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NOTE: This is a preliminary draft of a paper on the Gödel incompleteness

theorems intended for the History of Logic project (edited by Dirk van Dalen et

al). Margin notes indicate some places where the final version may differ from

the current version. They are indicated by ‘Ed:’ (for the attention of the editors

of the project) or ‘RWK:’ (for my attention and questions). I would welcome

any comments on the paper, especially on the parts of it annotated with the

‘RWK:’ style of margin note, or relating to the questions at the end.

If you wish to quote, refer to, or use any material from this paper please

consult me first, via my home page.

1 Gödel’s incompleteness theorems and first-order

arithmetic

The story of Gödel’s incompleteness theorems is justifiably one of the highlights Ed: please

feel free

to rewrite

and/or move

this intro-

duction as

required by

the context

of the whole

volume

of mathematical logic in the twentieth century. The fact that they answered

the most important questions in the foundations of mathematics at the time

of their publication give them sufficient importance in their own right. But as

well as this, Gödel’s theorems gave impetus to the newly forming branches of

logic of proof theory and recursion theory, and added the important technique

of diagonalization to the logician’s toolbox.

Much of the story of how Gödel came to discover his incompleteness theo-

rems is well-documented, for example by Wang [63, 65, 66, 67], and other articles

in this volume discuss the history of the ideas and problems that directly lead

to Gödel’s incompleteness theorems. Rather than re-telling this story in detail,

I have chosen to concentrate on the mathematical and logical ideas in the the-

orems and then trace their evolution into the study of arithmetic, the study of

models of first-order arithmetic in particular. (For the proof theory of first-order

arithmetic, see Sieg’s article in the current volume.) Of course, Gödel’s ideas

and methods are used throughout mathematical logic, in particular in proof

theory and computability theory, and these areas are covered by other articles

in the current volume. Ed: cross-

references re-

quired.

This article therefore starts by describing the incompleteness theorems and

the key ideas therein, concentrating on Gödel’s famous 1931 paper [20]. The

remaining parts of Section 1 describe some of the subsequent results concerning

first-order arithmetic in general. Section 2 traces a somewhat (and surprisingly)

neglected story in the history of twentieth century logic, that of the development

of the theory of models of first-order arithmetic. In it I focus particularly on

aspects of the model theory of arithmetic that relate to Gödel’s theorems and
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those that lead up to the Paris–Harrington independence results.

1.1 Gödel’s incompleteness theorems

By 1930, studies in the foundations of mathematics might be regarded to have

been in a rather mature state, there having been over fifty years of work since the

calculus had been framed in its modern rigorous form by Cauchy, Weierstrass

and others, and forty two years since the publcation of Dedekind’s analysis

of the concept of real number and natural number [10]. That is not to deny

that the subject had been through crises: the most obvious of these was the

inconsistencies in Frege’s Grundgesetze found by Russell [46], and the obvious

concern that Cantor’s set theory might also be found to be similarly inconsistent.

But in the years that followed, confidence had returned, mainly through the

steadying hands of Hilbert and Russell and the programmes that the formalists

and logicists had proposed to make the foundations of mathematics sound again.

Then in 1931, a paper by Kurt Gödel was published that must have rocked

confidence in the idea of the ‘knowable’ in mathematics once again.

Gödel published an abstract of his results at the end of 1930 [19], and the

main paper containing proofs of the incompleteness theorems appeared in a

paper entitled ‘On formally undecidable propositions of Principia Mathematica

and related systems I’ in the Monatshefte für Mathematik und Physik the follow-

ing year [20]. In terms of content, Gödel’s paper contains a staggering number

of hugely important ideas. (1) He presents the notion of a (primitive) recur-

sive fuction, and in particular provides the means for the representation of these

functions in formal systems of arithmetic. (2) The idea of coding finite sequences

in first-order arithmetic is introduced, and the details of how to do this, based

on the Chinese remainder theorem, are developed. (3) Gödel-numbering of

formulas and proofs is introduced and used. (4) The extension of Cantor’s di-

agonalization technique to formal systems and first-order systems of arithmetic

in particular is presented for the first time. (5) The idea of ω-consistency is RWK: Why

doesn’t

Gödel refer

to Cantor?

introduced and consistent non-ω-consistent systems are exhibited.

At the time of writing, the most comprehensive systems for mathemetics

were Principia Mathematica (PM) and Zermelo–Fraenkel set theory (ZF), both

of which were sufficiently developed at the time to be able to formalize all of

the methods of proof currently in use in mathematics and which might prima

facie be thought to be complete. Gödel’s results show that in fact they are in

fact incomplete for ‘relatively simple’ statements, i.e., statements of first-order

arithmetic (the first-order theory of the natural numbers with =, + and · alone),

and his results apply to a wide class of arithmetically sound theories, incuding
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extensions of PM and ZF by finitely many axioms. (At the time of writing

the general notion of computability was not available to Gödel, so he could

not express the result in its full generality, but Gödel makes it quite plain in

a note added in August 1963 to the English translation by van Heijinoort [60]

that Turing’s work enables the idea of a ‘formal system’ to be given a pre-

cise and adequate definition that enables general versions of the incompleteness

theorems.)

The question of the completeness of these systems had been around for some

time, through the work of the formalist school of Hilbert and the logicist school

of Russell. Gödel was fully aware of the logicists’ work, and it is interesting to

speculate whether Gödel’s paper was intended as a subtle and indirect attack

on the logicists who claimed that mathematical and metamathematical truth

reduces to type-theoretical logic. Certainly he bases his ground system P dis- RWK: N.b.,

Gödel de-

fends type

theory in

several

places in

other later

papers, so

can this be

possible?

cussed in the 1931 paper on the somewhat more cumbersome logic of Principia

Mathematica, perhaps to make an indirect point. Although Gödel does not

make any comment either for or against the logicists, it seems clear to me that

he realized his results would put an end to their philosophical programme for

the foundations of mathematics. On the other hand, the relationship between

Gödel and the formalist school of Hilbert is much more complex and will be

discussed later.

Gödel’s paper itself is a model of clarity, and section 1 of it contains a sketch

of the proof of the first incompleteness theorem. It will be useful to go through

some of the details of this here.

The main technical device used in the paper is what is now called Gödel-

numbering, being a way of identifying formulas and proofs by finite sequences of

natural numbers, which can in turn be coded up into a single natural number.

Using this identification, Gödel can sketch the idea behind his diagonalization

technique: he calls a formula with a single free natural-number variable a class

sign and, for a class sign α, denotes the result of instantiating that variable with

the natural number n by [α; n]. He notes that via the numbering of formulas,

the relation x = [y; z] is definable in his system P. Because of this, there is a

class sign K defined by

¬Bew[R(x); x]

where R(x) expresses the number for the xth class sign, and Bew y expresses

the proposition that the formula numbered by y is provable in P. But this class

sign K has number R(k) for some natural number k and we can consider the

statement [R(k); k]. This statement [R(k); k] can be interpreted as stating its
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own unprovability, and so will turn out to be true but not provable in P.

In Gödel’s own words of the late 1970s (as arranged and reported by Wang [67,

p82–3]—the additions in square brackets are his) Gödel’s discovery of the in-

completeness results arose from a direct attack on Hilbert’s question of the

consistency of classical analysis.

In summer 1930 I began to study the consistency problem of

classical analysis. It is mysterious why Hilbert wanted to prove

directly the consistency of analysis by finitary methods. I saw two

distinguishable problems: to prove the consistency of number theory

by finitary number theory and to prove the consistency of analysis

by number theory. By dividing the difficulties, each part can be

overcome more easily. Since the domain of finitary number theory

was not well defined, I began by tackling the second half: to prove

the consistency of analysis relative to full number theory. It is easier

to prove the relative consistency of analysis. Then one only has to

prove by finitary methods the consistency of number theory. But

for the former one has to assume number theory to be true (not just

the consistency of a formal system for it).

