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Note: These printed handouts are intended to supplement the material provided in lec-
tures. They are not sufficient on their own.

1 The axiomatic method: numbers

You have already seen various sets of numbers, including the integers Z, rational numbers Q,
real numbers R, and complex numbers C. These are obviously different but have many
common features. This course studies the common features of them all. Another aspect of
this course is to show how to make new kinds of number, new number systems, and study
their properties.

This begs the question, ‘what is a number?’ You have probably been led to think that
a number is a kind of object, and when one looks at such an object it is obvious somehow
that it is the right sort of thing to be called a number. So for example, the set {0, 1} is not
a number. But this view is very limiting, and taking this view will prevent one discovering
a whole range of exciting mathematics.

We will take the view that, instead of an object x being either a number or not, it will
be viewed in some context and that context will tell us the properties of x. We will look
at those contexts and properties which make x behave like a number. It will not matter
whether x happens to be a banana or the set {0, 1} or something else—it is how it behaves
that matters.

Another way of saying this is that mathematical objects are not what they are, but what
they do. The contexts we study will include operations such as add and multiply, so in such
contexts x can add to or multiply with another object y. The operations (and the set of
objects that are subject to these operations) are key here, not the objects themselves.

We can make this idea more formal and precise, but first we need a piece of set theoretic
notation from first year.

Definition 1.1. Suppose X,Y are sets. Then X × Y denotes the set of pairs of the form
(x, y) where x is from X and y is from Y . This is called the Cartesian Product of X and Y .
A special case is X×X, the set of pairs (x1, x2) where both x1, x2 ∈ X. The product X×X
is often written X2.

This generalises: we can form the product X × Y ×Z of all triples (x, y, z) where x ∈ X,
y ∈ Y , z ∈ Z, and we can form X3 = X ×X ×X. And so on to X4, X5, etc.

Definition 1.2. Let X be a set. An operation on X is a function f : X → X. A binary
operation on X is a function f : X ×X → X.

Notice that X is automatically ‘closed’ under any operation on X so I don’t ever have to
state this as an ‘axiom’.

In examples, a suggested definition of an operation on a set X may not be obviously
well-defined, for example because it is not obvious if the set is closed under that operation.
We will have to bear this in mind.
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We will be looking at ‘ring-like structures’. These are nonempty sets X with two binary
operations, +: X2 → X and · : X2 → X which we think of as being like addition and
multiplication. We’ll even write them like addition and multiplication, so writing x+y instead
of +(x, y) and x · y or xy instead of ·(x, y). We will assume the usual rule of precidence,
multiplication before addition, so x + yz means x + (y · z). But these operations need not
be the familiar addition and multiplication. You may write a ring-like structure as (X,+, ·)
to emphasise the fact that there are three pieces of information: the set X and the two
operations +, ·. It is more common to write it just as X, but you must remember that
specifying the operations +, · is still important.

Example 1.3. Let X be the set of subsets of N. For x, y ∈ X define x + y := x ∪ y and
x · y := x ∩ y. Then X is closed under these operations and this therefore defines a ring-like
structure.

The most important ring-like structures are Z,Q,R,C with their usual addition and
multiplication operations. There are many many other examples. If we are going to study
them we should not study one, and then move to the next, and so on, since this would waste
a lot of time. But we should as far as possible study all of them simultaneously, concentrating
on the ways they are similar or the ways they are different. We can start by listing some of
the properties (we will call them axioms) that they have.

I AXIOM 1. Addition is associative, x + (y + z) = (x + y) + z for all x, y, z.

I AXIOM 2. There is a special element called zero and written 0 such that x+ 0 = 0 +x = x
for all x.

Proposition 1.4. If a ring-like structure satisfies Axiom 2 then there is only one element 0
satisfying x + 0 = 0 + x = x for all x.

Proof. See lectures.1

I AXIOM 3. For all x there is an element y such that x + y = y + x = 0.

Proposition 1.5. If a ring-like structure satisfies Axioms 1, 2 and 3 then for each x there
is only one element y satisfying x + y = y + x = 0.

The unique y with x + y = y + x = 0 will be written −x. Thus this defines a unary
operation x 7→ −x on X. But we may also define a binary operation of subtraction for
ring-like structures satisfying Axioms 1, 2 and 3 by x− y := x + (−y). (There is no need to
prove closure here: this is obvious from closure under +.)

I AXIOM 4. Addition is commutative, x + y = y + x for all x, y.

