MSM203a: Polynomials and rings
 Exercise sheet 2

Richard Kaye

Autumn term, 2013

Exercise 1. For each positive $n>1$ in \mathbb{Z}, prove that n is not prime if and only if $\mathbb{Z} / n \mathbb{Z}$ has zero divisors. So $\mathbb{Z} / n \mathbb{Z}$ is an integral domain if and only if n is prime.

Exercise 2 (2008, Q3). If S is a subring of a field F and S contains the 1 of F then S is an integral domain.

Exercise 3 (2005, Q3). Show that if R is a finite integral domain other than $\{0\}$ then it is a field. [Hint: Suppose $|R|=n$ and let $x \neq 0$. You will want to show x^{-1} exists. Suppose it doesn't. Put each element y (there are n of them) into the 'pigeonhole' labelled by $x \cdot y$. Assuming x^{-1} doesn't exist, how many pigeonholes get occupied?]

Exercise 4. A ring-like structure $F=\{0,1,2,3\}$ is given with addition and multiplication defined by

+	0	1	2	3					
0	0	1	2	3					
1	1	0	3	2					
2	2	3	0	1				0	1
	0	0	0	0	0	0	0	3	3
3	3	2	1	0		3	0	3	1

(a) (Not assessed.) Prove that F is a field.
(b) Evaluate the following in $F[X]:\left(X^{2}+3 X\right)(2 X+1) ;(X+2)(X+3) ;(X+1)(X+2)(X+3)$.

Exercise 5. Let S be the ring-like structure $S=P(\{0,1\})$ with addition and multiplication defined by $X+Y:=\{x: x \in X$ or $x \in Y$ but not both $\}$ and $X \cdot Y:=X \cap Y$. Show that S is a commutative ring with 1 . Is S an integral domain?

Show that S has three distinct subrings of size 2 , each isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.
Exercise 6. Given $n, k \in \mathbb{N}$ find $m \in \mathbb{N}$ such that each term in $(X+Y)^{m}$ contains either X^{n} as a factor or contains Y^{k} as a factor.

Let R be a commutative ring and $I \triangleleft R$. Define $\sqrt{ } I=\left\{x \in R: x^{n} \in I\right.$, some $\left.n \geqslant 1\right\}$. Show that $\sqrt{ } I \triangleleft R$.

For $R=\mathbb{Z}$, find $\sqrt{ } I$ where I is: (a) $3 \mathbb{Z}$; (b) $4 \mathbb{Z}$; (c) $12 \mathbb{Z}$.