I represented real numbers by predicates in number theory [which

express properties of natural numbers] and found that I had to use

the concept of truth [for number theory] to verify the axioms of

analysis. By an enumeration of symbols, sentences, and proofs of

the given system, I quickly discovered that the concept of arithmetic

truth cannot be defined in arithmetic. If it were possible to define

truth in the system itself, we would have something like the liar

paradox, showing the system to be inconsistent. [Compare Gödel’s

letter of 12.10.31 to Ernst Zermelo, in which the easy proof of this

is given [64, p90–91].] This aspect of the situation is explicitly dis-

cussed in my Princeton lectures of 1934 [22], where the liar paradox

is mentioned as a heuristic principle, after the proof of the incom-

pleteness results has been given. The liar paradox itself refers to

an empirical situation which is not formalizable in mathematics. In

my original paper [published in 1931] there is [in addition] an allu-

sion to Richard’s paradox, which is purely linguistic and refers to no

empirical fact.

Note that this argument [about truth not being definable in the

system itself] can he formalized to show the existence of undecidable

propositions without giving any individual instances. [If there were
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no undecidable propositions, all (and only) true propositions would

he provable in the system. But then we would have a contradic-

tion.] In contrast to truth, provability in a given formal system is

an explicit combinatorial property of certain sentences of the sys-

tem, which is formally specifiable by suitable elementary means. In

summer 1930 I reached the conclusion that in any reasonable formal

system in which provability in it can he expressed as a property of

certain sentences, there must he propositions which are undecidable

in it. [This preliminary result was, according to Carnap’s diary,

announced to Carnap, Feigl, and Waismann at Cafe Reichsrat on

26.8.30. For a more formal explication of the last three paragraphs

compare Wang [63, p21–23].]

It was the anti-Platonic prejudice which prevented people from

getting my results. This fact is a clear proof that the prejudice is a

mistake.

As just mentioned, Gödel clearly points out the analogies with Richard’s

paradox and the ‘liar’. Indeed, as he observes, [R(k); k] is an expression stating

its own unprovability, but no circularity is present in the construction of this

statement. This is a major breakthrough: statements such as the liar’s, and

others were well known but here Gödel manages to construct a statement saying RWK: Note

no compar-

ison with

Cantor

‘this statement is not provable’ by a slightly roundabout route that avoids the

circularity that at first sight would be required. He writes: ‘Only subsequently

(and so to speak by chance) does it turn out that this formula is precisely the

one by which the proposition itself was expressed.’ In this respect, Gödel’s

work is a major step forward from the work of Finsler [13], as discussed by

van Heijenoort [60], since Finsler also discussed statements which (he claimed)

assert their own unprovability, but—lacking Gödel’s technical devices—Finsler

could only attempt to express such statements in natural language without any

formal syntax or precise notion of proof.

Gödel discusses the method of diagonalization at further length later in the

paper, pointing out that it is entirely constructive; indeed, he says that ‘it would

be very easy (although somewhat cumbersome) to actually write down’ the

independent statement [R(k); k]. He also points out that the truth of [R(k); k]

is easy to see from metamathematical considerations, but these considerations

are not available from within the system. (This will in due course lead to the

second incompleteness theorem.)

It is interesting to note that Gödel does not discuss the uniqueness of for-

mulas G such that P proves G is equivalent to ¬Bew G. In fact, any such G is
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equivalent (in sufficiently strong systems, such as P) to the consistency of the

system in hand, and the more difficult direction of this equivalence is already

proved by Gödel in his proof of the second incompleteness theorem.

In the precise proof of the basic form of the first incompleteness theorem

Gödel formally introduces his system P based on the logic of Principia Math-

ematica and Peano’s second-order induction axioms. This system is a many-

sorted system with type levels: 1 (for individuals, that is natural numbers—

Gödel considers 0 to be a natural number, incidently); 2 (sets of individuals);

3 (sets of sets of naturals); and so on for every explicit natural number n. As well

as the usual logic, comprehension and extensionality axioms, Gödel has the set

membership predicate, a ‘zero’ element, and the successor function x 7→ x+1. To

this logic he adds the Peano axioms (axioms stating that the successor function

is one-to-one, 0 is not in the image of the successor function, and the induction

axiom). Thus Gödel’s system P is essentially equivalent to what might be called

‘ωth-order arithmetic’. Although this system has the inconvenience of the type

levels, this choice of system has its convenient features. For example, equality,

addition and multiplication are all derived terms and Peano’s axioms can be

used almost verbatim because of this.1

The next step is to arithmetize the syntactical notions. For this, Gödel in-

troduces the class of primitive recursive functions (he calls them ‘recursive’) as

the least class containing constant functions, the successor function, and closed

under substitution and primitive recursion, and the associated notion of a prim-

itive recursive predicate. This class of functions had previously been highlighted

by Dedekind [10], and had been used and developed by Skolem [50], Hilbert [35]

and Ackermann [2]; the modern terminology referring to them as primitive re-

cursive was introduced by Kleene [38]. Interestingly, in Gödel’s presentation

the identity function and projection functions πi
n(x1, x2, . . . , xn) = xi are not

mentioned explicitly, and the idea of ‘substitution’ is left rather vague, but these

projection functions can be obtained simply enough by primitive recursion from

the zero function and successor. Similarly, Gödel’s arithmetization of the for-

mal rules of derivability in his system P are much more precise than the rather

vague intutitive informal ideas presented earlier—for Gödel, in this paper, the

arithmetization is the detailed definition of syntax and there is no intermediate

system involving symbols on paper.) In Gödel’s own words [67, p84],

The proof of the (first) incompleteness theorem in my original

1As we will see, Gödel’s arithmetization of syntax was a comparitively late development,
and the choice of P was quite possibly made simply to be strong enough for him to be able
express syntax in before he had the β function and Chinese remainder theorem idea.
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paper is awkward because I wanted to make it completely formalized.

The basic idea is given more clearly in my Princeton lectures [of

1934]. I wrote Herbrand two letters, the second of which he did not

receive. He had a good brief presentation of my theorems.

In a slight remark, Gödel comments that ‘Bew(x) [for ‘x is provable’] the

only one of the [syntactic notions] of which we cannot assert that it is [primitive]

recursive’. The obvious questions that this remark begs are not even mentioned,

let alone discussed. We can wonder whether he considered conjecturing or prov-

ing it is not primitive recursive. Of course, such a proof would not be short—it

would involve diagonalizing out of the class of primitive recursive predicates,

and would require the β function technique for coding sequences—but still lies

within the techniques that Gödel had been developing at the time. This point

seems interesting, when we observe (with hindsight) that the sort of existential

quantification here applied to primitive recursive predicates gives the recursively

enumerable sets, so Gödel is in fact rather close to the subject of computability

that would arise from subsequent work by Turing, Church, Post and Kleene in

response to this paper. But the best possible result, that Bew(x) is an example

of an r.e., non-recursive, predicate, was still out of reach in 1931. Similarly,

the result that provability in the predicate calculus (even with a rather simple

language) is non-recursive was also out of reach, but would follow quite quickly

from Gödel’s work of 1931 and later characterizations of computability in 1936

and 1937.

The notion that relates the arithmetization back to the system P is that of

representability. Gödel gives this in generality (even though for his purposes only

a few special cases are required) and his Theorem V that all primitive recursive

predicates are represented in P is given. This theorem gets cursory treatment,

though the important point that it involves an induction on the primitive re-

cursive functions, and construction of proofs in P is presented. Implicitly, the

argument uses the higher types available in P rather than the Chinese remain-

der theorem technique that appears later, presumably because this was the way

Gödel first obtained the result. Moreover, the formal details of Gödel’s proof as

given are somewhat more complicated than actually necessary, and simplifica-

tions were later made in this respect by Kleene [40]). This provides at last all

the formal details required to present the proof of the incompleteness theorem

as sketched earlier. In fact, his treatment goes slightly further, and he proves his

Theorem VI, that if κ is a ω-consistent primitive recursive system extending P,

then there is a statement Rκ such that neither Rκ nor its negation are derivable



Preliminary draft 9

from κ.2

In relation to this ‘classical’ arithmetization of syntax as used by Gödel, it is

interesting to note that many modern didactic presentations of Gödel’s theorems

still use the class of primitive recursive functions for the arithmetization of

syntax, even though many much smaller classes, such as the polynomial-time

computable functions, suffice, and are more useful in the context of the modern

concern with complexity theory. It is as if Gödel’s clear presentation and the

convenience of using primitive recursive functions has cemented in many people’s

minds the erroneous idea that the primitive recursive functions are necessary or

canonical for the proof of Gödel’s theorems. But in the 1930s, it may not have

seemed at all obvious that Gödel’s adoption of primitive recursive functions was

not a necessary feature of the proofs of the imcompleteness theorems.