I AXIOM 5. Multiplication is associative, x(yz) = (xy)z for all x, y, z.

I AXIOM 6. Multiplication is distributive over addition, x(y + z) = xy + xz and (x + y)z =
xz + yz for all x, y, z.

Definition 1.6. A ring is a ring-like structure satisfying axioms 1, 2, 3, 4, 5, and 6.

You might think we could add more axioms, but we will stop here and look at the effect of
other axioms later. Stopping here has the advantage that any theorems we can prove about
rings will be very general: they only need these six axioms to work.

Example 1.7. The set of integers Z with the usual addition and multiplication is a ring.

Example 1.8. The set of rationals Q with the usual addition and multiplication is a ring.

Example 1.9. The set of reals R with the usual addition and multiplication is a ring.

1In future, for any theorem, proposition, lemma, example, etc. stated in these notes that needs a proof,
but the proof is omitted here, the proof will be given in lectures. You may be asked to reproduce some of
these proofs in the exam.
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Example 1.10. The set of complex numbers C with the usual addition and multiplication
is a ring.

Example 1.11. The set M2(R) of 2 × 2 matrices with real entries with the usual addition
and multiplication of matrices is a ring.

Example 1.12. The set R = {0} with addition and multiplication defined by 0+0 = 0·0 = 0
is a ring, called the zero ring.

Example 1.13. The set Z/nZ = {[0], [1], . . . , [n − 1]} of integers modulo n with the usual
addition and multiplication modulo n is a ring.2

Example 1.14. The set of Gaussian Integers Z[i] = {x + iy : x, y ∈ Z} with addition
and multiplication defined as for complex numbers is a ring. (In this case it is important to
check closure under the addition and multiplication operations as well as the axioms, because
subsets of C may not be closed under addition and multiplication as defined on C.)

Example 1.15. The set Z[
√

2] = {x + y
√

2 : x, y ∈ Z} with addition and multiplication
defined as for real numbers is a ring. (Again, it is important to check closure.)

We will have a lot to say about the last three examples and others like it throughout this
module.

Definition 1.16. Let R be a ring and S a subset of R containing the 0 of R and closed
under +,−, ·. then S is a subring of R. Using the operations from R, it satisfies all of the
axioms of being a ring in its own right.

Note that we had to include − as one of our operations here. This was to make sure the
subring satisfies Axiom 3.

Not every ring-like structure is a ring. In fact there are many more non-rings than rings:
being a ring is somehow rather special.

Exercise 1.17. Let X be the set of subsets of N with x+ y := x∪ y and x · y := x∩ y. Then
X is not a ring.

Exercise 1.18. The set N with usual addition and multiplication is not a ring.

These (and hundreds of other examples) should convince you that if you want to define
a ring it is not sufficient to say what the set is and define addition and multiplication. You
also need to prove that the set is closed under these operations and that the axioms are all
true.

Finally, don’t forget that the addition and multiplication are just names and do not
necessarily mean the usual operations.

Exercise 1.19. The set R+ of positive real numbers with addition defined by x + y :=
xy and multiplication defined by x · y := xlog y is a ring, where ‘log’ means to base e,
i.e. natural logarithm.3 (When you do this, be careful you distinguish between ‘the usual
addition’ and the addition in the ring-like structure, and also ‘the usual multiplication’ and
the multiplication in the ring-like structure, and understand what is being asked here.)

Exercise 1.20. The set R+ of positive real numbers with addition defined by x + y := xy
and multiplication defined by x · y := xy is not a ring.

2 Consequences of the axioms

A lot of basic properties of numbers in rings follow from our six basic axioms. One highlight
is that (−x)(−y) = xy holds for all x, y in a ring. (Finally you will understand the reason
why the product of two negative numbers is positive!) All of this will be done in lectures.

2Unfortunately, in some places this ring is called Zn, and in other places Zn is something different. The
notation Z/nZ is the only unambiguous one I know for this ring.

3I’d use ‘ln()’ but I cannot pronnounce it without feeling very foolish indeed!
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3 Other axioms: integral domains and fields

Looking ahead slightly, we can add other axioms to our list. The axioms in this section are
not in general true of all rings but describe ‘special’ rings.

I AXIOM 7. Multiplication is commutative, xy = yx for all x, y.

Definition 3.1. A ring satisfying Axiom 7 is called a commutative ring.

Exercise 3.2. The ring Z with usual addition and multiplication is a commutative ring.

