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Note: These printed handouts are intended to supplement the material provided in lec-
tures. They are not sufficient on their own.

This section of the notes is about the nice rings and (where possible) how they can be
made even nicer. In this chapter we make a blanket assumption that all rings considered are
commutative rings with 1. In many cases the theorems require the additional assumption
that the ring is a domain or a field. Where needed this will be stated.

1 Polynomial division

Definition 1.1. In a commutative ring R with 1, given n > 1 in N and a ∈ R we write na
for a + a + · · · + a (where there are n as here), n for 1 + 1 + · · · + 1 (where there are n 1s
here), and an for a · a · · · · · a (with n as). Also, 0a is 0, a0 is 1, and (−n)a is −(na), and a−n

is (a−1)n when a−1 exists.

We have seen how to add, subtract and multiply polynomials. The next result says how
one can divide polynomials.

Theorem 1.2 (Polynomial Division). Let p(X), s(X) be polynomials over a commutative
ring with 1, R, and let n = deg p(X) and l = deg s(X). Suppose s(X) = slX

l+ · · ·+s0 is not
identically zero and sl 6= 0. Then there are polynomials q(X), r(X) such that sn−ll p(X) =
q(X)s(X) + r(X) and the degree of r(X) is less than that of s(X).

Proof. Take q(X), r(X) and k such that

sn−kl p(X) = q(X)s(X) + r(X),

and deg r(X) = k is as small as possible. That this can always be done is clear from
1p(X) = 0(X)s(X) + p(X), where 0(X) is the zero polynomial and s0l is the 1 of R. Thus
we can find such q(X), r(X) with deg r(X) = n. So there is some least k 6 n for which there
are q(X), r(X) satisfying the equation above with deg r(X) = k. (Remember: we defined
the degree of the zero polynomial to be −1, so k = −1 if the above equation can be satisfied
with r(x) = 0.)

We have to show that for this least k we have k < l.
Assume instead that k > l. Write r(X) = rkX

k + · · ·+ r0, where rk is nonzero. Then we
may write

slr(X) = rks(X)Xk−l + (slr(X)− rks(X)Xk−l).
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The polynomial slr(X) − rks(X)Xk−l has degree at most k, since we assumed k > l and
s(X) has degree l. But in fact coefficient of Xk in it is slrk − rksl = 0. So the polynomial
slr(X)− rkS(X)Xk−l has in fact degree strictly less than k. This means

sls
n−k
l p(X) = slq(X)s(X) + rks(X)Xk−l + (slr(X)− rkS(X)Xk−l)

so
sn−k+1
l p(X) = (slq(X) + rkX

k−l)s(X) + (slr(X)− rks(X)Xk−l),

contradicting our choice of q(X), r(X), a, k. So k < l as required.

In practice, the quotient and remainder given by the above theorem are calculated by
the usual algorithm for polynomial devision. In fact the above argument is just a proof
built about the usual algorithm. At the key step in the argument we replaced r(x) by
slr(X)− rks(X)Xk−l. This is because we had already found sn−kl p(X) = q(X)s(X) + r(X)
so we need to look at the terms of highest degree in s(x) and r(x). This is the term of highest
degree in rks(X)Xk−l so rkX

k−l is the next term we write down in the quotient. The proof
is complicated slightly by the fact that the leading term of s(X) may not be 1, but the details
are similar.

The easiest cases of the division algorithm are when q(X) is a monic polynomial, i.e. has
leading coefficient 1. In this case the coefficient sl = 1 so the conclusion is there are q(x) and
r(X) with p(X) = q(X)s(X) + r(X). Almost as easy is the case when R is a field, for then
s−1l exists and the same conclusion holds.

The problem case is when sn−kl = 0, which might happen in a ring that is not an integral
domain. For completeness’ sake we briefly look at this now.

Definition 1.3. An element s ∈ R is nilpotent if an = 0 for some positive n ∈ N.

Exercise 1.4. If R is an integral domain show that no nonzero element of R is nilpotent.

Exercise 1.5. If R is an commutative ring with 1 and is not the zero ring, show that 1 is
not nilpotent.

