 1 ≤ i < k. Thus P ′ satisfies (P1). Therefore P is an F -parity
graph with respect to P. �

The next lemma finds an F -parity graph P as in Proposition 9.2 within a dense
graph G using Lemma 5.2.

Lemma 9.3. Let r, f ∈ N and let F be an r-regular graph on f vertices. Let γ > 0.
Then there exists an n0 = n0(k, γ, F ) such that the following holds. Let G be a
graph on n ≥ n0 vertices and let P = {V1, . . . , Vk} be a (k, δ)-partition for G with
δ ≥ 1− 1/r + γ. Then G contains an F -parity graph P with respect to P such that
∆(P ) ≤ γn.

Proof. It is enough to show that we can embed a graph P as described in Proposi-
tion 9.2 into G in such a way that the maximum degree of the image of the embedding
is not too large. We will assign labels to the graphs making up P and then check
that the conditions of Lemma 5.2 hold.

For each 2 ≤ i ≤ k and each 1 ≤ j ≤ r− 1, let F ′i,j be a P-labelled copy of F with
2 adjacent vertices labelled Vi and f − 2 vertices labelled Vi−1.

For each 2 ≤ i ≤ k, let n<i := |V<i| and let ui1, . . . , u
i
n<i be an enumeration of the

vertices of V<i. For each 2 ≤ i ≤ k and each 1 ≤ j < n<i, apply Proposition 9.1
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to obtain a uiju
i
j+1-shifter Si,j with parameters V<i, Vi, F such that |Si,j | = r + 2 +(

r+1
2

)
(f − 2) and Si,j has degeneracy at most r rooted at {uij , uij+1}. We may view

Si,j as a P-labelled graph by giving uij the label {uij}, giving uij+1 the label {uij+1},
giving u the label Vi for all u ∈ V (Si,j) ∩ Vi and giving u′ the label Vi−1 for all
u′ ∈ (V (Si,j)∩V<i) \ {uij , uij+1}. Let S′i,j,1, . . . , S

′
i,j,r−1 be r− 1 copies of Si,j , and let

F :=

k⋃
i=2

r−1⋃
`=1

(
{F ′i,`} ∪

n<i−1⋃
j=1

{S′i,j,`}
)
.

So F is a family of P-labelled graphs and |F| ≤ krn. For each F ′ ∈ F , |F ′| ≤
r + 2 +

(
r+1
2

)
(f − 2) and F ′ has degeneracy at most r. Furthermore, each v ∈ V (G)

is a root vertex for at most 2rk members of F . Since P is a (k, δ)-partition for
G with δ ≥ 1 − 1/r + γ, we have that dG(S, Vi) ≥ γ|Vi| for each S ⊆ V (G) with
|S| ≤ r and each 1 ≤ i ≤ k. Therefore we can apply Lemma 5.2 to find edge-disjoint
embeddings φ(F ′) for all F ′ ∈ F in G in such a way that ∆(

⋃
F ′∈F φ(F ′)) ≤ γn.

Take P :=
⋃
F ′∈F φ(F ′). By Proposition 9.2, P is an F -parity graph with respect

to P. �

10. Near optimal decompositions

Let G be a dense graph as defined in Theorem 1.3, and let P1, . . . ,P` be a (k, δ+
ε,m)-partition sequence for G. In Section 8, we constructed a graph A∗ that can
‘absorb’ any F -divisible graph H∗ satisfying e(H∗[P`]) = 0. Our aim in this section
is to show that we can indeed decompose G into edge-disjoint copies of F and such a
remainder H∗. More precisely, in this section, we prove the following lemma, which
guarantees the existence of such a ‘near optimal’ F -decomposition (in particular note
that, as m is bounded, e(H∗) is at most linear in n).

Lemma 10.1. Let r, f,m, k, ` ∈ N and let ε, η > 0 with 1/m � η � 1/k �
ε, 1/r, 1/f . Let F be an r-regular graph on f vertices and let G be an r-divisible
graph. Let δ := max{δηF , 1 − 1/(r + 1)}. Suppose that P1, . . . ,P` is a (k, δ + ε,m)-
partition sequence for G. Then there exists a subgraph H∗ of

⋃
V ∈P` G[V ] such that

G−H∗ has an F -decomposition. In particular, if G is F -divisible, then so is H∗.

Recall that the definition of δηF implies that G contains an η-approximate F -
decomposition. We would like the remainder H∗ in Lemma 10.1 to contain no edges
of G[P`], but the definition of δηF does not guarantee this. The key idea of the proof
of Lemma 10.1 is to proceed via an iterative process, which repeatedly invokes the
definition of δηF . More precisely, suppose that we are able to prove the following
result:

(†) If P is a (k, δ)-partition for a graph G, then G[P] can be covered by edge-
disjoint copies of F in G which use only a small number of edges from G −
G[P].

Suppose that we apply (†) with P = P1. We are then left with edges in G−G[P1] =⋃
V ∈P1

G[V ]. But since P1, . . . ,P` is a (k, δ + ε,m) partition sequence and we have
used very few edges of G − G[P1], we have for each V ∈ P1 that P2[V ] is a (k, δ)-
partition of the remaining part of G[V ]. So we can apply (†) to each part to cover the
remaining edges of G[P2] by edge-disjoint copies of F , using only a few edges from
G − G[P2]. Continuing in this way, we eventually obtain edge-disjoint copies of F
covering all edges of G−G[P`], which implies Lemma 10.1. (To avoid our bound on
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the minimum degree deteriorating in each step, we actually prove a stronger version
of (†) which gives us more control on the edges we use from G−G[P].)

The rest of this section is divided into three subsections. In Section 10.1, we show
that we can find an approximate F -decomposition of G[P] such that the remainder
has low maximum degree (at the cost of using a small number of additional edges
from G − G[P]). In Section 10.2 we show how such a remainder of low maximum
degree can be covered by copies of F . In Section 10.3 we give a formal statement of
(†) and perform the iteration described above.

10.1. Bounding the maximum degree of the remainder graph. Consider an
η-approximate F -decomposition F of G[P] guaranteed by the definition of δηF . Let
H be the remainder of G[P] (after removing all the edges of F), and suppose that
dH(x, V ) is large for some V ∈ P and some x ∈ V (G)\V . Note that x together with
a copy of Kr that lies in NH(x, V ) forms a copy of Kr+1. Using some additional
vertices and edges inside V , we can then extend a spanning subgraph of this copy
of Kr+1 to a copy of F . So we can reduce dH(x, V ) by finding vertex-disjoint copies
of Kr lying entirely in NH(x, V ), which are then extended into copies of F . This is
formalised in Lemma 10.6. To find the above copies of Kr we shall use the Hajnal–
Szemerédi theorem [15].

Theorem 10.2 ([15]). Let r ∈ N with r ≥ 2. Every graph G on n vertices with
δ(G) ≥ (1− 1/r)n contains bn/rc vertex-disjoint copies of Kr.

Lemma 10.3. Let r, k, n ∈ N and let γ > 0 with 1/n � γ, 1/k, 1/r. Let H be a
graph on n vertices. Let U, V ⊆ V (H) be disjoint with |V | ≥ bn/kc. Suppose that,
for each x ∈ U and each y ∈ V ,

(i) r divides dH(x, V );
(ii) δ(H[NH(x, V )]) ≥ (1− 1/r)dH(x, V ) + γ|V |;
(iii) dH(y, U) ≤ γ|V |/r.