Exercise 3.3. The ring M2(Z) of 2× 2 matrices over Z is not commutative.

I AXIOM 8. There is an element 1 such that 1x = x1 = x for all x.

Definition 3.4. A ring satisfying Axiom 8 is called a ring with one.

We reserve the word ‘unit’ for later, to mean something quite different. So don’t ever talk
about ‘ring with a unit’ (however posh it might sound).

Proposition 3.5. In a ring with one the element 1 satisfying 1x = x1 = x for all x is unique.
If the ring has more than one element then 1 6= 0.

Example 3.6. The ring of integers Z with usual addition is commutative with one.

Exercise 3.7. The set of even integers 2Z = {2n : n ∈ Z} with usual addition and multipli-
cation is a ring. It is commutative but doesn’t have one.

The last part of the last exercise contains a major trap that you must not fall into.
Remember that 1 is the name for ‘a one’ in a ring R. It may not be the number usually
called 1. (Think of Example 1.19 which is a commutative ring with one, where the element
1 is actually e.)

To prove 2Z does not have one, suppose y ∈ 2Z is a ‘one’ in 2Z. Then xy = yx = x for
all x ∈ 2Z. But y = 2n for some n ∈ Z and multiplication is the usual one in the integers,
so x(2n) = (2n)x = x for all x ∈ 2Z. In particular this needs to hold for x = 2 ∈ 2Z. So
4n = 2(2n) = (2n)2 = 2, so n = 1/2 which is impossible as n was supposed to be an integer.

Exercise 3.8. The set of even integers 2Z = {2n : n ∈ Z} with usual addition and with
multiplication defined by x · y := xy/2 is a commutative ring with one. (Here · is the
multiplication I have defined and xy is the usual multiplication.) You should check closure
as well as the other axioms.

Example 3.9. The zero ring {0} is a commutative ring with one.

We will spend quite a lot of time later on talking about commutative rings with one.
Other additional features of some rings that doesn’t come for free from our previous

axioms concerns multiplication. In a ‘bad’ ring R it may be that two nonzero numbers
multiply together to give zero.

Example 3.10. In the ring Z/6Z of integers modulo 6, we have [2] · [3] = [0].

Definition 3.11. In a ring R, a number x is a zero divisor if it is nonzero and there is some
nonzero y such that one or both of xy, yx is 0.

I AXIOM 9. There are no zero divisors: xy = 0 implies x = 0 or y = 0 for all x, y.

Proposition 3.12. Let R be a ring. Then R has no zero divisors if and only if the left and
right cancellation laws hold:

if x 6= 0 and xy = xz then y = z (1)

if x 6= 0 and yx = zx then y = z (2)

Definition 3.13. A integral domain is a ring R which is commutative with one and which
has no zero divisors.
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Example 3.14. The ring Z with usual addition and multiplication is an integral domain.

Example 3.15. The ring of integers modulo 6 is not an integral domain.

I AXIOM 10. 0 6= 1.

I AXIOM 11. For all nonzero x there is a y such that xy = yx = 1.

Proposition 3.16. Given x in a ring with one, if there is y such that xy = yx = 1 this y is
unique.

When y exists such that xy = yx = 1 we write it as x−1 or 1/x.

Definition 3.17. A field is a commutative ring R with one that satisfies axioms 10 and 11.

I didn’t include the ‘no zero divisors’ axiom becase it is not needed.

Proposition 3.18. Any field is an integral domain.

Example 3.19. The ring of integers Z with usual addition and multiplication is an integral
domain but not a field.

Example 3.20. The ring of integers modulo 5 is a field.

We will have a lot more to say about fields later too.

4 Polynomials

A major part of this module is about polynomials. You have seen polynomials before but
may not have seen a definition. In keeping with the rigorous approach here, we need to define
them properly.

This section will contain the briefest of introductions to polynomials. They will be used
throughout the module, for examples and exercises, and these notes will summarise their
properties.

You may be surprised by the role that polynomials play in this course. You should stop
thinking about polynomials as functions and think of them as numbers. For any ring R we
will define the set of polynomials R[X] over R, and the most important fact will be that
R[X] is a ring in its own right. In other words, its elements, the polynomials, behave just as
numbers behave (so they are numbers). Moreover there is a copy of the original R in R[X].
Thus R[X] defines a ‘bigger’ set of numbers extending R.

Now, more slowly, and more rigorously, we give the definitions.