Corollary 1.6. Let p(X), s(X) be polynomials over a ring R, and let n = deg p(X) and
l = deg s(X). Suppose s(X) = slX

l+ · · ·+s0 is not identically zero and sl 6= 0. Suppose also
that either R is an integral domain or (more generally) sl is not nilpotent in R. Then there
are polynomials q(X), r(X) and an element a 6= 0 of R such that ap(X) = q(X)s(X) + r(X)
and the degree of r(X) is less than that of s(X).

Integral domains have no zero divisors, and consequently allow one to solve equations of
the form x(y − z) = 0 in the way one expects: either x = 0 or else y = z. (This is precisely
the cancellation law for multiplication discussed earlier.)

Theorem 1.7. Let p(X) be a polynomial over an integral domain R with degree n > 0.
Then the polynomial equation p(x) = 0 has at most n = deg(p(X)) roots in R.

Proof. By induction on n. For n = 1 the polynomial is a+ bX with b 6= 0. So it has as root
any x ∈ R satisfying a+ bx = 0. There is at most one such x since if a+ bx1 = a+ bx2 = 0
then b(x1 − x2) = 0 and as b 6= 0 and R has no zero divisors we must have x1 = x2.

Assume the result is true for n > 1 and consider a polynomial p(X) of degree n + 1.
Suppose p(X) = 0 has a root a ∈ R (for if it has no roots we are finished), i.e. suppose
p(a) = 0. Then p(X) = q(X)(X − a) + b for some q(X) and b (a polynomial of degree
less than 1, hence a constant) by Polynomial Division applied to p(X) and (X − a). But
since p(a) = 0 we have 0 = p(a) = q(a)(a − a) + b = b, so b = 0 so p(X) = q(X)(X − a),
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and obviously q(X) has degree n. By the induction hypothesis there are at most n roots of
q(x) = 0. Now if d ∈ R is any root of p(X), i.e. p(d) = 0, we have 0 = q(d)(d− a) so either
d = a or q(d) = 0 since R has no zero divisors. It follows that the only roots of p(X) = 0 are
a and the (at most n) roots of q(X).

2 Characteristic

Definition 2.1. Let R be an integral domain. The characteristic of R, charR, is the least
positive k ∈ N such that a sum of k ones, 1 + 1 + · · ·+ 1, is 0. By convention, if there is no
such k we write charR = 0.

According to this definition, the characteristic of the zero ring {0} is 1. This is the only
way this definition can come out to be 1. Some people don’t allow {0} to be an integral
domain. In any case, we shall ignore this uninteresting case.

Proposition 2.2. The characteristic of an integral domain R other than {0} is either 0 or
a prime number p.

Proof. Let k = charR > 0, so

k︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0 in R (k 1s). If k = 1 then 1 = 0 in R so R

is the zero ring. If k > 1 is not prime, k = uv say, with 1 < u, v < k. Then

k︷ ︸︸ ︷
1 + · · ·+ 1 = (

u︷ ︸︸ ︷
1 + · · ·+ 1)(

v︷ ︸︸ ︷
1 + · · ·+ 1)

by straightforward expansion using distributivity (see the next exercise), so one of (

u︷ ︸︸ ︷
1 + · · ·+ 1),

(

v︷ ︸︸ ︷
1 + · · ·+ 1) is 0 as R is an integral domain. But this contradicts the choice of k.

Exercise 2.3. Let R be a commutative ring with 1 and k ∈ N positive. Prove by induction
on n that

(

k︷ ︸︸ ︷
1 + · · ·+ 1) · (

n︷ ︸︸ ︷
1 + · · ·+ 1) =

nk︷ ︸︸ ︷
1 + · · ·+ 1

for all positive n ∈ N.

Theorem 2.4. An integral domain R other than {0} either contains a copy of Z as a subring
or else contains a copy of Z/pZ as a subring for some prime number p.

Remark 2.5. For each prime number p the ring Z/pZ is actually a field and to commemorate
the fact that it is a field we write it as Fp.

Theorem 2.6. Let F be a field and p = charF , and suppose p 6= 0. Then either F is infinite
or else |F | is a power of p.