Then there is a subgraph HV of H[V ] such that H[U, V ]∪HV has a Kr+1-decomposition
and ∆(HV ) ≤ γ|V |.
Proof. For each x ∈ U in turn we will choose a Kr-factor from the unused part of
H[NH(x, V )] and take HV to be the union of these edge-disjoint Kr-factors.

We claim that we can choose these Kr-factors greedily. Indeed, suppose we seek
a Kr-factor for x ∈ U . Consider any vertex y ∈ NH(x, V ). By (iii), at most
rdH(y, U) ≤ γ|V | of the edges at y in H[NH(x, V )] have been used already. So by (i),
(ii) and Theorem 10.2 there exists a Kr-factor in the unused part of H[NH(x, V )].

Since at most rdH(y, U) ≤ γ|V | edges are used at each y ∈ V , we have that
∆(HV ) ≤ γ|V |. �

Lemma 10.4. Let r, f, k, n ∈ N and let η, γ > 0 with 1/n � η � γ, 1/k, 1/r, 1/f .
Let F be an r-regular graph on f vertices and let H be a graph on n vertices. Let
U, V ⊆ V (H) be disjoint with |V | ≥ bn/kc. Suppose that, for each x ∈ U and each
y ∈ V ,

(i) r divides dH(x, V );
(ii) δ(H[NH(x, V )]) ≥ (1− 1/r)dH(x, V ) + γ|V |;
(iii) dH(y, U) ≤ η|V |;
(iv) δ(H[V ]) ≥ (1− 1/r + 2γ)|V |.

Then there is a subgraph H ′V of H[V ] such that H[U, V ]∪H ′V has an F -decomposition
and ∆(H ′V ) ≤ 2γ|V |.
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Proof. By Lemma 10.3, there is a subgraph HV of H[V ] such that H[U, V ] ∪ HV

has a Kr+1-decomposition and ∆(HV ) ≤ γ|V |. Choose such an HV with as few
edges as possible, and let W1, . . . ,Wp be an enumeration of a Kr+1-decomposition
of H[U, V ] ∪HV . By the minimality of HV , each Wj has vertex set {wj} ∪W ′j with

wj ∈ U and W ′j ⊆ V . Note that

p ≤
∑
y∈V

dH(y, U) ≤ η|V |2.

Let H ′ := H[V ] −HV ; then |H ′| = |V | and δ(H ′) ≥ (1 − 1/r + γ)|V | by (iv). Let
u ∈ V (F ) and let F ∗ := F \{u}−F [NF (u)]. Note that F ∗ trivially has degeneracy at
most r rooted at NF (u). Let F ∗1 , . . . , F

∗
p be copies of F ∗. We now embed F ∗1 , . . . , F

∗
p

into H ′ in such a way that, for each F ∗j , the image of NF (u) is precisely W ′j as

follows. Let P0 := {V } be the trivial partition of V . We view each F ∗j as a P0-
labelled graph such that the root vertices of F ∗j are precisely NF (u), and the union

of their labels is W ′j ; each other vertex of F ∗ is labelled V . By (iii), there are at

most dH(y, U) ≤ η|V | indices j with 1 ≤ j ≤ p such that some vertex of F ∗j is

labelled {y}. Since δ(H ′) ≥ (1 − 1/r + γ)|V |, we have that dH′(S) ≥ γ|V | for each
S ⊆ V with |S| ≤ r. So by Lemma 5.2, with H ′, 1, r, f , γ, P0, F ∗1 , . . . , F ∗p playing
the roles of G, k, d, b, ε, P, H1, . . . ,Hm, there exist edge-disjoint embeddings φ(F ∗1 ),
. . . , φ(F ∗p ) of F ∗1 , . . . , F ∗p into H ′ which are compatible with their labelling such that

∆(
⋃p
j=1 φ(F ∗j )) ≤ γ|V |.

Each Wj ∪ φ(F ∗j ) contains a copy Fj of F such that H[U, V ] ⊆
⋃p
j=1 Fj . Let

H ′V :=
⋃
Fj [V ]. Note that H[U, V ] ∪ H ′V has an F -decomposition and ∆(H ′V ) ≤

∆(HV ) + ∆(
⋃p
j=1 φ(F ∗j )) ≤ 2γ|V |. �

Proposition 10.5. Let r, k ∈ N and let ε ≥ 0. Let G be a graph and let P be a
(k, 1− 1/(r + 1) + ε)-partition for G. Let x ∈ V (G) and let V ∈ P. Then

δ(G[NG(x, V )]) ≥ (1− 1/r)dG(x, V ) + ε|V |.

Proof. Let y ∈ NG(x, V ). Since dG(y, V ), dG(x, V ) ≥ (1− 1/(r + 1) + ε)|V |,

dG(y,NG(x, V )) ≥ dG(x, V ) + dG(y, V )− |V | ≥ dG(x, V )− |V |
r + 1

+ ε|V |

≥ (1− 1/r)dG(x, V ) + ε|V |. �

Lemma 10.6. Let r, f, k, n ∈ N and let γ, η, ε > 0 with 1/n � η � γ � 1/k �
ε, 1/r, 1/f . Let F be an r-regular graph on f vertices and let G be a graph on n
vertices. Let δ := max{δηF , 1 − 1/(r + 1)}. Suppose that P = {V1, . . . , Vk} is a
(k, δ + ε)-partition for G. Then there is a subgraph H of G such that

(a) G−H has an F -decomposition;
(b) ∆(H[P]) ≤ γn.
(c) for each 1 ≤ i ≤ k, ∆(G[Vi]−H[Vi]) ≤ 2γ|Vi|.

Proof. Let 0 < q < 1 with η � q � γ, and let G′ be a subgraph of G[P] such that

(G1) ∆(G′) ≤ 2qn;
(G2) for every S ⊆ V (G) with |S| ≤ r, dG′(S, V (G)) ≥ qrεn/2.

(To see that such a subgraph G′ exists, first note that since P is a (k, 1− 1/r + ε)-
partition, for each S ⊆ V (G) with |S| ≤ r, we have that dG[P](S, V (G)) ≥ εn.
Consider a random subgraph of G[P] in which each edge is retained independently
with probability q; then (G1) and (G2) are satisfied with high probability.)
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Note that δ(G[P]−G′) ≥ (δ + ε)(n− dn/ke)−∆(G′) ≥ δηFn, so by the definition
of δηF , there exists an η-approximate F -decomposition F0 of G[P] − G′. Let G0 be
the subgraph of G[P] − G′ which consists of the uncovered edges; so e(G0) ≤ ηn2.
To satisfy (b) our next aim is to cover the edges of G0 incident to vertices of high
degree in G0 by copies of F . But we know very little about the neighbourhoods of
the high degree vertices, so we cannot achieve this directly. Instead our first step
will be to transform the approximate F -decomposition F0 into an approximate F -
decomposition F1 such that

⋃
F1 contains no edge of G incident to a vertex of high

degree in G0.
Let B := {v ∈ V (G) : dG0(v) > η1/2n} and let A := V (G) \ B; observe that

|B| ≤ 2η1/2n. Let F ′ := {F ∈ F0 : V (F ) ∩ B 6= ∅}, and enumerate the elements

of F ′ as F (1), . . . , F (m). For each 1 ≤ i ≤ m, let F
(i)
0 := F (i) − B, let Ri := {v ∈

V (F
(i)
0 ) : dF (i)(v,B) ≥ 1} and let F

(i)
1 := F (i)[Ri, B] ∪ F (i)[B]. Note that F

(i)
0 and

F
(i)
1 form a decomposition of F (i). We consider each F

(i)
1 to be rooted at Ri and

label the non-root vertices {A}. We will replace each F (i) by a copy of F in G′∪F (i)
0

that contains F
(i)
0 but contains no vertex of B. Note that each v ∈ A is in at most

|B| ≤ 2η1/2n of the Ri.
Now let G′′ := G′[A] and let n′′ := |G′′|. Note that Ri ⊆ A for each 1 ≤ i ≤ m

and, for each S ⊆ A with |S| ≤ r,

dG′′(S, V (G′′)) ≥ dG′(S, V (G))− |B|
(G2)

≥ qrεn/2− 2η1/2n ≥ qr+1n′′.

