Right-orderability of groups

Richard Kaye

December 18th, 1998

This short paper sets out necessary and sufficient conditions for a group to be right-orderable. In fact I give conditions for an partial order \leqslant on a group G to extend to a linear order respected by multiplication on the right. The condition is a sort of mini completeness/soundness theorem and this may also prove to be instructive as an exercise in logic, as an illustration of the usual soundness and completeness theorems for logic, and application of some of the ideas from this area. It puts some interesting light on the classical application of first-order logic that a partial order can always be extended to a linear orderan application which can in fact be proved directly and quite easily using Zorn's lemma.

Terminology. An order is a partial order relation on a set G. Here, the set G is fixed. Thus we may say without ambiguity that the order \leqslant extends to a linear order \leqslant^{*}, meaning \leqslant^{*} is a linear order on G and $\leqslant \subseteq \leqslant^{*}$. (I am thinking of relations on G as subsets of G^{2} in the usual way.) Usually, the set G here will be a group. The order \leqslant on G is a right-order if $x \leqslant y \Rightarrow x z \leqslant y z$ for all $x, y, z \in G$. It is a right linear-order if in addition it is a linear order.

A mini-proof system. I will present necessary and sufficient conditions for \leqslant on G to extend to a right linear-order on G by introducing a little proof-system.

In this system, the well-formed statements are falsity, \perp, and those of the form $a \leqslant b$ for $a, b \in G$. (There are no connectives or variables.) If I write $a b \leqslant c d$, this is the statement $x \leqslant y$ where $x \in G$ is the element $a b$ and y is $c d$. (Well-formed statements do not contain multiplications and each statement of the form $a \leqslant b$ is only allowed to have the two parameters a, b from G. We may however indicate certain equations true in G by annotating the inequalities with equations - see below for examples. These annotations are not part of the system.) The system is a natural-deduction system where assumptions may be made and later discharged. I indicate assumptions and their scope by vertical lines down the left-hand side of the proof. (This is a convenient alternative to presenting a natural deduction proof as a tree.) Only statements in the current scope or 'above' the current scope (i.e., when the proof is regarded as a tree) may be used at any stage.

Here are the six derivation rules G0-G5 for a given group G and an order \leqslant on G.

G0 You may write down $a \leqslant a$ whenever $a \in G$.
G1 You may write down $a \leqslant b$ whenever this is true in G.

G2 From $a \leqslant b$ and $b \leqslant c$ you may deduce $a \leqslant c$.
G3 From $a \leqslant b$ you may deduce $a c \leqslant b c$.
G4 From $a \leqslant b$ and $b \leqslant a$ for $a \neq b$ in G, you may deduce \perp.
G5 (Discharging assumptions.)
$\left\lvert\, \begin{aligned} & a \leqslant b \\ & \cdots \\ & \perp\end{aligned}\right.$
$b \leqslant a$
(2) assumption
(5) G5

If there is a derivation of this sort in which the last statement θ does not depend on any assumption (i.e., is not to the right of any vertical line) then we write $(G, \leqslant) \vdash \theta$.

Examples. (A) Suppose that $x, y \in G, x \neq y$ and $a, b \in G$ with $x a \leqslant y$, $x b \leqslant y$ and $a b=1$.
$y \leqslant x$
(1) assumption
$x a \leqslant y$
(2) G1
$x b \leqslant y$
(3) G1
$y b \leqslant x b$
(4) G3
$y b \leqslant y$
(5) G2
$x \leqslant y b$
(6) G3 (from 2, as $a b=1$)
$x \leqslant y$
(7) G2
\perp
(8) G4 (from 1,7)
$x \leqslant y$
(9) G5
(B) Suppose that $x, y, a, b \in G$ and $x a=y b \neq x b=y a$.

$$
\begin{aligned}
& x \leqslant y \\
& \left\lvert\, \begin{array}{l}
x a \leqslant x b \\
x b \leqslant y b=x a \\
x b \leqslant x a \\
\perp \\
x b \leqslant x a \\
x a \leqslant y a=x b \\
x a \leqslant x b \\
\perp
\end{array}\right.
\end{aligned}
$$

$$
y \leqslant x
$$

$$
y a \leqslant y b
$$

$$
y b \leqslant x b=y a
$$

$$
y b \leqslant y a
$$

$$
\perp
$$

$$
y b \leqslant y a
$$

$$
y a \leqslant x a=y b
$$

$$
y a \leqslant y b
$$

$$
\perp
$$

(1) assumption
(2) assumption
(3) G3
(4) G2
(5) G4
(6) G5
(7) G3
(8) G2
(9) G4
(10) G5
(11) assumption
(12) G3
(13) G2
(14) G4
(15) G5
(16) G3
(17) G2
(18) G4