From the point of view of foundational questions, it is important to observe,

as Gödel does, that the statement Rκ is of the form ∀x θκ(x), where θκ(x) is a

primitive recursive predicate. In more modern terminology, the statement Rκ

is Π0
1 or Π1.

Gödel also remarks that his proof is entirely constructive: not only can the

statement Rκ be constructed from the data given, but any proof in the system

of Rκ or ¬Rκ could be effectively converted to providing proofs of θ(n) for each

n and of ∃x ¬θ(x) in κ. Thus, constructively, a proof of either Rκ or ¬Rκ in

κ can be converted to a example of ω-inconsistency of the system κ. He also

points out that if κ is ω-consistent, then the statement Rκ can be used to give a

consistent ω-inconsistent system κ+¬Rκ. These remarks appear to be aimed at

the intuitionists, but of much more general philosophical interest. That Gödel

held them to be of the utmost importance is clear from his remarks to Wang [67,

p84] (quoted here with Wang’s commentries in square brackets):

Ulam wrote a book [Adventures of a Mathematician, 1976] and

I was mentioned in it at several places. Ulam says that perhaps

I was never sure whether I had merely detected another paradox

like Burli-Forti’s. This is absolutely false. Ulam doesn’t understand

my result, which is proved by using only finitary arithmetic. As a

2The system κ is said to be ω-consistent if for no predicate θ(x) in the language of κ is it the
case that κ proves ¬θ(n) for all natural numbers n and also κ proves ∃x θ(x). ω-consistency is
a slightly stronger notion that ordinary consistency. Gödel needs ω-consistency to show that
the statement Rκ equivalent to ‘for all x, x is not a proof in κ of Rκ’ is independent of κ.
This argument goes as follows: if κ proves Rκ then there is a proof n of Rκ, so κ also proves
¬Rκ and hence is not consistent; on the other hand, if κ proves ¬Rκ then κ proves ‘there is x
such that x is a proof in κ of Rκ’ so by ω-consistency of κ there is some concrete p such that
κ together with the statement ‘p is a proof in κ of Rκ’ is consistent, and this is sufficient to
deduce that p really is a proof in κ of Rκ, contradicting the consistency of κ.
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matter of fact it is much more. [I take this sentence to mean that the

proof is not only precise but perfectly clear.] How can Wittgenstein

consider it [Gödel’s result] as a paradox if he had understood it?

All the results up to this point were worked out and announced in an small

meeting in September 1930. As for the improvements that follow, Wang [67,

pages 82–83] reports the following recollections by Gödel in the late 1970s.

I took part in a little conference at Königsberg in autumn 1930.

Carnap and [John] von Neumann were there. The meeting had

no “discussion.” I just made a remark and mentioned my [incom-

pleteness] result. [The meeting was the second Tagung für Erkennt-

nislehre der exakten Wissenschaften, at which Gödel presented his

proof of the completeness of predicate logic, obtained in 1929, on

6 September, and mentioned incidentally his new result during the

discussion session the next day.]

At that time, I had only an incompleteness theorem for combi-

natorial questions (not for number theory), in the form as described

later in the introduction of my [famous] paper. I did not yet have the

surprising result giving undecidable propositions about polynomials

[by using the Chinese remainder theorem].

I had just an undecidable combinatorial proposition. I only rep-

resented primitive symbols by integers and proofs by sequences of

sequences of integers. The undecidable proposition can be given in

fragments of type theory (and of course in stronger systems), though

not directly in number theory. I had a private talk with von Neu-

mann, who called it a most interesting result and was enthusiastic.

To von Neumann’s question whether the proposition could he ex-

pressed in number theory I replied: of course they can be mapped

into integers but there would he new relations [different from the

familiar ones in number theory]. He believed that it could he trans-

formed into a proposition about integers. This suggested a simpli-

fication, but he contributed nothing to the proof because the idea

that it can he transformed into integers is trivial. I should, however,

have mentioned the suggestion; otherwise too much credit would

have gone into it. If today, I would have mentioned it. The result

that the proposition can he transformed into one about polynomials

was very unexpected and done entirely by myself. This is related

to my early interest in number theory, stimulated by Furtwangler’s

lectures.
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To show that every primitive recursive predicate is represented in arithmetic,

Gödel uses the sequence of numbers

f
(n,d)
k = remainder on dividing n by 1 + (k + 1)d (k = 0, 1, 2, 3, . . .)

associated with numbers n, d ∈ N. The important lemma here is that for any

sequence (fk) of natural numbers there are n, d ∈ N such that f
(n,d)
i = fi for

all i 6 k, and is proved using the Chinese remainder theorem. Gödel mentions

(without proof) that his arithmetization of primitive recursive predicates can be

formalized in P, and hence the undecidable statements of the previous section

are arithmetic. This device is now known as Gödel’s β function, after the

notation he used in his Princeton lectures [22]

The final major result (and the most important one for as foundational

studies at the time and Hilbert’s programme) is the deduction of the second

inpcompleteness theorem as a consequence of the first. Gödel remarked [67,

p84]

Shortly after the Königsberg meeting, I discovered the improved

undecidable proposition and the second theorem [about consistency

proofs]. Then I received a letter from von Neumann noting indepen-

dently the indemonstrability of consistency as a consequence of my

first theorem. Hilbert and von Neumann had previously conjectured

the decidability of number theory. To write down the results took a

long time. [This undoubtedly refers to his famous paper. The ‘long

time’ certainly included the period between 7 September (when the

initial result was announced) and 17 November 1930 (when the paper

was received for publication). It is also possible that he had spent a

long time writing an early version before the September meeting.]

(Wang’s comments in square brackets.)

The second theorem is, in a sense, the formalization of the first theorem in the

system κ, for as previously observed, the consistency of κ is sufficient to deduce

the truth of the independent statement Rκ. Formalizing this, P ` Con(κ)→Rκ,

so κ (being an extension of P) cannot prove the statement Con(κ).3

Gödel once again observes that his proof is again constructive, that is, a

proof of the consistency of κ inside κ can be effectively converted to a proof of

0 = 1 (or some other inconsistency) inside κ. Interestingly, Gödel writes, ‘I wish

3Slicker and more general forms of the second incompleteness theorem are now known, but
the method just presented is the one used by Gödel.
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to note expressly that Theorem XI [the second incompleteness theorem] does

not contradict Hilbert’s formalistic viewpoint. For this viewpoint presupposes

only the existence of a consistency proof in which nothing but finitary means of

proof is used, and it is conceivable that there exist finitary proofs that cannot

[Gödel’s italics] be expressed in the formalism of P.’

Gödel seems to have had much more sympathy with the formalist school

than the logicists’, and the initial motivation for his work certainly came from

attempts to answer Hilbert’s questions. But even so this remark strikes one as

being rather cautious, especially from today’s perspective which sees Gödel’s

paper as the point where the formalists were shown to be far too optimistic in

their approaches to the foundations of mathematics and incorrect in many of

their conjectures. Gödel was well known in his later life for avoiding academic

conflict whereever possible, and this may just be another example of that. Al-

ternatively, we can speculate that he made this remark because at the time

he didn’t really appreciate the power of the ordinary (single-typed) predicate

calculus, and especially its ability to represent the very clear idea of compuat-

able operations that arguably include the finitary ones. We may even wonder

whether Gödel had ideas of other kinds of convincing finitary proofs (he hints

as much later on, but what he has in mind seems rather unclear). It is cer-

tainly true that Gödel did return back to reconsider Hilbert’s programme on

several occasions, especially in his lectures and unpublished work [29, 31, 24],

so we can be sure that Gödel’s remark here is not the result of a simple error

or misunderstanding.