Then by Lemma 5.2, with G′′, 1, r, f , 2η1/2, qr+1, {A}, F (1)
1 , . . . , F

(m)
1 playing the

roles of G, k, d, b, η, ε, P, H1, . . . ,Hm, there exist edge-disjoint embeddings φ(F
(1)
1 ),

. . . , φ(F
(m)
1 ) of F

(1)
1 , . . . , F

(m)
1 into G′′ which are compatible with their labellings.

Let F1 := {φ(F
(i)
1 ) ∪ F (i)

0 : 1 ≤ i ≤ m} ∪ (F0 \ F ′). Then F1 is a collection of
edge-disjoint copies of F with |F1| = |F0| and no edge of

⋃
F1 is incident to B. Let

H ′ := G[P]−
⋃
F1. Then F1 is an F -decomposition of G[P]−H ′, and

NH′(v) = NG[P](v) for all v ∈ B. (10.1)

Moreover,

dH′(v) ≤ dG0(v) + dG′(v)
(G1)

≤ η1/2n+ 2qn ≤ 3qn (10.2)

for all v ∈ A.
We now find a set F2 of edge-disjoint copies of F that cover most of the edges

incident to B in H ′. To do this we will use some edges of G−G[P].
For each 1 ≤ i ≤ k, let Bi := B \ Vi and let V ′i := Vi \ B. Let H∗i be the graph

on vertex set V (G) with E(H∗i ) := E(H ′[Bi, V
′
i ]) ∪ E(G[V ′i ]). Note that the H∗i

are edge-disjoint. By removing at most r − 1 edges incident to each v ∈ Bi from
H∗i , we obtain a spanning subgraph H ′i of H∗i which has the property that r divides
dH′i(v, V

′
i ) for all v ∈ Bi.

We aim to apply Lemma 10.4 to each H ′i with Bi, V
′
i , 4qk playing the roles of

U, V, η. We now check that conditions (i)–(iv) of Lemma 10.4 hold for H ′i.
Condition (i) holds by our construction. Note that for all v ∈ Bi, (10.1) implies

that dG(v, Vi) ≤ dH′i(v, V
′
i )+|B|+r−1 (recall that we deleted at most additional r−1

edges at v to obtain H ′i from H∗i ). Recall that P is a (k, 1− 1/(r+ 1) + ε)-partition
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for G. By Proposition 10.5, for all v ∈ Bi we have that

δ(H ′i[NH′i
(v, V ′i )]) = δ(G[NH′i

(v, V ′i )]) ≥ δ(G[NG(v, Vi)])− |B| − (r − 1)

≥ (1− 1/r)dG(v, Vi) + ε|Vi| − 3η1/2n

≥ (1− 1/r)dH′i(v, V
′
i ) + γ|V ′i |,

so condition (ii) of Lemma 10.4 holds. Condition (iii) holds since dH′i(y,Bi) ≤
dH′(y,B) ≤ 3qn ≤ 4qk|V ′i | for all y ∈ V ′i by (10.2). To see that (iv) holds, notice
that

δ(H ′i[V
′
i ]) ≥ (1− 1/(r + 1) + ε)|Vi| − |B| ≥ (1− 1/r + 2γ)|V ′i |.

So by Lemma 10.4, there is a subgraph Hi of H ′i[V
′
i ] such that H ′i[Bi, V

′
i ] ∪Hi has

an F -decomposition F ′i and ∆(Hi) ≤ 2γ|Vi|. Let F2 :=
⋃k
i=1F ′i .

Let H := H ′ ∪ (G−G[P])−
⋃k
i=1(H

′
i[Bi, V

′
i ] ∪Hi) = G−

⋃
F1 −

⋃
F2. Then (a)

holds. To see that (b) holds note that by (10.2), for each v ∈ A, dH[P](v) ≤ dH′(v) ≤
3qn ≤ γn and, for each v ∈ B, dH[P](v) = dH′−

⋃
F2

(v) ≤ |B|+ k(r − 1) ≤ 3η1/2n ≤
γn. Finally, (c) holds since (G−H)[Vi] = Hi. �

10.2. Covering a pseudorandom remainder. Lemma 10.6 gives us an approxi-
mate F -decomposition such that the remainderH has the property thatH[P] has low
maximum degree. We can also use an F -parity graph from Section 9 to ensure that,
for each 2 ≤ i ≤ k and each x ∈ V<i, r divides dH(x, Vi). We now cover all remaining
edges of H[P] by using a small number of edges from H −H[P]. We are unable to
apply Lemma 10.4 directly, as the greedy algorithm used to prove Lemma 10.3 fails
when H is approximately regular and U is much larger than V . However, if H is
pseudorandom then we can recover an appropriate version of Lemma 10.3 by using
a random greedy algorithm instead; this is because, when the codegrees of H are
small, an edge used in one copy of Kr will only be contained in a small proportion
of the other neighbourhoods that we consider.

Throughout this subsectionH should be thought of as a random graph of density ρ.
In Section 10.3 we will justify this assumption by combining the low degree remainder
from Lemma 10.6 with a random subgraph of G of larger density.

Lemma 10.7. Let r, k, n ∈ N and let ρ > 0 with 1/n� 1/r, 1/k, ρ ≤ 1. Let H be a
graph on n vertices. Suppose that U1, . . . , Up are subsets of V (H) with p ≤ kn such
that

(i) r divides |Uj | for all 1 ≤ j ≤ p;

(ii) δ(H[Uj ]) ≥ (1− 1/r)|Uj |+ 9rkρ3/2n for all 1 ≤ j ≤ p;
(iii) |Uj ∩ Uj′ | ≤ 2ρ2n for distinct 1 ≤ j, j′ ≤ p;
(iv) each v ∈ V (H) is contained in at most 2kρn of the Uj.

Then there exist edge-disjoint subgraphs T1, . . . , Tp in H such that each Tj is a Kr-
factor in H[Uj ].

We will use the following simple result.

Proposition 10.8 (Jain, see [25, Lemma 8]). Let X1, . . . , Xn be Bernoulli random
variables such that, for any 1 ≤ s ≤ n and any x1, . . . , xs−1 ∈ {0, 1},

P(Xs = 1 | X1 = x1, . . . , Xs−1 = xs−1) ≤ p.
Let X :=

∑
i∈[n]Xi and let B ∼ B(n, p). Then P(X ≥ a) ≤ P(B ≥ a) for any a ≥ 0.
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Proof of Lemma 10.7. Let t := d8kρ3/2ne, and let Hj := H[Uj ] for all 1 ≤ j ≤ p. We
construct T1, . . . , Tp in turn using a randomised algorithm. Suppose that we have
already found T1, . . . , Ts−1 for some 1 ≤ s ≤ p; we will find Ts as follows.