Sketch proof. F is a field. The characteristic subfield of F , Fp = {(
u︷ ︸︸ ︷

1 + · · ·+ 1) : 0 6 u < p},
is also a field. It turns out by simple axiom-checking that F is a Fp-vector space. (You
didn’t study vector spaces over Fp last year, but all the theory works out just the same.)
In particular F is either an infinite dimensional Fp-space or else has finite dimension k. In
the latter case F = {λ1e1 + · · · + λkek : λi ∈ Fp} for some basis {e1, . . . , ek} ⊆ F , and this
representation of the elements of F is unique (different λs give different elements). So there
are pk elements of F .
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We have seen how a integral domain R of characteristic p > 1 has as a subfield a copy

of Fp, the characteristic subfield formed from the set of all

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1 (0 6 n < p) in

F , and that one of characteristic 0 contains a copy of the integers. In general this is all one
can say, but a field F will either contain a copy of Fp or else a copy of the rationals, the
characteristic subfield in the case when the characteristic is 0.

Proposition 2.7. A field of characteristic 0 contains a copy of Q.

Proof. We already have a copy Z′ of the integers in F , the set of elements

{
n︷ ︸︸ ︷

1 + 1 + · · ·+ 1 : n ∈ N+} ∪ {0} ∪ {
n︷ ︸︸ ︷

−1 +−1 + · · ·+−1 : n ∈ N+}.

with the isomorphism n 7→ n′ =

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1 from Z to Z′. For each q = n/m ∈ Q we map

it to q′ = n′(m′)−1 in F . This defines a copy of Q in F , since the map q 7→ q′ just defined
is easily checked to be a homomorphism, and is injective since if n′1(m′1)−1 = n′2(m′2)−1 then
n′1m

′
2 = n′2m

′
1 so n1/m1 = n2/m2 in Q.

Remark 2.8. By all means continue to use the notation with over-braces as here. However
note that Definition 1.1 gives a shorter alternative as long as you don’t get muddled between
elements of R and elements of Z.

3 Units

Another way to find parts of a ring that ‘looks nice’ is to look at the elements that have
multiplicative inverse.

Definition 3.1. In a ring R, a unit is an element x ∈ R which has a multiplicative inverse
y such that xy = yx = 1.

For example, 1 is always a unit, but there may be other units besides this. As we saw
before, if a multiplicative inverse of x exists then is unique. This multiplicative inverse when
it exists is denoted x−1.

Definition 3.2. In a ring R, the set of units of R is denoted R∗ or R×. It is a group when
considered as a set with the multiplication operation.

There are many nice theorems about (Z/nZ)× for various n ∈ Z, several of them rather
difficult, and all of them properly part of number theory. Some of these results can be
generalised to other rings, but this is out of the scope of this course.

Unfortunately R×∪{0} is rarely a ring itself since it is not usually closed under addition.

Exercise 3.3. Show that if a ∈ R is nilpotent then 1− a and 1 + a are units. Hint: show

(1− a)(1 + a+ a2 + · · ·+ an−1) = 1− an

and
(1 + a)(1− a+ a2 + · · ·+ (−a)n−1) = 1 + an

for some n.
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4 Maximal and prime ideals

This section looks in more detail at properties of ideals, and principal ideals in particular,
looking to generalise the idea of ‘prime’ in an arbitrary ring.

To start with, we collect together some easy properties of principal ideals. Note that, in
a ring R, we write b|a (b divides a, or b is a factor of a) to mean there is x ∈ R with a = bx.

Proposition 4.1. Let a, b ∈ R.

(a) The ideal (a) is the smallest ideal containing a. So if a ∈ I / R then (a) ⊆ I.

(b) We have (a) ⊆ (b) iff b|a.

(c) The principal ideal generated by 0 is (0) = {0}.

(d) The principal ideal generated by 1 is (1) = R. More generally (u) = R whenever u is a
unit.

(e) In an integral domain, (a) = (b) iff a = b = 0 or there is a unit u ∈ R with au = b.

The following is a sort of converse to the definition of an ideal.

Definition 4.2. An ideal I / R is prime if I 6= R and whenever x, y ∈ R and xy ∈ I then at
least one of x, y is in I.

Prime ideals are exactly what we need if we want integral domains.

Theorem 4.3. Let R be a ring and I / R an ideal not equal to the whole of R. Then R/I
is an integral domain if and only if I is prime in R.

Corollary 4.4. A ring R is an integral domain if and only if {0} is a prime ideal.