So the group G is not right-orderable. (See the soundness theorem below.) This case (which is well know in the literature as an example of failure of the 'unique product' property) is of interest as the initial conditions apply to any group G, not necessarily a group with an order relation.

Extending an order to a right linear order. In the following results, (G, \leqslant) is a group with a binary relation \leqslant. (No axioms for \leqslant are required, though if \leqslant is reflexive then rule $G 0$ is just a special case of $G 1$. To apply the results below to a pure group G, either use the empty relation for \leqslant, or else use the minimal reflexive relation $\leqslant=\{(x, x): x \in G\}$ and omit the rule $G 0$.)
Theorem 1 (Soundness). (a) If $(G, \leqslant) \vdash x \leqslant y$ then $x \leqslant^{*} y$ in any right linear-order \leqslant * extending \leqslant.
(b) If $(G, \leqslant) \vdash \perp$ then the order \leqslant on G cannot be extended to a right linearorder.
Proof. An easy induction on the length of derivations.
Say that (G, \leqslant) is consistently right-orderable (or consistent for short) if it is not the case that $(G, \leqslant) \vdash \perp$. It is inconsistent if it is not consistent.

Lemma 2. If (G, \leqslant) is consistent and \leqslant^{*} is defined by

$$
x \leqslant^{*} y \Leftrightarrow(G, \leqslant) \vdash x \leqslant y,
$$

then $\left(G, \leqslant^{*}\right)$ is consistent.
Proof. Suppose $\left(G, \leqslant^{*}\right) \vdash x \leqslant y$ and $\left(G, \leqslant^{*}\right) \vdash y \leqslant x$ for some $x \neq y$. Then we may replace all the statements $a \leqslant b$ in these proofs that are given by rule G1 (i.e., because $a \leqslant^{*} b$ holds) by their proofs in (G, \leqslant). Thus (G, \leqslant) is inconsistent.

Lemma 3. If (G, \leqslant) is consistent and \leqslant^{*} is defined by

$$
x \leqslant^{*} y \Leftrightarrow(G, \leqslant) \vdash x \leqslant y,
$$

then \leqslant^{*} is a right (possibly partial) order on G.
Proof. If \leqslant^{*} is not antisymmetric, then $(G, \leqslant) \vdash x \leqslant y$ and $(G, \leqslant) \vdash y \leqslant x$ for some $x \neq y$, so (G, \leqslant) is inconsistent - contrary to hypothesis. Similarly, transitivity is by G2, and right multiplication by G3.

Theorem 4 (Completeness). If (G, \leqslant) is consistent then there is \leqslant extending \leqslant such that \leqslant^{*} is a right linear-order on G.

Proof. Let X be the set of all relations \leqslant^{*} extending \leqslant such that $\left(G, \leqslant^{*}\right)$ is consistent. Since a derivation may use at most finitely many applications of rule G1, the union of a chain of elements of X is in X, so by Zorn's Lemma, X has an element \leqslant^{*} which is maximal with respect to \subseteq. By Lemma 2, $x \leqslant^{*} y \Leftrightarrow\left(G, \leqslant^{*}\right) \vdash x \leqslant y$, and by Lemma $3, \leqslant^{*}$ is a right-order on G. It suffices to prove it is linear.

Suppose that $a, b \in G$ and $a \leqslant^{*} b$ does not hold. We must show $b \leqslant^{*} a$. To this end, define \leqslant^{\prime} by $\leqslant^{\prime}=\{(a, b)\} \cup \leqslant^{*}$, which properly extends \leqslant^{*}. Hence \leqslant^{\prime} is inconsistent. It follows that there is a derivation from $\left(G, \leqslant^{*}\right)$ of the form
$a \leqslant b$
\cdots
\perp
(1) assumption
$b \leqslant a$
(4) G5
i.e., $b \leqslant{ }^{*} a$, as required.