Let Gs−1 :=
⋃s−1
i=1 Ti be the subgraph of H consisting of the edges that have

already been used. Let H ′s := Hs − Gs−1[Us]. If ∆(Gs−1[Us]) > rρ3/2n, then

let A1, . . . , At be empty graphs on Us. If ∆(Gs−1[Us]) ≤ rρ3/2n, then δ(H ′s) ≥
(1 − 1/r)|H ′s| + 8krρ3/2n ≥ (1 − 1/r)|H ′s| + (r − 1)(t − 1) by (ii). So by (i) and
Theorem 10.2, there exist t edge-disjoint Kr-factors A1, . . . , At in H ′s.

In either case, we have found edge-disjoint subgraphs A1, . . . , At of H ′s. Pick
1 ≤ i ≤ t uniformly at random and set Ts := Ai. To prove the lemma, it suffices to
show that, with positive probability,

∆(Gs−1[Us]) ≤ rρ3/2n for all 1 ≤ s ≤ p. (10.3)

Consider 1 ≤ j ≤ p and u ∈ Uj . For 1 ≤ s ≤ p, let Y j,u
s be the indicator function

of the event that Ts contains an edge incident to u in Hj . Let Xj,u :=
∑p

s=1 Y
j,u
s .

Note that if Y j,u
s = 1, then at most r − 1 edges at u in Hj are used for Ts, so

dGp(u, Uj) ≤ rXj,u. Therefore to prove (10.3) it suffices to show that Xj,u ≤ ρ3/2n
for all 1 ≤ j ≤ p and u ∈ Uj .

Fix 1 ≤ j ≤ p and u ∈ Uj . Let J j,u be the set of indices s 6= j such that u ∈ Us.
By (iv), |J j,u| ≤ 2kρn. Note that Y j,u

s = 0 for all s /∈ J j,u ∪ {j}. So

Xj,u ≤ 1 +
∑
s∈Jj,u

Y j,u
s . (10.4)

Let s1, . . . , s|Jj,u| be the enumeration of J j,u such that sb < sb+1 for all 1 ≤ b ≤ |J j,u|.
For b ≤ |J j,u|, note that dHsb (u, Uj) ≤ |Uj ∩Usb | ≤ 2ρ2n by (iii). So at most 2ρ2n of

the subgraphs Ai that we picked in H ′sb contain an edge incident to u in Hj . This
implies that

P(Y j,u
sb

= 1 | Y j,u
s1 = y1, . . . , Y

j,u
sb−1

= yb−1) ≤
2ρ2n

t
≤ ρ1/2

4k

for all y1, . . . , yb−1 ∈ {0, 1} and all 1 ≤ b ≤ |J j,u|. Let B ∼ B(|J j,u|, ρ1/2/4k). By
(10.4), Proposition 10.8, Lemma 7.1 and the fact that |J j,u| ≤ 2kρn we have that

P(Xj,u > ρ3/2n) ≤ P(
∑
s∈Jj,u

Y j,u
s > 3ρ3/2n/4) ≤ P(B > 3ρ3/2n/4)

≤ P(|B − E(B)| > ρ3/2n/4) ≤ 2e−ρ
2n/16k.

Since there are at most kn2 pairs (j, u), there is a choice of T1, . . . , Tp such that

Xj,u ≤ ρ3/2n for all 1 ≤ j ≤ p and all u ∈ Uj , provided n is sufficiently large. �

We now use Lemma 10.7 to prove the corresponding version of Lemma 10.3.

Corollary 10.9. Let r, k, n ∈ N and let ρ > 0 with 1/n� 1/r, 1/k, ρ ≤ 1. Let H be
a graph on n vertices. Let U, V ⊆ V (H) be disjoint with |V | ≥ bn/kc. Suppose that,
for all distinct x, x′ ∈ U and each y ∈ V ,

(i) r divides dH(x, V );

(ii) δ(H[NH(x, V )]) ≥ (1− 1/r)dH(x, V ) + 9rkρ3/2|V |;
(iii) |NH(x, V ) ∩NH(x′, V )| ≤ 2ρ2|V |;
(iv) dH(y, U) ≤ 2kρ|V |.
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Then there is a subgraph HV of H[V ] such that H[U, V ]∪HV has a Kr+1-decomposition
and ∆(HV ) ≤ 2rkρ|V |.

Proof. Let p := |U |; note that p ≤ k|V |. Let u1, . . . , up be an enumeration of U .
Let Uj := NH(uj , V ) for all 1 ≤ j ≤ p. Apply Lemma 10.7 with H[V ], |V | playing
the roles of H, n to obtain edge-disjoint subgraphs T1, . . . , Tp in H[V ] such that
each Tj is a Kr-factor in H[Uj ]. Let HV :=

⋃p
j=1 Tj . Note that H[U, V ] ∪ HV =⋃p

j=1(H[{uj}, Uj ] ∪ Tj) has a Kr+1-decomposition. Since dHV (y) ≤ rdH(y, U) ≤
2rkρ|V | for each y ∈ V by (iv), we have ∆(HV ) ≤ 2rkρ|V |. �

The following lemma follows from Corollary 10.9 in the same way that Lemma 10.4
follows from Lemma 10.3, so we omit a detailed proof.

Lemma 10.10. Let r, k, n, f ∈ N and let α, ρ > 0 with 1/n� ρ� α, 1/k, 1/r, 1/f ≤
1. Let F be an r-regular graph on f vertices and let H be a graph on n vertices. Let
U, V ⊆ V (H) be disjoint with |V | ≥ bn/kc. Suppose that, for all distinct x, x′ ∈ U
and each y ∈ V ,

(i) r divides dH(x, V );

(ii) δ(H[NH(x, V )]) ≥ (1− 1/r)dH(x, V ) + 9rkρ3/2|V |;
(iii) |NH(x, V ) ∩NH(x′, V )| ≤ 2ρ2|V |;
(iv) dH(y, U) ≤ 2kρ|V |;
(v) δ(H[V ]) ≥ (1− 1/r + 2α)|V |.

Then there is a subgraph H ′V of H[V ] such that H[U, V ]∪H ′V has an F -decomposition
and ∆(H ′V ) ≤ 2α|V |.

Lemma 10.10 easily implies the following corollary.

Corollary 10.11. Let r, k, n, f ∈ N and let α, ρ > 0 with 1/n� ρ� α, 1/k, 1/r, 1/f ≤
1. Let F be an r-regular graph on f vertices and let H be a graph on n vertices.
Let P = {V1, . . . , Vk} be an equitable partition of V (H). Suppose that, for each
2 ≤ i ≤ k, all distinct x, x′ ∈ V<i and each y ∈ Vi,

(i) r divides dH(x, Vi);

(ii) δ(H[NH(x, Vi)]) ≥ (1− 1/r)dH(x, Vi) + 9rkρ3/2|Vi|;
(iii) |NH(x, Vi) ∩NH(x′, Vi)| ≤ 2ρ2|Vi|;
(iv) dH(y, V<i) ≤ 2kρ|Vi|;
(v) δ(H[Vi]) ≥ (1− 1/r + 2α)|Vi|.

Then there is a subgraph H0 of H−H[P] such that H[P]∪H0 has an F -decomposition
and ∆(H0) ≤ 2αn.

