MSM203a: Polynomials and rings Exercise sheet 5

Richard Kaye

Autumn term, 2013

Exercise 1. Prove that $X^4 + X^3 + 2$ is irreducible in $\mathbb{F}_3[X]$. How many elements are there in the quotient $\mathbb{F}_3[X]/(X^4 + X^3 + 2)$?

Exercise 2. (a) Show that the map $z \mapsto \overline{z}$ is a homomorphism $\mathbb{C} \to \mathbb{C}$.

- (b) Deduce from (a) that if $p(X) \in \mathbb{R}[X]$ and $\alpha \in C$ has $p(\alpha) = 0$ then $p(\overline{\alpha}) = 0$.
- (c) Hence show that every polynomial $p(X) \in \mathbb{R}[X]$ of degree greater than 2 is reducible in $\mathbb{R}[X]$. (You may use the fact that every polynomial of degree at least 1 over \mathbb{C} has a root in \mathbb{C} .)

Exercise 3. This question concerns irreducibility in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.

- (a) Suppose that $p \in \mathbb{Z}$ is prime and $f(X), g(X), h(X) \in \mathbb{Z}[X]$ are such that f(X) = g(X)h(X) and p divides every coefficient of f(X). Show that either p divides every coefficient of g(X) or p divides every coefficient of h(X). [Hint: write $g(X) = g_0 + g_1X + \cdots + g_rX^r$ and $h(X) = h_0 + h_1X + \cdots + h_sX^s$. Let i, j be least such that p divides neither g_i nor h_j .]
- (b) Suppose that $f(X) \in \mathbb{Z}[X]$ and $g_0(X), h_0(X) \in \mathbb{Q}[X]$ such that $f(X) = g_0(X)h_0(X)$. Show there is $n \in \mathbb{N}^+$ and $g(X), h(X) \in \mathbb{Z}[X]$ such that nf(X) = g(X)h(X).
- (c) Deduce from the two previous parts Gauss's lemma that says a polynomial $f(X) \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$ if and only if it cannot be written as the product of two polynomials of smaller degree in $\mathbb{Z}[X]$. [Hint: suppose f[X] is reducible in $\mathbb{Q}[X]$. Apply (b) to get nf(X) = g(X)h(X) and look at all primes dividing n.]

Exercise 4. This question concerns a criterion for irreducibility in $\mathbb{Q}[X]$ called *Eisenstein's criterion*. Suppose $f(X) \in \mathbb{Z}[X]$ is a polynomial $f_0 + f_1X + \cdots + f_kX^k$ of degree $k \ge 2$ and $q \in \mathbb{N}$ is a prime such that: (i) q does not divide f_k ; (ii) q divides f_i for all i < k; and (iii) q^2 does not divide f_0 . You need to show that f(X) is irreducible in $\mathbb{Q}[X]$. Suppose it is reducible.

- (a) Using a previous exercise, show there are $g(X), h(X) \in \mathbb{Z}[X]$ where $g(X) = g_0 + g_1 X + \cdots + g_r X^r$ and $h(X) = h_0 + h_1 X + \cdots + h_s X^s$ such that $1 \leq r, s < k, f(X) = g(X)h(X)$ and q divides g_0 but not h_0 .
- (b) Show that q cannot divide all of the coefficients g_i .
- (c) By looking at the least i such that q does not divide g_i obtain a contradiction.

Exercise 5. For the following polynomials over the rings stated, decide whether it is irreducible or not.

- (a) $X^4 + 1 \in \mathbb{R}[X]$
- (b) $X^4 + 1 \in \mathbb{Q}[X]$
- (c) $X^7 + 11X^3 33X + 22 \in \mathbb{Q}[X]$
- (d) $X^4 + X^3 + X^2 + X + 1 \in \mathbb{Q}[X]$
- (e) $X^3 7X^2 + 3X + 3 \in \mathbb{Q}[X]$
- (f) $X^3 5 \in \mathbb{F}_{11}[X]$

Exercise 6. Let F be a field. Prove that a polynomial f(X) is irreducible in F[X] if and only if f(X + 1) is irreducible in F[X]. Using this, the polynomial $X^{17} - 1$, and the prime q = 17, apply Eisenstein's criterion to show that

$$X^{16} + X^{15} + \dots + X + 1$$

is irreducible in $\mathbb{Q}[X]$.

Exercise 7. (2004, Q11) Let F be a field and R = F[X] be the ring of polynomials over F.

- (a) Prove that R has no zero-divisors.
- (b) Prove that every ideal in R has the form p(X)R for some polynomial $p(x) \in R$.
- (c) Prove that if p(X) is irreducible, then the ideal p(X)R is a maximal ideal.
- (d) For each of the following rings, decide whether or not it is a field, and give reasons.
 - (a) $\mathbb{Q}[X]/(X^2+1);$

(b)
$$\mathbb{Z}_3[X]/(X^4 + X + 1)$$

(c) $\mathbb{Q}[X]/(X^9 + 3X^2 + 6);$

[Note: p(X)R is a different notation for the ideal (p(X)) of R.]

Exercise 8. (2005, Q12) Which of the following quotient rings are fields? In each case give a brief explanation.

- (a) $\mathbb{Z}/9\mathbb{Z}$.
- (b) $R[X]/(X^2 + X + 1)$ where $R = \mathbb{Z}/5\mathbb{Z}$.
- (c) $R[X]/(X^2 + X + 1)$ where $R = \mathbb{C}$.
- (d) R[X]/(f(X)) where $R = \mathbb{Q}$ and $f(X) = (X^{41} 1)/(X 1)$.

Exercise 9. (a) Find the minimum polynomial of $\alpha \in \mathbb{C}$ over \mathbb{Q} given that $\alpha \notin \mathbb{Q}$ and $\alpha^3 + \alpha^2 - 2\alpha - 2 = 0$.

(b) Find the minimum polynomial of $\beta \in \mathbb{C}$ over $\mathbb{Q}(\sqrt{2})$ given that $\beta \notin \mathbb{Q}(\sqrt{2})$ and $\beta^5 - 2\beta^4 - \beta^3 - 2\beta^2 - 2\beta + 4 = 0$.