In more advanced work one does not normally talk about prime numbers in a ring R but
rather about prime ideals of R. If one really wants to say whether a ∈ R is prime one looks
at the ideal (a) it generates (ruling out the trivial cases). Thus our notion of prime ideal
immediately yields a definition of prime number.

Definition 4.5. In an arbitrary ring R, an element a ∈ R is prime if a is not zero nor a unit
and (a) is a prime ideal.

Proposition 4.6. a ∈ R is prime if it is nonzero, not a unit and the following holds for all
x, y ∈ R:

a|xy ⇒ a|x or a|y.

Example 4.7. The primes in Z are the familiar numbers p ∈ Z that you have up to now
called ‘prime’, and their additive inverses. Note however that the new definition of ‘prime’ is
not the same as the familiar one. (The familiar definition is in some sense ‘wrong’ and will
have to be unlearnt. See also the notions of ‘maximal’ and ‘irreducible’ below.)

A similar story applies to quotients R/I that are fields.

Definition 4.8. An ideal I /R is maximal if I 6= R and whenever I ⊆ J ⊆ R with J /R we
have I = J or J = R.

Theorem 4.9. If R is a ring and I / R then R/I is a field if and only if I is maximal in R.
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Corollary 4.10. Let R be a ring. Then R is a field if and only if {0} / R is maximal, i.e. if
and only if there are no proper ideals.

Corollary 4.11. Let R be a ring and I / R. Then if I is maximal it is prime.

The following result requires a theorem from set theory called Zorn’s Lemma, so will not
be proved in this course.

Fact 4.12. If R is a ring and I / R is a proper ideal then there is a maximal ideal J / R
containing I. Hence in particular any commutative ring with one, other than the zero ring,
has a quotient that is a field.

As for primes, we can look at the corresponding properties of elements of the ring.

Definition 4.13. Let R be a ring and a ∈ R. Then a is maximal if it is nonzero, not a unit
and (a) is a maximal ideal.

Exercise 4.14. Show that for Z the notion of being ‘maximal’ coincides with being ‘prime’.

For general rings R, ‘maximal’ and ‘prime’ are not the same, and (even worse!) neither
corresponds to the familiar school definition of ‘prime number’ which is

Definition 4.15. An element a ∈ R is irreducible if a is nonzero and not a unit, and whenever
a = uv for some u, v ∈ R then one of u, v is a unit.

The definition of irreducible elements is particularly useful in the case of the ring F [X]
of polynomials over a field.

Proposition 4.16. A polynomial p(X) ∈ F [X], where F is a field, is irreducible in F [X] if it
has degree at least 1 and it is impossible to write p(X) = q(X)r(X) for two other polynomials
q(X), r(X) ∈ F [X] both of smaller degree than p(X).

Of all the notions of ‘prime’ studied here, ‘irreducible’ is the weakest.

Proposition 4.17. If a is prime in an integral domain R then it is irreducible.

There is no converse in general to the previous proposition, but there is a converse in an
important family of cases, which is the subject of the next section.

Example 4.18. (A ring R in which ‘prime’, ‘maximal’ and ‘irreducible’ are all different.)

5 Principal ideal domains

After the disappointment of the last section where we found three incompatible meanings to
the word ‘prime’, we introduce a useful family where the three notions coincide.

Definition 5.1. A ring R is a principal ideal domain (PID) if it is an integral domain and
each ideal I / R is a principal ideal (a) for some a ∈ R.

Example 5.2. The ring Z is a PID. (Hint: if I /Z consider the least positive element of I.)

Example 5.3. If F is a field, the ring F [X] of polynomials over F is a PID. (Hint: if I /F [X]
consider the monic polynomial of least positive degree in I.)

Theorem 5.4. If the ring R is a PID then the notions of ‘irreducible’, ‘prime’ and ‘maximal’
coincide. That is, in a PID an ideal (a) is maximal if and only if a is irreducible.
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This gives us perhaps the most import family of examples of all. Given a field F we form
the polynomial ring R = F [X]. By results above, F [X] is a PID. Now suppose p(X) ∈ F [X]
is irreducible. Then the principal ideal (p(X)) is maximal and hence F [X]/(p(X)) is a field.

The following particular case is very familiar indeed.

