MSM2P01, Autumn 2013, Exercises 5

Exercise 1 (2012, A8). Determine, with justification, which of the following series converge.

(a)
$$\sum_{n=1}^{\infty} \frac{n+\sin n}{n+1}$$

(b)
$$\sum_{n=1}^{\infty} n^2 \left(\frac{3}{4}\right)^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2+4}{3n^2+4n+6}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$$

In this question you may appeal to general limit theorems and standard convergence tests for series.

Exercise 2 (2011, A7). Determine, with justification, which of the following series converge.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{3n+2}{4n}\right)^{2n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n\log n}$$

In this question you may apeal to general limit theorems and standard convergence tests for series, including the *integral test* that says if $f: [1, \infty) \to \mathbb{R}^+$ is decreasing¹ then $\sum_{n=1}^{\infty} f(n)$ converges if and only if the limit $\lim_{n\to\infty} \int_1^n f(x) \, dx$ exists.

Exercise 3 (Based on 2012, B12(e)). Suppose (a_n) is a sequence of real numbers such that

$$l = \lim_{n \to \infty} n^2 |a_n|$$

exists.

- (a) Prove that there is $n \in \mathbb{N}$ such that for all $n \ge N$, $|n^2 a_n| < 1 + |l|$.
- (b) Hence show by comparison with $\sum \frac{1}{n^2}$ that $\sum_{n=1}^{\infty} a_n$ converges absolutely.

 $^{^{1}}$ This implies the integrals mentioned here all exist, but the theory of integration is beyond the scope of this course.

Exercise 4 (2010, B12). (c) Let (a_n) be a decreasing sequence of positive real numbers and let n_1, n_n be natural numbers satisfying $n_1 < n_2$. Explain why

$$\sum_{n=n_1+1}^{n_2} a_n \ge (n_2 - n_1)a_{n_2}$$

(e) Show that

$$\sum_{n=2^{j-1}+1}^{2^j}\frac{1}{n\log n} \geqslant \frac{1}{2\log 2}\frac{1}{j}$$

for all $j \in \mathbb{N}$. Deduce that the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ diverges.

Exercise 5 (2011, B12(d)). Using appropriate series convergence tests, prove that the series

$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

converges if and only if the real number x satisfies $-1 \leq x < 1$.

Exercise 6. Find the radius of convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^n$$

(b) $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n} x^n$