Whatever the outcome of these speculations, Gödel’s theorems did have a

very major impact on the Hilbert programme. To understand this, I will review

Hilbert’s programme from a somewhat modern point of view here. (Hilbert’s

programme is put into its proper historical context in an article elsewhere in

this volume.) Ed: cross-

reference

needed

Hilbert’s Programme was a framework for making sound the foundations of

mathematics, the nature of ‘number’ and the role of infinite objects in math-

ematics. Hilbert recognized that certain (‘finitary’) calculations with concrete

numbers, or with symbols on a page, could be carried out and verified. Certain

kinds of mathematical statements describing a calculation and its verification

were therefore irrefutable, and the underlying idea behind a ‘finitary’ proof is

that it should not make any appeal to an ‘actual’ or ‘completed’ infinity. Al-

though there is still much debate as to what statements Hilbert counted in

this realm and the now-straightforward and basic calculations of the complexity

of statements in the arithmetic (Σn/Πn) hierarchy were not commonplace at
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the time, I will simplify the discussion slightly and identify the collection of

statements that (if true) can be verified by such a calculation with what are

now known as the Σ1 (or Σ0
1) statements of arithmetic. (Certainly, with hind-

sight, we know that all of the calculations that can be carried out on a machine

such as a Turing machine fall within Σ1, and this is all that is required for the

present discussion.) Thus a statement is Σ1 if it states that certain concrete

numbers and arithmetic calculations could be found to verify its truth. (Note

that a Σ1 statement does not in general itself provide those numbers or calcu-

lations, thus the truth of such a statement may not be immediately obvious.)

A statement that expresses the falsity of a Σ1 statement is called a Π1 (or Π0
1)

statement. Hilbert noted that a great many interesting and difficult mathemat-

ical problems concern proving that a Π1 statement is true, and that in many

cases this cannot (obviously) be done by direct calculations, except for those

calculations which are actually proofs in some formal system S that we accept

as being sound.

Hilbert’s second observation concerned systems that formalise proof in arith-

metic. He observed that even the very simplest systems are able to formalize

concrete arithmetic calculations, and hence are able to prove all true Σ1 state-

ments. This means that, as far as Π1 statements are concerned, the soundness

of a system S only depends on its consistency, for if S were able to prove a false

Π1 statement ¬θ, then it would also be able to prove the true Σ1 statement

θ and hence would be inconsistent. More importantly, Hilbert observed that

the inconsistency of such a system is itself a Σ1 statement. Thus if S is an

inconsistent system, it will actually be able to prove its own inconsistency. Now

suppose we have two such systems: one, S, that we know for sure is consistent;

and a second one, T , which is ‘stronger’ and involves some abstract notions

of infinite objects. If T is inconsistent, then its inconsistency is a Σ1 truth,

so provable in S. Thus, provided we know the consistency of T (for example,

by proving this consistency in the system S which we know is sound for such

statements), we know that T itself is sound for Π1 statements. We still can-

not be sure that it is sound for statements about the ‘ideal’ infinite objects

available in T , but this need not matter, since we would know the soundness

of T for the ‘real’ Π1 and Σ1 statements. By finding a suitable sequence of

systems S0 = S, S1 = T, S2, S3, . . ., Hilbert hoped to put mathematics on a firm

footing. Consistency proofs for fragments of arithmetic were indeed found, by

Ackermann [1], von Neumann[61], and Herbrand [33]; indeed, even after Gödel’s

theorem, consistency proofs for arithmetic were still important, especially in the

realm of proof theory, and two particularly notable proofs of the consistency of
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PA were by Gentzen [16] using transfinite induction up to ε0 and Gödel [24]

using primitive recursive functionals.

The difficulty in deciding what the consequences of Gödel’s incompleteness

theorems for Hilbert’s programme is in determining just what constitutes fini-

tary methods and finitary proofs, and Gödel was well aware of the points here.

Certainly, a restrictive reading of Hilbert’s would seem to suggest that finitary

methods really do all lie in the realm of primitive recursion, and thus Hilbert’s

programme in this restricted sense is doomed to failure by Gödel’s second in-

completeness theorem. But, as Gödel said much later [?, footnote b] RWK: I

have lost the

reference I

had for this!

Presumably

it is from

a later ver-

sion of the

dialectica in-

terpretation.

There is nothing in the term ‘finitary’ which would suggest a

restriction to concrete knowledge. Only Hilbert’s special interpreta-

tion of it makes this restriction.

One other possible viewpoint in 1931 would be to consider that ‘finitary pro-

cesses’ might denote ‘computable processes’ (in the sense of human computers

following algorithms as discussed by Turing and others later) but nevertheless

still outside the realm of primitive recursion. As I have mentioned, the precise

connections (or lack of them) between primitive recursion and Gödel’s incom-

pleteness theorems was not fully understood at this point in time. But more

particularly, the acceptance of Church’s thesis, especially after Turing’s [58] ac-

count of computability, and more general results on representability—from the

Kleene normal form for example—would rule out this form of Hilbert’s pro-

gramme just as well.

Gödel himself seems to think that finitary could include processes beyond the

recursive, and hints at extending type levels through the transfinite to settle his

undecidable propositions. It is common folklore that Gödel intended to complete

the proof of the second incompleteness theorem and extend the generality and

applicability of both incompleteness theorems (see Gödel’s last paragraph of his

1931 paper and van Heijenoort’s footnote 68a to his English translation of the

paper [60, 27], which was seen and approved by Gödel). A similar remark is

made by Rosser [45] in 1939, who writes

The hidden assumptions [on a system for which the Gödel in-

completeness theorem apply] have never been put down explicitly

in a form intelligible to the average reader. It is my understanding

from conversations with Gödel that an exact formulation of these

assumptions was to constitute part of the second part of the paper

of which [20] is the first part. Due to ill health, Gödel has never

written this second half. However, Kleene gives an exact statement
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of a set of assumptions sufficient for the proof of Gödel’s First The-

orem. Unfortunately they are phrased in terms of general recursive

functions, and are illuminating only to someone who is thoroughly

familiar with the theory of general recursive functions.

But according Gödel’s own footnote 48a in his 1931 paper, this was not all. The

footnote reads:

As will be shown in Part II of this paper, the true reason for the

incompleteness inherent in all formal systems of mathematics is that

the formation of every higher type levels can be continued into the

transfinite (Hilbert [35]) while in any formal system as most denu-

merably many of them are available. For it can be shown that the

undecidable propositions constructed here become decidable when-

ever appropriate higher types are added (for example, the type ω to

the system P). An analogous situation prevails for the axiom system

of set theory.

In the end, Gödel never published any account of these ideas, though as men-

tioned earlier, there is much in Gödel’s later work to show that did spend much

time thinking about modifications to Hilbert’s programme. The intriguing thing

about this footnote for me is that it hints at more than this: it hints at some sort

of completeness result for the totality of all formal systems at higher types. But

though such systems are discussed at length in later papers, and in particular the

idea of using higher types to decide previously undecidable propositions, I could

not find any later reference implying any such completeness result. Turing [59]

did, however, find a result of this type, which will be discussed shortly.

1.2 The development of first-order arithmetic

Gödel’s 1931 paper can be seen as the beginnings of the modern study of first-

order arithmetic, in that it was here that the two main techniques of arithme-

tization and diagonalization are first introduced and used to effect.

The surprise concerning arithmetization seemed to be Gödel’s argument us-

ing that Chinese remainder theorem that ordinary first-order arithmetic of +

and · for N is so expressive. This result not only forced a complete re-think

in the Logisicts’ and Formalists’ programme, put it also put severe bounds on

Tarski’s programme of applying the method of quantifier elimination to natural

mathematical structures to obtain undecidability results.

Of course, Gödel had used the system P with its higher types to simplify his

work in the 1931 paper, but shortly afterwards he seems to have realized that
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P can be replaced by what is now known as first-order Peano-arithmetic, PA,

(which Gödel called Z) and he published a short extract of these results the

next year, in 1932 [21]. This 1932 paper might be seen as the true beginnings

of (first-order) PA. Thus the importance of Gödel’s method of arithmetization

is not only to show that certain first-order arithmetic statements are formally

undecidable, but that the system of first-order arithmetic, PA, is strong and

worthy of study in its own right.

Gödel was a visiting member of the Institute of Advanced Study at Princeton

from October 1933 to May 1934, and during this period re-worked and extended

his work of 1931; between February and May he gave lectures on the incom-

pleteness theorems. These lectures were, at the suggestion of Veblen, written up

by Rosser and Kleene and approved by Gödel, who added two pages of ‘notes

and errata’.

One feature of Gödel’s lectures was explicit mention to what is now known

as the diagonalization lemma,

Lemma 1.1 (Diagonalization) For all θ(x) there is D such that

PA ` D↔ θ(pDq).

and its immediate consequence,

Theorem 1.2 (The undefinability of truth) For all θ(x) there is D such

that

PA ` D↔¬θ(pDq).