Proof. For each 2 ≤ i ≤ k, let Ui := V<i, and let Hi be the graph on V (H) with
E(Hi) := E(H[Ui, Vi]) ∪ E(H[Vi]). Note that H2, . . . ,Hk are pairwise edge-disjoint

and H[P] ⊆
⋃k
i=2Hi. We apply Lemma 10.10 to each Hi with Ui,Vi playing the

roles of U ,V to obtain a subgraph H ′i of Hi[Vi] such that Hi[Ui, Vi] ∪ H ′i has an

F -decomposition and ∆(H ′i) ≤ 2α|Vi|. Let H0 :=
⋃k
i=2H

′
i. Note that H[P] ∪H0 =⋃k

i=2 (Hi[Ui, Vi] ∪H ′i) has an F -decomposition and ∆(H0) = max2≤i≤k ∆(H ′i) ≤ 2αn
since V (H ′i) ⊆ Vi for each i. �

10.3. Proof of Lemma 10.1. We now present the formal version of the state-
ment (†) at the beginning of Section 10. Recall that if P is a (k, δ + ε)-partition for
G and H is a subgraph of G with ∆(H) ≤ εn/2k, then P is a (k, δ)-partition for
G−H.



EDGE-DECOMPOSITIONS OF GRAPHS WITH HIGH MINIMUM DEGREE 33

Lemma 10.12. Let r, f, k, n ∈ N and let η, ε > 0 with 1/n� η � 1/k � ε, 1/r, 1/f .
Let F be an r-regular graph on f vertices. Let G be an r-divisible graph on n vertices
and let G0 be a subgraph of G−G[P]. Let δ := max{δηF , 1−1/(r+ 1)}. Suppose that
P = {V1, . . . , Vk} is a (k, δ + 3ε)-partition for G−G0. Then there is a subgraph H
of G−G[P]−G0 such that G[P]∪H has an F -decomposition and ∆(H) ≤ εn/2k2.

In our application of Lemma 10.12 the graph G0 will consist of edges which will
be used in later iterations and are therefore not allowed to be used in the current
one, so H needs to avoid G0.

The proof of Lemma 10.12 uses Corollary 10.11. In order to guarantee that condi-
tion (ii) of Corollary 10.11 will hold, we first remove a sparse random graph R from
G[P]. We then add R back to the remainder graph H obtained from Lemma 10.6
so that H[P] essentially behaves like a random subgraph of G[P].

Proof of Lemma 10.12. Choose γ, ρ such that 1/n� η � γ � ρ� 1/k � ε, 1/r, 1/f .
Let G1 := G−G0, and let G′1 := G1 −G[P]. By Lemma 7.2, there is a subgraph R
of G1[P] such that, for each 1 ≤ i ≤ k and all distinct x, y ∈ V (G),

dR(x, Vi) = ρdG1[P](x, Vi)± γ|Vi|; (10.5)

dR({x, y}, Vi) ≤ ρ2dG1[P]({x, y}, Vi) + γ|Vi| ≤ (ρ2 + γ)|Vi|; (10.6)

dG′1(y,NR(x, Vi)) ≥ ρdG′1(y,NG1(x, Vi))− γn. (10.7)

For each 2 ≤ i ≤ k, each x ∈ V<i and each y ∈ NG1(x, Vi), we have dG′1(y,NG1(x, Vi)) =

dG1(y,NG1(x, Vi)), so (10.7) and Proposition 10.5 imply that

dG′1(y,NR(x, Vi)) ≥ ρ ((1− 1/r)dG1(x, Vi) + ε|Vi|)− γn

≥ (1− 1/r)ρdG1(x, Vi) + 10rkρ3/2|Vi|. (10.8)

Let G2 := G1 − R. Note that P is a (k, δ + 2ε)-partition for G2 since ρ � ε. By
Lemma 9.3, G2 contains an F -parity graph P with respect to P such that

∆(P ) ≤ γn. (10.9)

Let G3 := G2 − P . Note that P is a (k, δ + ε)-partition for G3 as γ � ε. Apply
Lemma 10.6 to G3 to obtain a subgraph G4 of G3 such that

(a) G3 −G4 has an F -decomposition F1;
(b) ∆(G4[P]) ≤ γn;
(c) for each 1 ≤ i ≤ k, ∆(

⋃
F1[Vi]) = ∆(G3[Vi]−G4[Vi]) ≤ 2γ|Vi|.

Recall that P is an F -parity graph, so has an F -decomposition. Note that G∗ :=
R ∪G4 ∪G0 = G− P −

⋃
F1 is obtained from G by removing a set of edge-disjoint

copies of F , so G∗ is r-divisible. Since P is an F -parity graph with respect to P,
there is a subgraph P ′ of P such that P − P ′ has an F -decomposition F2 and r
divides dG∗∪P ′(x, Vi) for each 2 ≤ i ≤ k and each x ∈ V<i. Note that, by (10.9),

∆(
⋃
F2[Vi]) ≤ ∆(P ) ≤ γn. (10.10)

Let G5 := G∗ ∪ P ′ −G0. Note that

G5 = G1 −
⋃
F1 −

⋃
F2 = R ∪G4 ∪ P ′. (10.11)

We will now check that conditions (i)–(v) of Corollary 10.11 hold with G5 playing
the role of H. Recall that e(G0[P]) = 0 and that r divides dG∗∪P ′(x, Vi) for each
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2 ≤ i ≤ k and each x ∈ V<i. So condition (i) holds. Consider 2 ≤ i ≤ k and x ∈ V<i.
By (10.11), (10.5), (b) and (10.9), we have that

dG5(x, Vi) ≤ dR(x, Vi) + ∆(G4[P]) + ∆(P ) ≤ ρdG1[P](x, Vi) + 3γn. (10.12)

Therefore, using (10.8), (c) and (10.10) in the second line, we have that for y ∈
NG5(x, Vi) ⊆ NG1(x, Vi),

dG5(y,NG5(x, Vi))
(10.11)

≥ dG′1(y,NR(x, Vi))−∆(
⋃
F1[Vi])−∆(

⋃
F2[Vi])

≥ (1− 1/r)ρdG1(x, Vi) + 10rkρ3/2|Vi| − 2γn− γn
(10.12)

≥ (1− 1/r)(dG5(x, Vi)− 3γn) + 10rkρ3/2|Vi| − 3γn

≥ (1− 1/r)dG5(x, Vi) + 9rkρ3/2|Vi|.

Thus condition (ii) of Corollary 10.11 holds.
To see that conditions (iii) and (iv) of Corollary 10.11 hold, note that, for all

distinct x, x′ ∈ V<i and each 2 ≤ i ≤ k,

|NG5(x, Vi) ∩NG5(x′, Vi)|
(10.11)

≤ dR({x, x′}, Vi) + ∆(G4[P]) + ∆(P ) ≤ 2ρ2|Vi|,

where the second inequality holds by (10.6), (b) and (10.9). Similarly, for each y ∈ Vi
and each 1 ≤ i ≤ k,

dG5(y, V<i)
(10.11)

≤ ∆(R) + ∆(G4[P]) + ∆(P )
(10.5),(b),(10.9)

≤ (ρ+ 3γ)n ≤ 2ρk|Vi|.