Definition 4.1. Let R be a ring. A polynomial with coefficients from R is a sequence

(r0, r1, . . . , rn, 0, 0, . . .)

of elements ri ∈ R, such that all but finitely many of these elements are zero.

That’s strange and doesn’t (yet) agree with our previous intuition about polynomials. It
will help if we write them slightly differently.

Definition 4.2. Let R be a ring and X a letter. We let R[X] be the set of polynomials with
coefficients from R where we write the polynomial

(r0, r1, . . . , rn, 0, 0, . . .)

in the special way as
r0 + r1X + · · ·+ rnX

n.

We usually write the polynomial r0 + r1X + · · ·+ rnX
n as p(X) for some letter p.
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Definition 4.3. We define addition in R[X] as follows. Let r(X) = r0 + r1X + · · ·+ rnX
n

and s(X) = s0 + s1X + · · ·+ skX
k be polynomials in R[X]. That is, they are sequences

r(X) = (r0, r1, . . . , rn, 0, 0, . . .)

and
s(X) = (s0, s1, . . . , sk, 0, 0, . . .).

Then we define r(X) + s(X) to be the polynomial t(X) defined by

t(X) = (r0 + s0, r1 + s1, . . .).

Notice that as all but finitely many ri are zero, all but finitely many si are zero, and 0+0 = 0
it follows that all but finitely many ri + si are zero.

Definition 4.4. We define multiplication in R[X] as follows. Let r(X) = r0 + r1X + · · ·+
rnX

n and s(X) = s0 +s1X+ · · ·+skX
k be polynomials in R[X]. That is, they are sequences

r(X) = (r0, r1, . . .)

and
s(X) = (s0, s1, . . .).

Then we define r(X) · s(X) to be the polynomial t(X) defined by

t(X) = (r0s0, r1s0 + r0s1, t2, t3, . . . , tm, . . .)

where

tm =

m∑
i=0

rism−i

for each m. Notice that as ri = 0 for i > n and sj = 0 for j > k it follows that tm =∑m
i=0 rism−i = 0 for m > n + k since if m > n + k and 0 6 i 6 m then either i > n or else

i 6 n and m − i > k so one of ri, sm−i is zero. Hence rism−i = 0 for all such i, so tm = 0.
So t(X) ∈ R[X].

Theorem 4.5. If R is a ring then R[X] is also a ring.

Definition 4.6. If R is a ring with one, and p(X) ∈ R[X] we say p(X) is monic if its leading
coefficient is 1, i.e. if p(X) = 1 ·Xk + pk−1X

k−1 + · · ·+ p1X + p0 for some k.

Definition 4.7. If R is a ring and p(X) ∈ R[X] is non-zero, then the degree of p(X),
deg p(X) is the unique n such that p(X) = (p0, p1, p2, . . . , pn, 0, 0, . . .) and pn 6= 0.

In the special case when p(X) = (0, 0, . . .) is the zero of R[X] we define the degree of
p(X) to be −1.4

Note that this makes R essentially the ‘same as’ the set of polynomials p(X) ∈ R[X]
such that deg p(X) 6 0. In other words R[X] contains a ‘copy’ of R, the set of polynomials
r(X) = r0. That is, R is isomorphic to a subring of R[X].

Theorem 4.8. If R is a commutative ring with one then R[X] is also a commutative ring
with one.

Theorem 4.9. If R is an integral domain then R[X] is also an integral domain.

However it is not true that if R is a field then R[X] is a field. For example, in R[X], the
‘one’ is 1 = 1 + 0X + 0X2 + · · · . And X (an abbreviation for 0 + 1X) is not the 0. But there
is no polynomial p(X) such that p(X) · X = 1, for if p(X) = p0 + p1X + · · · + pnX

n were
such a polynomial then pn 6= 0 for some n > 0 else p(X) = p0 ∈ R and p(X) ·X = p0X 6= 1.
But if pn 6= 0 with n > 0 then p(X) ·X = p0X + · · ·+ pnX

n+1 and this polynomial cannot
equal 1.

A lot of this module is concerned with how to recover from this difficulty: in particular
how to make R[X] into a field. Of course this will involve either adding new elements or
merging elements together or defining new addition and multiplication operations. In other
words there needs to be other ways of making ‘new rings’ from old ones. The two key methods
are: (a) quotient rings; and (b) the field of fractions. We will study these both in due course.

4Other people say that the degree of 0 to be −∞ or just ‘not defined’ so you need to take care here.
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