
How (and why) I use GLOSS to write

XHTML+MathML

Richard Kaye, School of Mathematics, University of Birmingham

2006-05-24

‘A discerning friend of mine,’ said Don Quixote, ‘was of opinion that no one
ought to waste labour in glossing verses; and the reason he gave was that the gloss
can never come up to the text, and that often or most frequently it wanders away
from the meaning and purpose aimed at in the glossed lines; and besides, that the
laws of the gloss were too strict, as they did not allow interrogations, nor “said
he,” nor “I say,” nor turning verbs into nouns, or altering the construction, not
to speak of other restrictions and limitations that fetter gloss-writers, as you no
doubt know.’

from Don Quixote,
by Miguel de Cervantes,
Translated by John Ormsby

1 XML

XML is a general format for exchange of information between computer sys-
tems. It was originally devised as a ‘light’ version of SGML intended to present
complex structured data containing the meaning or other information suggest-
ing possible rendition of each individual part. Thus the presentation-MathML
(p-MathML) code for a + 3 = β,

<mrow>

<mrow>

<mi>a</mi><mo>+</mo><mn>3</mn>

</mrow>

<mo>=</mo>

<mi>β</mi>

</mrow>

indicates that a and β are identifiers or variables (and probably will be
type-set in a font suitable for variables), 3 is a number (to be type-set in another
font) and +, = are operators (with some extra space around them). The mrow
delimits the sub-expressions so that the whole thing can be unambiguously read.

As XML is intended as a universal medium, there are a great number of com-
puter systems equipped for reading and using XML data, including systems in

1

web browsers such as for rendering mathematics to the visually impaired, that
we (as authors) have little control over. That means, for mathematics, that
we must be much more precise in marking up the individual expressions and
subexpressions than we are accustomed to. Typing around eighty characters
for the ambiguous (but conventional) a+3=beta seems a lot. And it is in fact
worse: I still haven’t pointed out that in fact I intended the objects ‘a’ and
‘beta’ to be elements of the field with two elements, addition is addition modulo
2, equality is congruence modulo 2, and ‘3’ means the equivalence class modulo
2 of the number 3 (which, of course, is the same as the equivalence class of
‘1’). We will have to say all of this (and we can, using other XML mark-up
from OpenMath or content-MathML) if we are going to type our mathematics
in a way that can unambiguously be copied and pasted into a computer algebra
system. Being able to express and use expressions like this in a wide variety
of systems is a major advantage, but one that comes with an apparent burden
attached to it. Actually, even before we get into these details, just typing plain
XML is awkward: those closing tags must be present and nested correctly, and
any error may stop the application working.

We may set our sights lower, and not cater for such a wide range of systems.
It certainly is true that MathML can be used in many ways, from quick but
rather ambiguous mark-up that may have limited utility to painstakingly careful
mark-up that would take a huge amount of time to write by hand. Whatever
compromise is taken here though, it seems to me very necessary that there
should be a way of entering the required data accurately enough so that an
automatic system can apply appropriate defaults and add the necessary XML
code.

One possibility is to use a LATEX-to-MathML converter, such as TtM or one
of the other text-based syntaxes for MathML (many of which use a syntax
similar to LATEX). I have rejected these for my own personal use because: (a)
LATEX source code does not contain enough information for any system to infer
the correct output; (b) any use of macros in LATEX can obfuscate or break
the translation process; and (c) such translators never seem to work on my
own documents, possibly because of macros, different fonts, or something else.
However, as they say, your mileage may vary.

In this article I will look at the case of using GLOSS to author p-MathML
embedded in a web page or similar document.

2 GLOSS

GLOSS is a general text-to-XML convertor. It is intended mainly for authors
with some basic knowledge of both XML in general and the target XML appli-
cation they are writing for. In its basic form it enables you to write any XML
(including MathML, XHTML, etc.) saving considerably better than 50% of the
time and effort. GLOSS uses a syntax based on indentation, like the computer
language Python, but unlike TeX and LATEX. Plain characters and text are
delimited by square brackets. (This choice was made as square brackets rarely
occur in text, and are easily accessible on most keyboards.) Everything else

2

in the input is a ‘word’ or ‘token’ or ‘command’, usually producing an XML
element with the same name. So the example above would be coded in GLOSS
as

mrow

mrow

mi[a]

mo[+]

mn[3]

mo[=]

mi[&beta;]

To get this to work, save it in a text file called example.xml.gloss and run the
command-line command gloss-xml example.xml.gloss and you should have
beautiful XML in a new file called example.xml. Note: β is the standard
MathML name for the unicode character β. If you have a unicode editor you
can use the unicode character itself instead.