Set α := ε/8k2. Recall that P is a (k, 1− 1/(r + 1) + ε)-partition for G1. Thus, for
each 1 ≤ i ≤ k,

δ(G5[Vi])
(10.11)

≥ δ(G1[Vi])−∆(
⋃
F1[Vi])−∆(

⋃
F2[Vi])

(c),(10.10)

≥ (1− 1/(r + 1) + ε)|Vi| − 3γn ≥ (1− 1/r + 2α)|Vi|,

implying condition (v) of Corollary 10.11. So by Corollary 10.11, there is a subgraph
H5 of G5 − G5[P] such that G5[P] ∪H5 has an F -decomposition F3 and ∆(H5) ≤
εn/4k2. Let H := (

⋃
F1 −

⋃
F1[P]) ∪ (

⋃
F2 −

⋃
F2[P]) ∪ H5. Note that H ⊆

G − G[P] − G0 and ∆(H) ≤ 2γdn/ke + γn + εn/4k2 ≤ εn/2k2 by (c) and (10.10).
In particular, G[P] ∪ H = G1[P] ∪ H also has an F -decomposition F1 ∪ F2 ∪ F3

by (10.11). �

As described at the beginning of this section, we can now iteratively apply Lemma 10.12
to a sequence of partitions to prove the following lemma, which immediately implies
Lemma 10.1.

Lemma 10.13. Let r, f,m, k, ` ∈ N and let ε, η > 0 with 1/m � η � 1/k �
ε, 1/r, 1/f . Let F be an r-regular graph on f vertices and let G be an r-divisible
graph. Let δ := max{δηF , 1 − 1/(r + 1)}. Suppose that P1, . . . ,P` is a sequence of
partitions of V (G) such that

(i) P1 is a (k, δ + ε)-partition for G;
(ii) for each 2 ≤ i ≤ ` and each V ∈ Pi−1, Pi[V ] is a (k, δ + 2ε)-partition for

G[V ];
(iii) each V ∈ P` has size m− 1 or m.

Then there exists a subgraph H∗ of
⋃
V ∈P` G[V ] such that G−H∗ has an F -decomposition.
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Proof. Let n := |G|, and let G0 := G − G[P1] − G[P2]. (If `=1, then let G0 be the
empty graph.)

Note that P1 is a (k, δ+ ε/2)-partition for G−G0. Apply Lemma 10.12 to obtain
a subgraph H of G−G[P1]−G0 such that G[P1]∪H has an F -decomposition F0 and
∆(H) ≤ εn/2k2. This proves the case when ` = 1 (by setting H∗ := G−G[P1]−H),
so we proceed by induction and assume that ` ≥ 2.

Obtain H as above and let G′ := G − G[P1] − H. Consider U ∈ P1. Note that
G′[U ] is r-divisible. Since ∆(H) ≤ εn/2k2, we have that P2[U ] is a (k, δ+ε)-partition
for G′[U ]. Since H is edge-disjoint from G0, for each 3 ≤ i ≤ ` and each V ∈ Pi−1[U ]
we have that Pi[V ] is a (k, δ+2ε)-partition for G′[V ]. So we can apply the induction
hypothesis to G′[U ],P2[U ], . . . ,P`[U ] to obtain a subgraph H∗U of

⋃
V ∈P`[U ]G[V ] such

that G′[U ]−H∗U has an F -decomposition FU .
Set H∗ :=

⋃
U∈P1

H∗U . Observe that H∗ is a subgraph of
⋃
V ∈P` G[V ] = G−G[P`]

and G−H∗ has an F -decomposition F0 ∪
⋃
U∈P1

FU . �

10.4. A strengthening of Lemma 10.1 for certain graphs F . Suppose that
F is an r-regular graph that is not a vertex-disjoint union of copies of Kr+1. Then
Lemma 10.1 still holds if we replace δ := max{δηF , 1−1/(r+1)} by δ := max{δηF , 1−
1/r}.

Lemma 10.14. Let r, f,m, k, ` ∈ N and let ε, η > 0 with 1/m � η � 1/k �
ε, 1/r, 1/f . Let F be an r-regular graph on f vertices such that F is not a vertex-
disjoint union of copies of Kr+1. Let G be an r-divisible graph. Let δ := max{δηF , 1−
1/r}. Suppose that P1, . . . ,P` is a (k, δ+ ε,m)-partition sequence for G. Then there
exists a subgraph H∗ of

⋃
V ∈P` G[V ] such that G − H∗ has an F -decomposition.In

particular, if G is F -divisible, then so is H∗.

We now sketch a proof of Lemma 10.14 obtained by modifying the proof of
Lemma 10.1. Note that the application of Theorem 10.2 (in the proof of Lemma 10.3)
is the only point in the proof of Lemma 10.1 where we need that δ ≥ 1− 1/(r + 1)
(rather than δ ≥ 1− 1/r). Since F is not a vertex-disjoint union of copies of Kr+1,
there exists a vertex x in F such that Fx := F [NF (x)] is not complete. Note that
χ(Fx) ≤ r − 1 as |Fx| = r and Fx 6= Kr. Suppose that H, x and V are as described
at the beginning of Section 10.1. Then it suffices to find an Fx-factor in NH(x, V )
(rather than a Kr-factor). So we can replace Theorem 10.2 by the following result.

Theorem 10.15 (Alon and Yuster [1]). For every graph F and every ε > 0, there
exists an n0 = n0(ε, F ) such that every graph G on n ≥ n0 vertices with δ(G) ≥
(1− 1/χ(F ) + ε)n contains b|G|/|F |c vertex-disjoint copies of F .

The proof of Lemma 10.14 is otherwise the same as that of Lemma 10.1.

11. Proof of Theorem 1.3

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality we may assume that ε� 1/r, 1/f .
Choose k,m′, n0 ∈ N and η > 0 such that 1/n0 � 1/m′ � η � 1/k � ε� 1/r, 1/f ,
and let ε′ := ε/3. Let G be an F -divisible graph on n ≥ n0 vertices with δ(G) ≥
(δ + 3ε′)n. By Lemma 7.4, there is a (k, δ + 2ε′,m)-partition sequence P1, . . . ,P`
for G such that m′ ≤ m ≤ km′. Let G1 := G[P1], and let G`+1 := G−G[P`]. Note
that δ(G1[P`]) ≥ δ(G1) ≥ (δ + 2ε′)(n − dn/ke) ≥ (δ + ε′)n as 1/k � ε′ � 1. Since
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δ ≥ 1− 1/3r, we can apply Lemma 8.1 to G1 ∪G`+1 (with P`, (ε′/2k)1/2 playing the
roles of P, ε) to obtain an F -divisible subgraph A∗ of G1 ∪G`+1 such that

(i) ∆(A∗[P`]) ≤ ε′n/2k and ∆(A∗[V ]) ≤ r for each V ∈ P`, and
(ii) if H∗ is an F -divisible graph on V (G) that is edge-disjoint from A∗ and has

e(H∗[P`]) = 0, then A∗ ∪H∗ has an F -decomposition.

Let G′ := G − A∗; then G′ is F -divisible. Note that for each V ∈ P1 and each
v ∈ V (G), we have dG′(v, V ) ≥ dG(v, V )−∆(A) ≥ (δ+ ε′)|V |. So P1 is a (k, δ+ ε′)-
partition for G′. Note that ∆(A∗−A∗[P1]) ≤ r by (i), so P1, . . . ,P` is a (k, δ+ε′,m)-
partition sequence for G′.