Example 5.5. Let R = R and p(X) = X2 +1. Let I = (p(X)), the principal ideal generated
by p(X). Then R[X]/(p(X)) is the familiar ring . . . [insert name here].

Be aware that this relies on working over a field F in the first place. When R is not a
field, R[X]/(p(X)) need not be a field even if p(X) is irreducible in R[X].

Example 5.6. Let R = Z and p(X) = X2−2. Let I = (p(X)). Then R[X]/(p(X)) is Z[
√

2].

6 The field of fractions over an integral domain

This section contains an easy but technical construction. Given an integral domain R we will
show how to build a field F = Q(R) that contains R. The construction is exactly like (and
generalises) the construction of the rationals Q from the integers Z.

Given an integral domain R, let

Q0 = {(r, s) : r, s ∈ R, s 6= 0}.

We define an equivalence relation on Q0 by

(r, s) ∼ (r′, s′)⇔ rs′ = r′s.

Proposition 6.1. ∼ is an equivalence relation on Q0.

To make Q0/∼ into a ring-like structure we define

(r1, s1)/∼+ (r2, s2)/∼ = (r1s2 + r2s1, s1s2)/∼

and
(r1, s1)/∼ · (r2, s2)/∼ = (r1r2, s1s2)/∼.

Note that this relies on s1s2 being non-zero, so will not work if there are zero divisors.

Proposition 6.2. These are well-defined binary operations on Q0/∼.

Proposition 6.3. With addition and multiplication as just defined, Q0/∼ is a field, and
contains a copy of R via the injective homomorphism

x 7→ (x, 1)/∼.

Definition 6.4. Q0/∼ is called the field of fractions of R, and is written Q(R).

Example 6.5. Q = Q(Z)

Example 6.6. Let F be a field. Then F [X] is an integral domain. Its field of fractions is
denoted F (X) and is Q(F [X]), consisting of all so-called rational polynomials p(X)/q(X) for
which q(X) is not the zero polynomial. The object X = X/1 is an element of F (X) that is
not in F . F (X) is a field containing a copy of F as well as X = X/1.
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7 Field extensions

A field extension is a pair of fields F ⊆ K. Galois theory, which some of you may take later,
studies field extensions. We can use what we have learnt to see some of the beginnings of
this subject.

Exercise 7.1. Given fields F ⊆ K show that K is an F -vector space. Hence it has a
dimension n over F . If this dimension is finite and |F | is finite then |K| = |F |n.

Now consider some α ∈ K \ F .

Definition 7.2. F (α) is the smallest subfield of K containing α and F . It is the ‘closure’ of
F, α under +, ·,−,−1.

We look here at simple field extensions, i.e. ones of the form F (α) over F . There are two
possibilities for α.

Definition 7.3. α is algebraic over F if there is a polynomial p(X) ∈ F [X] of positive degree
such that p(α) = 0. If there is no such polynomial, then α is transcendental over F .

Example 7.4. The element i in C is algebraic over R.

Example 7.5. You may know the theorem (or have heard the result) that π ∈ R is tran-
scendental over Q.

Exercise 7.6. Let K be any field, and F = Q(K[X]), the field of ‘rational polynomials’ over
K, i.e. the field of fractions of K[X]. Show that the element X = X/1 of F is transcendental
over K.

Theorem 7.7. If α is algebraic over F then there is a unique monic polynomial mα(X) ∈
F [X] of least positive degree such that mα(α) = 0. Also, for this polynomial we have, for all
p(X) ∈ F [X],

p(α) = 0 ⇒ ∃q(X) ∈ F [X] (p(X) = q(X)mα(X)).

Proof. Let mα(X) ∈ F [X] be the polynomial of least positive degree such that mα(α) = 0.
Then the property given holds by polynomial division as shown in lectures.

Definition 7.8. The polynomial mα(X) is unique (because it is monic) and is called the
minimum polynomial of α over F .

Proposition 7.9. If α is algebraic over F then mα(X) is irreducible.

Corollary 7.10. If α is algebraic over F then mα(X) is maximal, and hence F [X]/(mα(X))
is a field.

Theorem 7.11. If α is algebraic over F then F (α) ∼= F [X]/(mα(X)).

The other case is described by the field of fractions construction.

Theorem 7.12. If α is transcendental over F then F (α) ∼= F (X) = Q(F [X]).
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