MSM203a: Polynomials and rings
 Exercise sheet 3

Richard Kaye

Autumn term, 2013

In the following, the degree of a nonzero polynomial $p(X) \in R[X]$ is the highest value of n such that $p(X)$ has a nonzero term $a X^{n}$. If $p(X)$ is the zero polynomial, so there is no nonzero term $a X^{n}$, we shall say (in this module) that $p(X)$ has degree -1 .

If R has 1 then a monic polynomial is some $p(X) \in R[X]$ where the highest power of X occurs as $1 \cdot X^{n}$. (I.e. n here is the degree of $p(X)$ and the leading coefficient is 1.)

A polynomial $p(X) \in R[X]$ is reducible if it can be written as a product $q(X) r(X)$ where each of $q(X), r(X)$ is in $R[X]$ and has degree greater than or equal to 1 . If this is not the case, $p(X)$ is irreducible.

You may find it helpful to use the fact (from lectures) that given R and $a \in R$ the evaluation function $v_{a}: p(X) \mapsto p(a)$ is a homomorphism of rings $R[X] \rightarrow R$.

For a prime $p \in \mathbb{Z}, \mathbb{F}_{p}$ is an alternative name for the ring of integers modulo p. (The \mathbb{F} is used to emphasise that it is a field, which indeed it is as we saw in the last exercise sheet.) We will continue to use $\mathbb{Z} / n \mathbb{Z}$ or $\mathbb{Z} /(n)$ when n is not prime.

Exercise 1. Show that it is not true in general that, for a ring R and nonzero polynomials $p(X), q(X)$ each of degree at least 1 , the degree of $p(X) q(X)$ is the sum of the degrees of $p(X), q(X)$, but that this is true whenever R is an integral domain. [The first part asks for a counter-example: be as specific as you can. The second part asks for a proof.]

Exercise 2. If F is a field and $p(X)$ is a polynomial of degree 2 or 3 over F, show that $p(X)$ is irreducible if and only if $p(a) \neq 0$ for all $a \in F$.

Exercise 3. If R is an integral domain and $p(X)$ is a monic polynomial of degree 2 or 3 over R, show that $p(X)$ is irreducible if and only if $p(a) \neq 0$ for all $a \in R$. [Hint: show first that if $p(X)$ is reducible it can be written as a product of monic polynomials.]

Exercise 4. Give an example of a reducible polynomial $p(X) \in \mathbb{R}[X]$ of degree 4 which has no real root. [So the useful result in Exercise 2 fails for degree 4 or more.]

Exercise 5. Factorise $X^{4}+X$ fully over the field \mathbb{F}_{2} into monic polynomials. Prove each of your factors is irreducible.

Exercise 6. Factorise $X^{4}+2 X^{3}+X+2$ over the field \mathbb{F}_{3} fully, giving your answer as a product of irreducible monic polynomials.

Exercise 7. Show that $X^{2}+1$ is irreducible over \mathbb{F}_{3} and write down a multiplication table for $R=\mathbb{F}_{3}[X] /\left(X^{2}+1\right)$.