Apply Lemma 10.1 to obtain an F -divisible subgraph H of
⋃
V ∈P` G

′[V ] such that

G′−H has an F -decomposition. But now A∗∪H has an F -decomposition by (ii). �

Note that all of our arguments can be carried out in polynomial time, and all
probabilistic arguments give the desired structure with sufficiently high probability.
Haxell and Rödl’s original proof of Theorem 4.3 gave a polynomial time algorithm
for converting a fractional decomposition to an approximate decomposition, and
Kierstead, Kostochka, Mydlarz and Szemerédi [19] found an alternative proof of
Theorem 10.2 which gave a polynomial time algorithm for finding Kr-factors.

We can actually obtain a stronger version of Theorem 1.3 which can be applied to
obtain better bounds for certain graphs F . It involves the parameter dF introduced
in Section 8.3 that measures the degeneracy of the most efficient transformer for F .
The proof of Theorem 11.1 is the same as that of Theorem 1.3 except that we
replace Lemma 8.1 with Lemma 8.12 and Lemma 10.1 with Lemma 10.14 (if F is
not a vertex-disjoint union of copies of Kr+1).

Theorem 11.1. Let F be an r-regular graph. Then for all ε > 0, there exists an
n0 = n0(ε, F ) and an η := η(ε, F ) such that every F -divisible graph G on n ≥ n0
vertices with δ(G) ≥ (δ + ε)n, where

δ :=

{
max{δηF , 1−

1
dF
, 1− 1

r+1} if F is a vertex-disjoint union of copies of Kr+1,

max{δηF , 1−
1
dF
, 1− 1

r} otherwise,

has an F -decomposition.

Our proof of Theorem 11.1 can also be carried out in polynomial time, since the
F -factor guaranteed in Theorem 10.15 can be obtained in polynomial time (see the
discussion after [37, Theorem 2.6]).

Note that Theorem 11.1 implies Theorem 1.3 since Corollary 8.10 states that
dF ≤ 3r for any r-regular graph F . However for some graphs F one can obtain
much better bounds on dF , yielding improved overall bounds. We illustrate this for
the case of cycles and complete bipartite graphs in Section 12.

12. Decompositions into cycles and bipartite graphs

In this section we consider C`-decompositions and deduce Theorem 1.4 from The-
orem 11.1. For even `, the bounds in Theorem 1.4 are asymptotically best possible.
We now describe the construction giving the lower bound in the following two propo-
sitions.
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Proposition 12.1. Let ` ∈ N with ` ≥ 3 and ` 6= 4, and let

δ :=

{
1/2 if ` ≥ 6 is even;

`
2(`−1) if ` is odd.

Then there are infinitely many C`-divisible graphs G with δ(G) ≥ δ|G| − 1 that are
not C`-decomposable.

Note that the case ` = 3 describes an extremal example for the triangle decom-
position conjecture of Nash-Williams.

Proof. Case ` ≥ 6 even. Let n be such that n ≡ ` + 1 mod 2`. So n − 1 is even
and ` divides n(n− 1) but not

(
n
2

)
. Let G be the vertex-disjoint union of two cliques

of order n. Then G is C`-divisible with δ(G) = |G|/2 − 1, but neither connected
component is itself C`-divisible, so G cannot be C`-decomposable.

Case ` odd. Let G be the graph obtained from K`−1,`−1 by blowing up each
vertex to a clique of odd order n such that ` divides n. The degree of each vertex
is `n− 1, which is even, and the total number of edges is (`− 1)n(`n− 1), which is

divisible by `. We have that δ(G) = `n − 1 = `|G|
2(`−1) − 1, but each copy of C` in G

contains an edge of one of the copies of Kn, and the number of such edges is only
(`− 1)n(n− 1) < e(G)/`, so G cannot be C`-decomposable. �

The existence of special constructions for the case ` = 4 is perhaps surprising,
and was first observed by Kahn and Winkler (see [34]), who showed that there ex-
ist infinitely many C4-divisible graphs G with δ(G) ≥ b3|G|/5c − 1 that are not
C4-decomposable. A construction matching the asymptotic upper bound from The-
orem 1.4 was found by Taylor [29]. This construction also generalizes to Kr,r for
even r.

Proposition 12.2. Let r ∈ N be even. Then there are infinitely many Kr,r-divisible
graphs G with δ(G) ≥ b2|G|/3c − r that are not Kr,r-decomposable.

Proof. We will construct one such graph for each m ∈ N. Let V1, V2, V3 be disjoint
vertex sets such that |V1| = 2r2m+r, |V2| = 2r2m+1, |V3| = 2r2m−r. Let G be the
graph on vertex set V1∪V2∪V3 consisting only of a clique on V1, a clique on V3 and a
complete bipartite graph with vertex classes V1 ∪ V3, V2. Thus n := |G| = 6r2m+ 1.
Note that d(x) ∈ {4r2m+ r, 4r2m, 4r2m− r} for all vertices x. The total number of
edges is(

2r2m+ r

2

)
+

(
2r2m− r

2

)
+ (4r2m)(2r2m+ 1) = (12r2m2 + 2m+ 1)r2.

Thus G is Kr,r-divisible and δ(G) = b2n/3c − r.
Now let F be any copy of Kr,r in G. We claim that e(F [V1]) is divisible by r. Let

{A,B} be the natural bipartition of F . If e(F [V1]) = 0 then we are done, so assume
that A∩ V1 and B ∩ V1 are both non-empty. Then A∩ V3 and B ∩ V3 must both be
empty, as there are no edges from V1 to V3 in G. Since V2 is an independent set in G,
A∩ V2 and B ∩ V2 cannot both be non-empty, so by relabelling if necessary we may
assume that A ∩ V2 is empty; that is, A ⊆ V1. Hence e(F [V1]) = r|B ∩ V1|, which is
divisible by r. But e(G[V1]) = (r2m+ r/2)(2r2m+ r − 1), which is not divisible by
r as the second factor is coprime to r and the first factor is not divisible by r. So
G[V1] cannot be covered by any set of edge-disjoint copies of F in G. �
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xi−1 xi xi+1

H

φ(xi−1) φ(xi) φ(xi+1)

H ′

ui−1 ui ui+1 ui+2

vi−1 vi vi+1wi−1 wi wi+1

Figure 3. A (H,H ′)C3- transformer T .

We prove Theorem 1.4 using Theorem 11.1. Recall the definition of dC` in Sec-
tion 8.3. We now bound dC` above for ` ≥ 3.

Lemma 12.3. For ` ∈ N with ` ≥ 3,

dC` ≤


4 if ` = 3,

3 if ` = 4,

2 if ` ≥ 5.

Proof. Lemma 8.5 implies that the lemma holds for ` ≥ 4. So we may assume that
` = 3. Let H be a 2-regular graph and let H ′ be obtained from H by identifying
vertices. Suppose that H and H ′ are vertex-disjoint. Recall that an (H,H ′)C3-
transformer T is a graph such that

• T ∪H and T ∪H ′ each have C3-decompositions;
• V (H ∪H ′) ⊆ V (T ) and T [V (H ∪H ′)] is empty.

To show that dC3 ≤ 4, it suffices to show that there exists an (H,H ′)C3-transformer T
such that the degeneracy of T rooted at V (H ∪H ′) is at most 4.