Attributes are encoded in GLOSS with the construct @name[text] so the matrix
equation

A =
[

x y
z w

]
could be encoded in GLOSS with

mrow

mfenced @open[\[] @close[\]]

mtable

mtr

mtd mi[x]

mtd mi[y]

mtr

mtd mi[z]

mtd mi[w]

which gives

<mrow>

<mi>A</mi>

<mo>=</mo>

<mfenced open="[" close="]">

<mtable>

<mtr>

<mtd><mi>x</mi></mtd>

<mtd><mi>y</mi></mtd>

</mtr>

<mtr>

<mtd><mi>z</mi></mtd>

<mtd><mi>w</mi></mtd>

</mtr>

</mtable>

</mfenced>

</mrow>

In p-MathML terminology a ‘fence’ is a pair of brackets that may change size
according to context. Note the use of \ to ‘escape’ the] character, which would

3

otherwise be taken to be the end of an empty text block. The other characters
that need to be escaped like this are [, {, }, and \. This provides a useful check
built in to the system that you remembered the closing] character.

Indentation is very nice most of the time (and many text editors are already
set up to utilise it) but sometimes more control is needed. Braces {...} are
used in GLOSS to over-ride indentation. The rule is that an XML group cannot
cross an open or close brace. So } closes all elements that were opened after the
corresponding {. This means that the above example could be encoded as

mrow

mfenced @open[\[] @close[\]] mtable {

mtr {mtd mi[x]} {mtd mi[y]}

mtr {mtd mi[z]} {mtd mi[w]}

}

Note that if it wasn’t for the { immediately following mtable the mtr elements
would be children of mfenced, not mtable.

GLOSS also allows you to ‘push back’ into element-mode when in text mode,
like TeX does—unlike normal XML. So, using GLOSS to write XHTML this
time, you can write,

p [This text is part of an HTML paragraph. Let’s

test HTML’s [i[italics]] and [b[bold]] mark-up elements.]

giving

<p>This text is part of an HTML paragraph. Let’s

test HTML’s <i>italics</i> and bold mark-up elements.</p>

This feature is really like a combination of {..} and [..]. The above is equiv-
alent to

p {[This text is part of an HTML paragraph. Let’s

test HTML’s]{i[italics]}[and]{b[bold]}[mark-up elements.]}

but a little clearer and easier to type.

GLOSS is a highly configurable and extensible system. That means you can
write your own code (rather like ‘macros’) to deal with situations like matrices
that occur many times over a group of documents to save even more typing.
The whole idea of GLOSS is that your plain text is parsed by GLOSS in many
different ‘modes’; GLOSS will be in a different mode depending on the local
context, and ‘macros’ will be context-dependent. So a new command in maths
mode will not impact on what happens in text mode. What’s more, you can
have as many modes as you like.

I’m not going to explain how to write new modes here. That would be rather
too technical for this article. However it is a feature that GLOSS’s modes can
be arranged into ‘modules’ and separate modules can be loaded according to
needs. As well as the base XML module, there is a base XHTML module (using

4

the commands gloss-html or gloss-xhtml instead of gloss-xml) and several
optional extension modules for XHTML including ones supporting: sections,
subsections, etc., and automatic section numbers; definitions, theorems, propo-
sitions, lemmas, and proofs; p-MathML; some convenient syntactic ‘extensions’
to p-MathML which GLOSS maps to standard p-MathML; automatic detection
of whether maths should be ‘inline’ or ‘display’; and several more.

For another example, consider[
α β
−1 ∇

]
+ A =

[
x 45

3.14159E − 2 w

]
The p-MathML extension module knows all the standard MathML names for
individual characters, such as beta. It also has names for all the single-letter
alphabetical characters and can recognise numbers. It also has a default way to
wrap each of these with the appropriate tag from mi, mo, mn. So using XHTML
and p-MathML, the paragraph you are reading right now is encoded as

p [For another example, consider]

math

mrow

mfenced @open[\[] @close[\]]

mtable

mtr alpha beta

mtr -1 nabla

+

A =

mfenced @open[\[] @close[\]]

mtable

mtr x 45

mtr 3.14159E-2 w

p [The p-MathML extension module ... is encoded as]

pre [p \[For another example, consider\]

math

mrow

...

