MSM203a: Polynomials and rings
 Exercise sheet 5

Richard Kaye

Autumn term, 2013

Exercise 1. Prove that $X^{4}+X^{3}+2$ is irreducible in $\mathbb{F}_{3}[X]$. How many elements are there in the quotient $\mathbb{F}_{3}[X] /\left(X^{4}+X^{3}+2\right)$?

Exercise 2. (a) Show that the map $z \mapsto \bar{z}$ is a homomorphism $\mathbb{C} \rightarrow \mathbb{C}$.
(b) Deduce from (a) that if $p(X) \in \mathbb{R}[X]$ and $\alpha \in C$ has $p(\alpha)=0$ then $p(\bar{\alpha})=0$.
(c) Hence show that every polynomial $p(X) \in \mathbb{R}[X]$ of degree greater than 2 is reducible in $\mathbb{R}[X]$. (You may use the fact that every polynomial of degree at least 1 over \mathbb{C} has a root in \mathbb{C}.)

Exercise 3. This question concerns irreducibility in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.
(a) Suppose that $p \in \mathbb{Z}$ is prime and $f(X), g(X), h(X) \in \mathbb{Z}[X]$ are such that $f(X)=$ $g(X) h(X)$ and p divides every coefficient of $f(X)$. Show that either p divides every coefficient of $g(X)$ or p divides every coefficient of $h(X)$. [Hint: write $g(X)=g_{0}+$ $g_{1} X+\cdots+g_{r} X^{r}$ and $h(X)=h_{0}+h_{1} X+\cdots+h_{s} X^{s}$. Let i, j be least such that p divides neither g_{i} nor h_{j}.]
(b) Suppose that $f(X) \in \mathbb{Z}[X]$ and $g_{0}(X), h_{0}(X) \in \mathbb{Q}[X]$ such that $f(X)=g_{0}(X) h_{0}(X)$. Show there is $n \in \mathbb{N}^{+}$and $g(X), h(X) \in \mathbb{Z}[X]$ such that $n f(X)=g(X) h(X)$.
(c) Deduce from the two previous parts Gauss's lemma that says a polynomial $f(X) \in$ $\mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$ if and only if it cannot be written as the product of two polynomials of smaller degree in $\mathbb{Z}[X]$. [Hint: suppose $f[X]$ is reducible in $\mathbb{Q}[X]$. Apply (b) to get $n f(X)=g(X) h(X)$ and look at all primes dividing n.]

Exercise 4. This question concerns a criterion for irreducibility in $\mathbb{Q}[X]$ called Eisenstein's criterion. Suppose $f(X) \in \mathbb{Z}[X]$ is a polynomial $f_{0}+f_{1} X+\cdots+f_{k} X^{k}$ of degree $k \geqslant 2$ and $q \in \mathbb{N}$ is a prime such that: (i) q does not divide f_{k}; (ii) q divides f_{i} for all $i<k$; and (iii) q^{2} does not divide f_{0}. You need to show that $f(X)$ is irreducible in $\mathbb{Q}[X]$. Suppose it is reducible.
(a) Using a previous exercise, show there are $g(X), h(X) \in \mathbb{Z}[X]$ where $g(X)=g_{0}+g_{1} X+$ $\cdots+g_{r} X^{r}$ and $h(X)=h_{0}+h_{1} X+\cdots+h_{s} X^{s}$ such that $1 \leqslant r, s<k, f(X)=g(X) h(X)$ and q divides g_{0} but not h_{0}.
(b) Show that q cannot divide all of the coefficients g_{i}.
(c) By looking at the least i such that q does not divide g_{i} obtain a contradiction.

Exercise 5. For the following polynomials over the rings stated, decide whether it is irreducible or not.
(a) $X^{4}+1 \in \mathbb{R}[X]$
(b) $X^{4}+1 \in \mathbb{Q}[X]$
(c) $X^{7}+11 X^{3}-33 X+22 \in \mathbb{Q}[X]$
(d) $X^{4}+X^{3}+X^{2}+X+1 \in \mathbb{Q}[X]$
(e) $X^{3}-7 X^{2}+3 X+3 \in \mathbb{Q}[X]$
(f) $X^{3}-5 \in \mathbb{F}_{11}[X]$

Exercise 6. Let F be a field. Prove that a polynomial $f(X)$ is irreducible in $F[X]$ if and only if $f(X+1)$ is irreducible in $F[X]$. Using this, the polynomial $X^{17}-1$, and the prime $q=17$, apply Eisenstein's criterion to show that

$$
X^{16}+X^{15}+\cdots+X+1
$$

is irreducible in $\mathbb{Q}[X]$.
Exercise 7. (2004, Q11) Let F be a field and $R=F[X]$ be the ring of polynomials over F.
(a) Prove that R has no zero-divisors.
(b) Prove that every ideal in R has the form $p(X) R$ for some polynomial $p(x) \in R$.
(c) Prove that if $p(X)$ is irreducible, then the ideal $p(X) R$ is a maximal ideal.
(d) For each of the following rings, decide whether or not it is a field, and give reasons.
(a) $\mathbb{Q}[X] /\left(X^{2}+1\right)$;
(b) $\mathbb{Z}_{3}[X] /\left(X^{4}+X+1\right)$;
(c) $\mathbb{Q}[X] /\left(X^{9}+3 X^{2}+6\right)$;
[Note: $p(X) R$ is a different notation for the ideal $(p(X))$ of R.]
Exercise 8. (2005, Q12) Which of the following quotient rings are fields? In each case give a brief explanation.
(a) $\mathbb{Z} / 9 \mathbb{Z}$.
(b) $R[X] /\left(X^{2}+X+1\right)$ where $R=\mathbb{Z} / 5 \mathbb{Z}$.
(c) $R[X] /\left(X^{2}+X+1\right)$ where $R=\mathbb{C}$.
(d) $R[X] /(f(X))$ where $R=\mathbb{Q}$ and $f(X)=\left(X^{41}-1\right) /(X-1)$.

Exercise 9. (a) Find the minimum polynomial of $\alpha \in \mathbb{C}$ over \mathbb{Q} given that $\alpha \notin \mathbb{Q}$ and $\alpha^{3}+\alpha^{2}-2 \alpha-2=0$.
(b) Find the minimum polynomial of $\beta \in \mathbb{C}$ over $\mathbb{Q}(\sqrt{2})$ given that $\beta \notin \mathbb{Q}(\sqrt{2})$ and $\beta^{5}-2 \beta^{4}-\beta^{3}-2 \beta^{2}-2 \beta+4=0$.