Specifically, in a model of a suitably rich theory, T , there is no formula θ such

that M � σ ⇔ θ(pσq) for all sentences σ of the language of T .

Interestingly, in footnotes added later, Gödel attributes the diagonalization

lemma to Carnap [4] and the undefinability of truth to Tarski [53] and Car-

nap [3], but it is clear from his own remarks (for example the remarks made to

Wang presented above on page 5) that Gödel had already noted these results Ed: Please

note page

reference

here

for himself by 1930, but had not seen fit to publish them.

In section 8 of his Princeton lecture notes, Gödel introduces his β function

notation,

β(c, d, i) = the least non-negative residue of c modulo 1 + (i + 1)d.

Gödel also takes the arithmetization a stage further showing that the undecid-
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able stament may be taken to be arithmetic with a diophantine matrix.

Q1x1 Q1x1 . . . Q1xnp(x1, x2 . . . , xn) = q(x1, x2 . . . , xn)

for polynomials p, q with natural number ocefficients and each Qi being ei-

ther ∀ or ∃. Finding better polynomial representations of these statements (or,

equivalently, better polynomial representations of the r.e. sets) would eventu-

ally become a major theme in first-order arithmetic, with more unpublished

work done later by Gödel himself [30] and also important published work by

Julia Robinson, Martin Davis, Hilary Putnam [8, 9], ultimately concluded by

Matiyasevich [41] in his solution to Hilbert’s tenth problem.

Hilbert and Bernays [34] (pages 283–340) carried out all the details of the

proof of the second incompleteness theorem for the systems Zµ and Z of number

theory. Bernays would go on to further develop mathematics inside formal

number theory with his arithmetized completeness theorem, which would later

have important consequences for the model theory of PA. RWK: Look

up refs for

the arith-

metized

completeness

theorem.

Another obvious question left over from Gödel’s work was whether in the first

incompleteness theorem it is possible to reduce the slightly mysterious condition

of ω-consistency to ordinary consistency. In other words, is it possible to have

a primitive recursive extension of PA which is consistent and complete for first-

order arithmetic. (Note that by Gödel’s work, such a system cannot be sound, or

even ω-consistent, so it is not at all obvious if such systems, and their existence

or non-existence, would have any significant foundational importance, except

to clarify the idea of ω-consistency.) This question was settled by Rosser [44]

negatively. As a consequence, it follows that there are 2ℵ0 complete extensions

of a theory such as PA.

Rosser’s trick may be seen as typical of some techniques used in recursion the-

ory later on, and indeed from a modern recursion theoretic viewpoint, Rosser’s

theorem is essentially equivalent to the statement that there are disjoint, r.e., re-

cursively inseparable subsets A,B ⊆ N. Much later on, this key result of recur-

sion theory would be particularly important in the model theory of arithmetic,

including Tennenbaum’s theorem that nonstandard models are nonrecursive [56]

and the failure of the joint embeddability property for models of PA.

From the modern persepctive, the most obvious ingredient missing in Gödel’s

original paper was the link with computability theory. The story of how the

notion of computability and its link with Gödel’s incompleteness theorems were

found is told at much greater length elsewhere in this volume, but to summarize Ed: please

add cross ref-

erence

briefly, the notion of a computable function arose in four quite different contexts:

from Church’s λ-calculus, from Gödel’s general recursive functions, from Post’s
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analysis of formal systems, and from Turing’s analysis of what are now called

Turing machines. Church [5] proposed that his class of λ-definable functions

should be identified with the idea of intuitively computable functions and—using

this identification—solved Hilbert’s last outstanding foundational problem, the

Entsheidungsproblem, negatively. Despite the success when Kleene [39] verified

that the λ-definable functions and Gödel’s general recursive functions agreed,

Gödel had remained sceptical, until he had seen Turing’s argument [58, 57] using

his Turing machines. Sieg [47] presents a nice account of this period.

This work was to spawn the new subject of computability theory. Work by

Post and Kleene in particular [38, 42] gave impetus to the new theory, which

at least in its early stages was very much influenced by Gödel’s results, through

Post’s analysis of formal systems and Kleene’s recursion theorem which can be

seen as an elegant and useful an application of Gödel’s diagonal method in the

realm of computable functions.

A major topic to grow out of Gödel’s incompleteness theorems was the study

of logics of higher types and the revision of Hilbert’s programme. Much of this

falls under the field of proof theory and its history is discussed elsewhere in

this volume, but I want to return to the topic metioned earier: Turing’s ordinal Ed: provide

cross reflogics and in particular his completeness theorem.

The history of how Turing wrote his paper on ordinal logics [59] is written up

by Feferman [12] and Hodges [36]. Turing worked on his Ph.D. thesis in Princton

under Church from September 1936, and was granted the degree in June 1938.

Turing never met Gödel, nor, apparently did he meet Kleene, Bernays or Rosser,

and seems to have taken up the challenge of working on ordinal logics at Church’s

sugesstion. In broad terms, the idea is as follows. Suppose Tα is a formal system

for arithmetic that is known to be sound (i.e., only proves true statements), and

let ProvTα(x) denote ‘the fomula with Gödel number x is provable in Tα’ and

pφq denote the Gödel number of φ. Then consider the scheme of local reflection

for Tα:

ProvTα
(pφq)→φ

for all arithmetic statements φ. This scheme is also sound when added to Tα,

since If ProvTα
(pφq) then φ is provable in Tα so φ is true, as Tα is sound. On

the other hand, the special case of scheme of local reflection for Tα with φ set

to 0 = 1 implies the consistency of Tα, so local reflection is not provable in Tα.

Thus we obtain a new system Tα+1 which is known to be sound. At limit stages

we can take unions Tλ =
⋃

α<λ Tα and obtain yet another sound theory. This

can be carried on, getting stronger and stronger theories that appear to decide
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more and more of the Gödel statements.

There are some important technical issues though: to define ProvTα(x) it

is necessary have a recursive (i.e., computable) axiomatization of Tα, so it is

important that, at limit stages, the union
⋃

α<λ Tα is recursive. What this

amounts to saying is that the inductive construction must be carried out not so

much on ordinals α but on recursive notations for ordinals.

These are very natural ideas that might have occurred to many people at the

time, but are particularly reminiscent of the 48b footnote in Gödel’s 1931 paper.

In the particular case here, it is quite natural to wonder if they arose out of

discussions between Church and Gödel when Gödel had been visiting Princeton

prior to Turing’s visit. Unfortunately it seems impossible to answer this question

at present, though some information on it may come to light in the future. In

any case Turing set about studying ordinal logics, and it became the subject of

his Ph.D. thesis and his 1939 paper.

Turing’s work concerns ordinal logics in a very general setting, but I will sim-

plify the discussion by simply picking out one or two highlights of it concerning

the logics built on the local reflection principles above. Firstly, a notation for

an ordinal is some a which codes both an algorithm to decide whether an x ∈ N
is in the domain of some well-ordering <a on a subset of N and an algorithm

that decides if x <a y for x, y in this domain. (It is not an easy matter to decide

whether a give a has this property. Turing also considers the better-behaved

notations for recursive ordinal given by Church and Kleene [6].) Turing con-

siders several specific examples of ordinal logics, but in his presentation of the

reflection scheme, he only considers it for formulas φ that are what is now called

Π2 (or Π0
2) statements, i.e., of the form ∀x ∃y R(x, y) for R primitive recursive.

(He gives a very pretty argument showing that an arbitrary Π2 statement can

be put in the form

∀x ∃y > x R(y)

with R(y) primitive recursive, stating that the set of y satisfying R(y) is infinite.)

With these preliminaries, he can define the ordinal logic called ΛP for local

reflection by the above scheme, taking for T1 the system P used by Gödel in his

1931 paper, and extending to Ta for all recursive notations a for ordinals.

The most interesting result Turing proves is a completeness result, that if σ

is a true Π1 statement then for some ordinal notation representing an ordinal

of value at most ω + 1 we have Ta ` σ. (The question Turing poses of whether

this is also true of all true Π2 statement σ was later answered negatively by

Feferman [11].) The proof is a very clever and delicate argument based on a



Preliminary draft 20

diagonalization using the recursion theorem of Kleene and an application of

the Gödel second incompleteness theorem, and seems at first sight to provide

just what Gödel was looking for as a way out of the incompleteness phenomena

into a complete system based on some finitistically justifiable logic (but not

formalizably so).