]

Note also the use of the math command to enter maths mode and insert the
MathML math element.

I have discovered that, with careful use of the standard XHTML tags, the
HTML class attribute, some of GLOSS’s HTML extension modules and CSS
style-sheets, it turns out that standards-compliant XHTML can be used as an
excellent format for shorter mathematics papers. That is how I have typed
this paper for example, as well as all of my first-year real analysis pages at
http://web.mat.bham.ac.uk/R.W.Kaye/seqser/. (GLOSS sources for all these
pages are available from the web-site.) For longer papers or books there are
many other XML formats available to choose from. These include DOCBOOK,
TEI, OMDoc—all with XSLT style-sheets to transform to HTML or paper-
based formats. Gloss can of course be used to write sources for any of these.
Or you devise your own format (based on HTML for exmaple) and tailored to
your particular application, as I did for a book I am currently working on—also
written using GLOSS.

5

3 Serving the document

Once you have a beautiful XHTML+MathML document you should be able
to view it locally (with Firefox, say). It is also a good idea to validate your
document. This involves running a standard XML tool that makes some ba-
sic checks against a document-type definiton (DTD). The DTD contains basic
structural details of the format such as: your root html element should have
only two children head and body; you are not taking the square root (msqrt)
of an HTML anchor; and so on. GLOSS’s html modules automatically include
references to the correct DTDs, and the GLOSS distribution also contains a
simple validator: you may already have a better one on your system. When the
document is fully checked and ready, it is time to put this on your web server
for others to read.

This turned out to be slightly non-trivial on my system. You may need to check
and change the way your web server is set up: ask your web-master to make
changes or make changes in your .htaccess file. XHTML pages with embedded
MathML should be served as mime-type application/xhtml+xml and ordinary
HTML should be served as text/html. I use the file-extension ‘xhtml’ for the
former to distinguish them from the latter, though there doesn’t seem to be any
consensus on this. Also, to ensure that the maximum number of people (and
search engines) can read your pages, a technique known as content-negotiation
is useful. This is rather easy to set up in Apache, but requires you to get out
of the habit of including the suffix .html or .xhtml in your web links. See the
references below for more on content-negotiation, and the ‘installation’ notes in
my Sequences and Series web pages for an example.

4 Further topics and references

I have only touched on the basics of GLOSS for HTML and p-MathML here in
this article. In particular I haven’t said anything about how to define semantic
content of maths expressions (content-MathML or OpenMath) or how to define
other transformations either in GLOSS itself or in XSLT, or in using some other
program. These are important topics sadly outside the scope of this article.

One of the design decisions that influenced GLOSS is that it is intended for
authors with some basic knowledge of both XML in general and the target XML
application they are writing for. There is a somewhat steep learning curve at
the beginning, and there are a number of pitfalls for the beginner, but once the
system is well-understood productivity should be as good or better than with
LATEX. (It certainly has been for me!) There are many freely available web
pages and other resources to help a beginner. Some of the ones I found helpful
are also listed here.

• http://web.mat.bham.ac.uk/R.W.Kaye/gloss/, the main GLOSS web-
pages, including all documentation, and downloadable sources and com-
piled files for any platform. (It is hoped that these pages will migrate
to somewhere more memorable soon, to http://gloss.bham.ac.uk per-
haps. If so, the first page will remain operational as long as possible, and

6

will contain links to the ‘real’ home page.)

• http://www.w3.org/Math, the W3C’s MathML pages. In particular the
page http://www.w3.org/TR/MathML2/ contains the specification for MathML
2.0. Chapters 1–3 make very good reading for the details of presenta-
tion MathML, which is what I have used. Other chapters cover content
MathML, which may also be of interest.

• http://www.w3.org/2003/entities/, information on the standard names
for characters used in XHTML and MathML (and GLOSS). Useful char-
acter tables are provided.

• http://www.unicode.org, the unicode consortium. With many more
character tables, and lists of characters that can be referred to by number
rather than name, provided you have the appropriate fonts on your system
of course!

• http://www.w3.org/2003/01/xhtml-mimetype/content-negotiation, some
information and advice from the W3C on content negotiation.

• http://www.mozilla.org/projects/mathml/, the Mozilla MathML page.

• http://hutchinson.belmont.ma.us/tth/mml/, TtM, a TeX to MathML
translator.

Richard Kaye
School of Mathematics
University of Birmingham

7