Let φ : H → H ′ be a graph homomorphism from H to H ′ that is edge-bijective.
Note that H is a union of vertex-disjoint cycles Cs1 , . . . , Csp . So H ′ decomposes into
φ(Cs1), . . . , φ(Csp). Suppose that, for each 1 ≤ j ≤ p, there exists a (Csj , φ(Csj ))C3-
transformer Tj such that the degeneracy of Tj rooted at V (Csj ∪φ(Csj )) is at most 4.
We further choose the Tj such that V (Tj) ∩ V (H ∪ H ′) = V (Csj ∪ φ(Csj )) and
V (Tj) ∩ V (Tj′) ⊆ V (H ∪H ′) for all j 6= j′. In particular, the Tj are edge-disjoint.
Let T :=

⋃
1≤j≤p Tj . Then T is an (H,H ′)C3-transformer such that the degeneracy

of T rooted at V (H ∪H ′) is at most 4. Therefore, we may assume that H is a cycle
x1x2 . . . xsx1.

Let {ui, vi, wi : 1 ≤ i ≤ s} be a set of 3s vertices disjoint from V (H ∪H ′). Define
a graph T as follows:

(i) V (T ) := V (H) ∪ V (H ′) ∪ {ui, vi, wi : 1 ≤ i ≤ s};
(ii) E1 := {xiui, xivi, xiwi, xiui+1 : 1 ≤ i ≤ s};
(iii) E2 := {viwi : 1 ≤ i ≤ s};
(iv) E3 := {uivi, wiui+1 : 1 ≤ i ≤ s};
(v) E4 := {φ(xi)ui, φ(xi)vi, φ(xi)wi, φ(xi)ui+1 : 1 ≤ i ≤ s};
(vi) E(T ) := E1 ∪ E2 ∪ E3 ∪ E4.

Here the indices are considered modulo s. Note that T [V (H ∪H ′)] is empty.
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Note also that H ∪ E1 ∪ E2 can be decomposed into 2s copies of C3, where each
C3 has vertex set either {xi, xi+1, ui+1} or {xi, vi, wi} for some 1 ≤ i ≤ s. Note also
that E3 ∪ E4 can be decomposed into 2s copies of C3, where each C3 has vertex
set either {φ(xi), ui, vi} or {φ(xi), wi, ui+1} for some 1 ≤ i ≤ s. Thus H ∪ T has
a C3-decomposition. Similarly, H ′ ∪ T has a C3-decomposition. Therefore T is an
(H,H ′)C3-transformer. To see that the degeneracy of T rooted at V (H) ∪ V (H ′) is
at most 4, consider the vertices in H, H ′, {ui : 1 ≤ i ≤ s}, {vi, wi : 1 ≤ i ≤ s} in
that order. This completes the proof of the lemma. �

We now prove Theorem 1.4.

Proof of Theorem 1.4. We first prove (i). So let ` ≥ 4 be even. By Theorem 11.1 and
Lemma 12.3, it suffices to show that limη→0 δ

η
C`
≤ δ. But δηC` = 0 for all η > 0 since

C` is bipartite. Indeed, it follows from the Erdős–Simonovits–Stone theorem [11, 12]
that we can obtain an η-approximate C`-decomposition greedily (since the Turán
density of bipartite graphs is 0).

To prove (ii), let ` ≥ 3 be odd. Note that limη→0 δ
η
C`
≥ 1/2 (consider e.g. Kn,n).

Moreover, limη→0 δ
η
C3
≥ 3/4, see e.g. Yuster [35]. Thus the first part of Theo-

rem 1.4(ii) follows from Theorem 11.1 and Lemma 12.3. The ‘moreover part’ follows
then from Corollary 4.5 and Theorem 4.8. �

If F is an r-regular bipartite graph, then Theorem 11.1 implies the following result,
which applies for instance to the complete bipartite graph Kr,r.

Corollary 12.4. Let F be an r-regular bipartite graph. Then for each ε > 0, there
is an n0 = n0(ε, F ) such that every F -divisible graph G on n ≥ n0 vertices with
δ(G) ≥ (1− 1/(r + 1) + ε)n has an F -decomposition.

Proof. As observed in the proof of Theorem 1.4(i), δηF = 0 for all η > 0 since F is
bipartite. Since dF ≤ r+1 by Lemma 8.5, the result now follows from Theorem 11.1.

�
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[26] V. Rödl, A. Ruciński, and E. Szemerédi. A Dirac-type theorem for 3-uniform hypergraphs.
Combin. Probab. Comput., 15(1-2):229–251, 2006.

[27] M. Schlund. Graph Decompositions, Latin Squares, and Games. Diploma thesis, Technische
Universität München, 2011.

[28] M. Simonovits. A method for solving extremal problems in graph theory, stability problems.
In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319. Academic Press, New
York, 1968.

[29] A. Taylor. Personal communication.
[30] R.M. Wilson. An existence theory for pairwise balanced designs. I. Composition theorems

and morphisms. J. Combin. Theory Ser. A, 13:220–245, 1972.
[31] R.M. Wilson. An existence theory for pairwise balanced designs. II. The structure of PBD-

closed sets and the existence conjectures. J. Combin. Theory Ser. A, 13:246–273, 1972.
[32] R.M. Wilson. An existence theory for pairwise balanced designs. III. Proof of the existence

conjectures. J. Combin. Theory Ser. A, 18:71–79, 1975.
[33] R.M. Wilson. Decompositions of complete graphs into subgraphs isomorphic to a given graph.

In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen,
1975), pages 647–659. Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man.,
1976.

[34] R. Yuster. The decomposition threshold for bipartite graphs with minimum degree one. Ran-
dom Structures Algorithms, 21(2):121–134, 2002.



EDGE-DECOMPOSITIONS OF GRAPHS WITH HIGH MINIMUM DEGREE 41

[35] R. Yuster. Asymptotically optimal Kk-packings of dense graphs via fractional Kk-
decompositions. J. Combin. Theory Ser. B, 95(1):1–11, 2005.

[36] R. Yuster. Integer and fractional packing of families of graphs. Random Structures Algorithms,
26(1-2):110–118, 2005.

[37] R. Yuster. Combinatorial and computational aspects of graph packing and graph decompo-
sition. Computer Science Review, 1(1):12–26, 2007.

[38] R. Yuster. H-packing of k-chromatic graphs. Mosc. J. Comb. Number Theory, 2(1):73–88,
2012.

[39] R. Yuster. Edge-disjoint cliques in graphs with high minimum degree. SIAM J. Combin.,
28(2):893–910, 2014.


	1. Introduction
	1.1. Decompositions of non-complete graphs
	1.2. Approximate F-decompositions
	1.3. Further improvements: cycle decompositions
	1.4. Extremal graphs for Conjecture 1.1

	2. Sketches of proofs
	2.1. Proof of Theorem 1.2 using Theorem 1.3.
	2.2. Proof of Theorem 1.3.

	3. Notation
	4. Fractional and approximate F-decompositions
	5. Finding subgraphs
	6. Deriving Theorem 1.2 from Theorem 1.3
	7. Random subgraphs and partitions
	8. Absorbers
	8.1. An F-absorber for a given graph H
	8.2. Proof of Lemma 8.1
	8.3. A strengthening of Lemma 8.1 for certain graphs F

	9. Parity graphs
	10. Near optimal decompositions
	10.1. Bounding the maximum degree of the remainder graph
	10.2. Covering a pseudorandom remainder
	10.3. Proof of Lemma 10.1
	10.4. A strengthening of Lemma 10.1 for certain graphs F

	11. Proof of Theorem 1.3
	12. Decompositions into cycles and bipartite graphs
	Acknowledgements
	References