But, as nice as Turing’s proof is, the result unfortunately does not live up

to any of these expectations. Part of the reason is in the necessity to work

with ordinal notations rather than ordinals: in fact this is essential, since not

only (as Turing shows) does ΛP fail to be invariant—in the sense that there are

notations a and b for the same ordinal α such that Ta and Tb are inequivalent—

but this property of invariance must fail for all complete ordinal logics. What’s

more, Turing’s completeness proof comes by means of a trick that does not tell

you how to proceed in any real case of determining whether a Π1 statement

σ is true or false, and the foundational issue of deciding which systems Ta

one might believe sound boils down to the issue of determining which a are

valid notations for ordinals (in particular determine a linear order that is well-

founded), and this question is just as tricky as the original one of deciding truth

or falsity of Π1 statements of arithmetic. Turing also presents an ordinal logic

based on transfinite type theory which is invariant, but of course because of

this invariance it is necessarily incomplete.

Turing’s paper contains a large number of other important ideas (including

the idea of an oracle machine and the essence of a proof of (in modern termi-

nology) the statement that the arithmetical hierarchy of formulas is proper, as

well as much more on logics, and I cannot possibly do justice to it in these few

paragraphs. But as far as the topic ordinal logics is concerned, Turing seems to

have given up the situation as ‘hopeless’—the Gödel incompleteness phenomena

are too pervasive—and did not return to the subject again.

I don’t believe that Gödel ever referred to Turing’s work. As far as Gödel

was concerned, his incompleteness had ‘explained the nature of arithmetic’; the RWK: what

is the refer-

ence here?

next foundational questions were to understand set theory and how logic higher

types can settle statements concerning objects of lower type, such as consistency

statements. Gödel would go on to look at consistency and independence results

in set theory. On the other hand, the work had spawned exciting new direc-

tions in proof theory, consistency proofs and the partial realizability of Hilbert’s

programme.

One issue that was left in the air for some time after Gödel’s incomplete-

ness results was exactly how complicated independent statements might be, and

whether one could find independent statements in arithmetic of genuine math-
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ematical (rather than metamathematical) interest. In some important cases,

it turned out that mathematically interesting statements equivalent to certain

Gödel statements could be found, and their analysis was initially done using a

new theory in mathematical logic that was only just starting up in the 1930s:

the theory of models of arithmetic. This story will be taken up in the next

section.

2 Models of arithmetic

We have seen how foundational questions in mathematics—Hilbert’s formalist

programme and Russell’s logisist programme in particular—lead to the study of

provability, computability and interpretations of first-order arithmetic, via the

key results and methods due to Gödel.

These three strands of arithmetic have proved very profitable areas of math-

ematical research. The proof-theoretic aspects are explored in more detail by

Sieg’s article in the current volume, and the computational aspects are covered

by Davis and others here. This section is devoted to interpretations of first-order

arithmetic, and the development of the theory of models of arithmetic. As we

will see, a clearly defined subject arises, one whose role is certainly related to

the other metamathematical aspects of arithmetic and model theory. We will

examine that role, and areas where models of arithmetic have been particularly

influential.

Despite its obvious relevance, the area of models of arithmetic and nonstan-

dard models has sometimes found itself peripheral to model theory itself, and

is not always the tool of first choice for proving independence results in arith-

metic. Nevertheless, the major advance in the subject of first-order arithmetic,

the Paris–Harrington theorem of 1977 giving the first mathematically interesting

statement independent of PA, was discovered via the study of models of arith-

metic and its history is intimately connected with several important features

of the theory of nonstandard models. My aim in this section is to outline this

history of ideas concerning models of arithmetic, focussing particularly on the

ones that lead up to the Paris–Harrington theorem, and explain how the Paris–

Harrington theorem appears rather natural—indeed, perhaps inevitable—from

the point of view of model theory.

2.1 Constructions of models of arithmetic

If we trace back the idea of a nonstandard model of arithmetic, we find three

distinct ideas and constructions that were available to mathematicians in the
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1930s.

In all cases, the construction of a model of arithmetic is somewhat non-

effective, and as such might have seemed counterintuitive or unappealing at

the time. Nowadays, we know now that nonstandard models of arithmetic are

necessarily nonrecursive and highly complicated mathematical objects, and that

this is very much related to the Gödel’s incompleteness phenomena. But this

was not at all clear in the 1920s and 30s, and Skolem (who was first to construct

such a model) and many of his contemporaries must have wondered whether a

simpler construction might not suffice.

The first explicit construction of a nonstandard model was by Skolem [51, 48].

The methods he used originate from the idea of what are now called Skolem

functions, but with an extra twist rather suggestive of ultraproducts (though

there are some essential differences between his methods and  Loś’s theorem that

would come later).

The motivation for constructions of models of arithmetic come from foun-

dational questions concerning what logic is required to characterize the natural

numbers. It was well known from a result going back to Dedekind in 1888, that

the second-order theory of the natural numbers, N, suffices to characterize it

up to a canonical isomorphism, and this had been used to give a satisfactory

definition of the natural numbers in set theory. As Skolem later wrote [49, p1]

(referring to the ‘Skolem paradox’ in set theory),

This definition cannot then be conceived as having an absolute mean-

ing, because the notion set and particularly the notion subset in the

case of infinite sets can only be asserted to exist in a relative sense.

It was then to be expected that if we try to characterize the number

series by axioms, for example by Peano’s, using the reasoning with

sets given axiomatically or what amounts to the same thing given

by some formal system, we would not obtain a complete characteri-

sation. By closer study I succeeded in showing that this really is so.

This fact can be expressed by saying that besides the usual num-

ber series other models exist of the number theory given by Peano’s

axioms or any similar axiom system.

Skolem’s method was ingenious, but other methods existed at the time.

The surprise was that noone seemed to have realised their relevance to these

problems.

Perhaps the simplest approach, and the method of choice for modern model

theory textbooks, is a simple application of Gödel’s completeness and compact-

ness theorems of 1930 [18]. Here, one need simply observe that by compactness
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one may add the sentences {c > n | n ∈ N} to Th(N) (where c is a new constant

symbol) to obtain a consistent theory with a (necessarily nonstandard) model.

Noone seemed to notice this at the time though Mal’stev was using compactness

aruments of this type around this time; Kleene [37] attributes the first applica-

tion of compactness to build nonstandard models of arithmetic to Henkin [32]

as late as 19474. A third method for constructing nonstandard models was RWK: look

this upgiven—by Gödel himself—in his review of Skolem’s 1934 paper [23], where he

points out that by the incompleteness theorems, PA + ¬Con(PA) is consistent,

so has a (necessarily nonstandard) model by the completeness theorem. But

again, Gödel fails to spot the purely model theoretic argument.

To appreciate these points properly, it might help to contrast these methods.

Both the Skolem method and the compactness argument easily give a model of

true arithmetic, that is, a single nonstandard model which satisfies all first-order

statements true in N. But on the other hand, the only definable elements in such

a model are the standard ones. On the other hand, Gödel’s methods cannot

give a model of true arithmetic (they always satisfy some statement ¬Con(T )

for some consistent theory T ) but they do construct models with nonstandard

definable elements. These distinctions were not noticed at the time, it seems

at least in part because the idea of ‘all true arithmetical statements’ was not

on the logicians’ agenda. (As we have just seen, even in 1955 Skolem phrased

his results by saying that ‘models exist of the number theory given by Peano’s

axioms or any similar axiom system’. Much later on, Skolem’s method would

be important for the construction of elementary end extensions of models of

PA by MacDowell and Specker and later by Gaifman, whereas Gödel’s method

would lead to results about the non-finite axiomatization of PA proved by Ryll-

Nardzewski and Mostowski.

At around the same time as Skolem’s constructions of models of arithmetic,

work was being carried out on more constructive models and theories of arith-

metic. One line here was again begun by Skolem, in his ideas of free-variable

arithmetic, and in particular what is now known as Primitive Recursive Arith-

metic [50]. Tarski’s student Presburger looked at what is now known as Pres- RWK:

Check!burger arithmetic [43], essentially the theory of (N, 0, 1, +, <) without the mul-

tiplication operation, and though it did not seem to be of interest at the time, it

is worthwhile pointing out that Presburger’s characterization of models of this

theory can be used to obtain effective models. Skolem also looked at the theory

of (N, 0, 1, ·, <) without the addition operation, with similar results. Skolem

presented constructions of nonstandard models. RWK: did

he?
4Hodges informs me that Kemeny had some similar constructions soon afterwards
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The search for simple or effective constructions for models of arithmetic has

continued to this day. In one line of work, there are questions concerning the

decidability—or otherwise—of expansions of Presburger (adding a predicate for

primality, for example). Another line continues Skolem’s idea of quantifier-

free arithmetic. This was emphasised by Kreisel, who also pointed out the

connections between constructions of models and effectivity of a theory, and

work was continued by Shoenfield and Shepherdson. In particular, Shepherdson

managed to relate the decidability of quantifier-free Peano arithmetic (with the

usual language of Peano, but no quantifiers, and induction expressed as a rule

Γ, θ(x) ` θ(x + 1), ∆
Γ, θ(0) ` θ(t), ∆

with x not free in the sequent on the bottom) with an ordinary first order

theory, IOpen. The statements provable in quantifier free arithmetic should be

interpreted in ordinary logic by their universal closure. These then correspond

exactly to the universal statements provable in IOpen. Shepherdson also went

on to construct recursive models of IOpen, and provide indepence results for

quantifier-free PA. The key question here, of the decidability of QFPA is still

open, however. RWK: ref-

erences

required

On the other hand, more recent work based on what is effectively the model-

theoretic and recursion-theoretic analysis of the incompleteness theorems has

led to the idea that nonstandard recursive models of strong theories such as

PA do not exist, as proved by Tennabaum [56], using a pair of r.e., recursively

inseparable sets—the recursion theoretic analogue of Rosser’s incompleteness

theorem.

2.2 Towards a structure theory for models of arithmetic

As we have seen, early interest in models of arithmetic from the point of view

of foundational studies was low. Thus, models of arithmetic were used as im-

portant examples in the study of the new subect of model theory. Ed: Link

with Hodges’

article

Each complete extension of PA has continuum-many countable models: to

see this, notice that by compactness any set A ⊆ N can be coded in some such

model. There is also a nice link with computability and diagonalization here: RWK: Who

first did this?any noncomputable set is not coded in some nonstandard model of PA, though

every computable set is coded in every nonstandard model. Recursion theoretic RWK: Who

first did this?results also enable PA to be used as a source of other model theoretic examples.

For example, Post’s construction of a simple set [?] enables one to show that PA

fails a joint embedding property: there are models M1 and M2 both elementary
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extensions of N which cannot be jointly embedded in a third model M of PA.

List of topics to include in the next version of this paper At this point,

I intend to mention at least briefly the following: RWK: a

section needs

to be written

here.

• Results of Ryll-Nardewsi and Mostowski: the first to use models of PA to

give results of foundational interest.

• MacDowell–Specker theorem.

• Rabin and diophantine-incorrect models of PA.

• Abraham Robinson, and especially overspill.

• Tennenbaum’s theorem and some later stuff on the Tennenbaum phenom-

ena.

• Dana Scott’s work, espically on relativizations of the completeness theo-

rem and ‘Scott sets’.

As Hodges points out in his article in this volume, the beginning a more Ed: cross ref

‘modern’ view in model theory concerns the different kinds of relationships that

can occur between two or more models and the structural properties of the

models that these relationships show. In the case of models of arithmetic, PA in

particular, The MacDowell–Specker theorem was an early example of this sort

of result. But the first person to study models of PA in this way as abstract

objects ‘for their own sake’ was Gaifman. His work would have quite profound

consequences for applications of models of PA too, as we shall see.

Gaifman’s splitting theorem [14] concerns the kind of extensions of models

of PA and shows that essentailly there are only two kinds. The model theoretic

extensions of interest in the study of PA are the end extensions and the cofinal

extensions, and moreover cofinal extensions are always elementary. To prove

thses results he first observes that the then-new MRDP theorem answering

Hilbert’s tenth problem can be carried out in PA, and hence

Theorem 2.1 For all θ(x̄) in Σ1 there is θ∃(x̄) in ∃1 with the same free-

variables such that PA ` ∀x̄ (θ(x̄)↔ θ∃(x̄)).

From this, he deduces

Theorem 2.2 If M1 ⊆ M2 and both M1,M2 satisfy PA then M1 ≺∆0 M2 and

there is M1 ⊆e M2 such that M1 ≺cf M1 ⊆e M2.
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This paper, which is entirely and unashamedly model theoretic, is particu-

larly useful for extending results about countable models to the uncountable,

but at first sight doesn’t seem to say much about foundational issues. There

is one important methodological point that can be drawn from this paper how-

ever: this is that since cofinal extensions are elementary and hence preserve all

first-order sentences, to find a model satisfying a new theory, it suffices to look

at initial segments and end-extensions.

Gaifman’s second paper concerns types. In it he introduces the idea of a

definable type—now a mainstay of stability theory—and a minimal type, and

uses these ideas to produce a huge variety of models of arithmetic with almost

any automorphism group G = Aut(S, <) one cares to take provided the group

acts faithfully on a linearly ordered set. [15] Here was perhaps the first major

application of Ramsey’s theorem to models of PA: the types are constructed

by an elegant and powerful extension of Skolem’s original method, but working

from within the formal theory PA itself not from ‘the outside’. Also, rather than

Skolem’s straightforward combinatorial principle, Gaifman used a formalization

of a version of Ramsey’s theorem to construct his formulas one-by-one. We thus

see Gödel’s β-function used in a most essential way to identify the algebraic

theory of the semiring (N, 0, 1, +, ·) with the combinatatorial theory of finite

sets and definable infinite sets of finite sets.

2.3 Initial segments and Mathematical independence re-

sults

At the Cambridge summer school of 1971 Harvey Friedman presented several

startling and highly influential results concerning initial segments of models

of PA.

Friedman had, without being aware of Scott’s previous work, rediscovered

the correct closure properties of the standard system SSy(M) of a model M .

He also realized the importance of SSy(M) to the model theory of a nonstan-

dard model M , and to realizing types in particular. If a type (by definition,

here, a finitely satisfied set of formulas with at most finitely many parameters)

p(x̄)is coded in M , i.e., the set of Gödel numbers {pθ(x̄)q | θ(x̄) ∈ p(x̄)} is

in SSy(M) and is of bounded complexity, then an overspill argument together

with a Σn-universal formula SatΣn() shows that p(x̄) is realized in M . This al-

lowed Friedman to prove several striking results on initial segments of countable

models of PA. Here are two samples of these kinds of results.

Theorem 2.3 If M is a nonstandard model of PA, and T is a complete exten-
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sion of PA which is coded in M , and M � Σ1-Th(T ) then for all nonstandard

b ∈ M with

T ` ∃x̄ θ(x̄)⇒M � ∃x̄ < b θ(x̄)

for all θ(x̄) in ∆0, the model M has a nonstandard proper initial segment I

satisfying T not containing b (and such b always exist).

In particular, there are arbitrarily small nonstandard initial segments of M

satisfying PA.

Theorem 2.4 If M is a nonstandard model of PA then there are arbitrarily

large proper initial segments I of M isomorphic to M .

These result, it seems, came as a great surprise. Although Tennenbaum’s

theorem had shown that nonstandard models of PA have to be nonrecursive, it

appears that no-one expected the initial-segment structure of such models to be

so complicated.

Friedman’s results apply to models of second-order arithmetic and to mod-

els of set-theory too. The techniques he used would have very far-reaching

consequences and spawn new research in its own right. One of these new areas

was that of admissible sets and structures, and admissible languages (Barwise),

which lead Barwise and Schlipf to the idea of recursive saturation. The idea

of recursive saturation was independently discovered by others about this time:

recursive saturation is what one obtains when one drops the condition that a

coded type be of bounded complexity in the Friedman type-realization lemma

referred to above, and is sufficient in the case of countable models to imply

the powerful notion of resplendency (Ressayre). Finally, recursive saturation

arises very naturally when one investigates the extenal ‘extension’ of models

M within an ω-nonstandard model of set-theory (Wilmers). Recursive satu-

ration has become a useful tool in the model theory of arithmetic: countable

recursively saturated models are, by and large, the ‘nice’ well-behaved models

to work with, and are available in sufficient supply so that they can be used to

study arbitrary first-order theories of arithmetic (unlike the notion of a satu-

rated model which is more commonly used in mainstream model theory to make

‘constructions come out right’, but which only exist in certain cardinalities and

under special set-theoretic assumptions for theories such as arithmetic).

But Friedman’s results on initial segments were to have more immediate

impact in the mid 1970s, in that the sort of structure theory he had been

developing turned out to be the key to a new series of independence results for

first-order arithmetic.



Preliminary draft 28

Jeff Paris, who had been present at the Cambridge summer school, became

intrigued by properties of initial segments I of countable models M � PA anal-

ogous to (large-) cardinal hypotheses in set theory.5 For example, the notion of

a measurable cardinal in st theory corresponds to an initial segment I ⊆e M of

a model M of PA such that there is an elementary extension K � M such that

I is still an initial segment of K but there is b ∈ K with a < b < c for all a ∈ I,

c ∈ M \ I.6

The immediate question was: what first-order theory must be satisfied by

such a cut I? The answer to this question, and several similar ones, were

worked out by Paris and his research student Laurie Kirby. It turned out that

the first-order theory of regular cuts (as cuts I with the property above were

called) is the fragment BΣ2 of PA. This is perhaps surprisingly weak, but

nevertheless it is interesting that the first-order theory of such cuts comes out to

be so straightforward to state. Kirby and Paris also studied other combinatorial

properties of cuts, thechief ones being semiregular cuts (corresponding to the

subtheory IΣ1 and the strong cuts (corresponding to PA itself).

The other main feature of this early work of Paris and Kirby was their

detailed analysis of some other the other methods used by Friedman. Friedman

had shown how, given a < b in M � PA and a recursively axiomatized theory

T of arithmetic there is an initial segment I ⊆e M with a ∈ I < b satisfying T

if and only if

T ` ∀x ∃y θ(x, y)⇒M � ∃y < b θ(a, y)

for all ∆0 formulas θ(x, y). Using formalization of syntax similar to Gödel, Paris

and Kirby internalized this argument and came up with the idea of an indicator.

For example,

YT (a, b) =


the least pair 〈p, g〉 where g = pθ(x, y)q, θ is ∆0,

p is the Gödel number of a proof of ∀x ∃y θ(x, y)

from T and M � ¬∃y < b θ(a, y).

5This perhaps explains why Jeff Paris and many other workers in models of arithmetic
prefer to draw diagrams of models of arithmetic going up the page, whereas a left-right
diagram might be more natural if we think of nonstandard naturals as part of an extended
number-line.

6This cannot be achieved by an initial segment with a top element x, for if x was the top
element of an initial segment I then x + 1 would be the least element not in I, for all models
K containing I.
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Then it turns out that

YT (a, b) > N⇔∃I ⊆e M I � T&a ∈ I < b

i.e., the value YT (a, b) ‘indicates’ whether there is a cut I ⊆e M with a ∈ I < b

and I � T .

The combinatorial properties of a cut being semiregular, regural, or strong,

also have indicators; in fact YIΣ1 is an indicator for both regular and semireg-

ular cuts7 and YPA is an indicator for strong cuts, although it turned out that

mathematically simpler indicators could be found by working directly from the

combinatorial properties rather that from first-order syntax. Paris and Kirby,

in their construction of semiregular cuts essentially show that

YG(a, b) = (max n)Fn(a) < b

is an indicator for semiregular cuts, where Fn is the fast-growing or Grzegorczyk

hierarchy, F0(x) = x + 1, Fn+1(x) = F
(x)
n (x).

Paris and Kirby were also aware that indicators give independence results:

if Y (a, b) is an indicator for T then

T 6` ∀a ∃b Y (a, b) > a.

Here then is the power of the indicator method: by concentrating on combina-

torial properties of cuts, indicators can be defined quite simply, but mathemat-

ically interesting independence results may then be derived from them rather

quickly. The first such for PA itself was provided by Paris [?] when he provided

an indicator for strong cuts. Harrington simplified the arguments and the two

collaborated by providing the most famous of all the independence results that

followed by this method, the Paris–Harrington theorem [?].

The main device required to find an indicator for the key case of strong cuts

is a way of relating truth in the initial segment I to truth in the model M . in the

Paris–Harrington approach, this is achieved using indiscernibles. By repeatedly

finding a subset of some coded A = {a0, a1, . . . , an} ⊆ M of nonstandard size

n, one obtains an internal increasing sequence (ci) in M such that for

I � {x ∈ M | ∃i ∈ N x < ci} (1)

7But note that a semiregular cut need not be regular: these classes of cuts are said to be
symbiotic, i.e., they have the same indicators.
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and any parameter a < ci ∈ I we have

I � ∃x1 ∀x2 ∃x3 . . . θ(x1, x2, x3, . . . , a)

⇔ M � ∃x1 < ci+1 ∀x2 < ci+2 ∃x3 < ci+3 . . . θ(x1, x2, x3, . . . , a)
(2)

With this idea in mind, it’s clear that the indicator for strong cuts will be based

on a variation of the finite Ramsey theorem. In fact, Paris and Harrington used

Y (a, b) = (max n)


for any (internal) partition of

[
[a, b]

]n into n pieces

there is an n-subset A of [a, b] such that [A]n is in

one part, and A is relatively large, i.e., card A >

min A.

As for Gödel’s first incompleteness theorem, the Paris–Harrington theorem

can be formalized in PA, and it’s worthwhile looking to see what this gives.

Although the cut I in (1) cannot be defined in M (since N, nor any proper cut

closed under successor can be so defined) the truth definition (2) provides an

interpretation or formulas of unbounded quantifier complexity in I in terms of

truth for formulas of bounded complexity in M . This is enough to formalize

the soundness theorem: if p is a proof in a model M of PA, p is a proof that

PA ` σ, and a ∈ M is larger than the complexity of all formulas in p, then

provided b with Y (a, b) > a exists, (2) gives an interpretation of the sentences

in p, and an induction on the length of p using (2) and the ∆0 truth prediacte

Sat∆0() shows that all statements in p and in particular the statement σ is true

according to (2).

Refining this argument only slightly, we have the stronger statement that,

in PA,

∀x ∃y Y (x, y) > x⇒∀σ ∈ Π1

(
SatΠ1(σ)→Con(PA+σ)

)
.

In other words, PA + PH proves a reflection principle, the 1-consistency of PA.

In fact, there is a converse also:

PA ` ∀x ∃y Y (x, y) > x⇒∀σ ∈ Π1

(
SatΠ1(σ)→Con(PA+σ)

)
.

The 1-consistency of PA is a Π2 statement, as in PH itself: it asserts the

totality of a very fast-growing recursive function f . Such a Π0
2-analysis of a

theory like PA had been the realm of proof theorists, and the proof theorists

were very quick to find their own arguments showing PA 6` PH. Many very

slick and accessible arguments like this have been found, but the original argu-

ments were entirely model theoretic. In particular, as we saw, the reason for
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looking at variations of Ramsey theorems was to construct special sequences

of indiscernibles. This to my mind, was the real success of the model theoretic

Π2 analysis of PA via cuts: it dirctly suggests the indicators (or independent

statements) that should be considered.

Gödel’s first and second incompleteness theorems provided independent Π1

statements, in particular Con(PA). To produce such independent results by

analysis of cuts is impossible since the truth of a Π1 statement is a model

M � PA is preserved to initial segments of M . The study of cuts is presisely

the model theoretic version of the Π2 analysis of arithmetic.

The main thrust of work in models of arithmetic in the 1980s was to re-

late theories of arithmetic such as PA, but also very weak subsystems of PA

such as I∆0 and related theories, to the computational problems of complexity

and practical feasability—just as Gödel had related his independence results

to theoretical computability. But the problems in computational complexity

(such as P = NP?) which were the motivation of this research remain as in-

tractable as ever. The result is that the model theory of first-order arithmetic

has splitinto two quite separate areas: very weak theories, such as IOpen, with

a characteristic algebraic flavour, and strong theories such as PA itself.
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Church’s theorem. J. Symbolic Logic, 4:53–60, 1939.

[46] Bertrand Russell. Letter to Frege. In From Frege to Gödel: a source book
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Cambridge, Mass, 1996.


