UNIVERSITYOF BIRMINGHAM

School of Mathematics

Programmes in the School of Mathematics

Programmes including Mathematics

Final Examination
Final Examination

06 22498

MSM 3P05: Number Theory

Summer Examinations 2010
Time allowed: 3 hours

Full marks may be obtained with complete answers to FOUR questions (each worth 25%) out of SIX. Only the FOUR best answers will be credited.

No calculator is permitted in this examination.

- **1.** (a) (i) Write down the definitions of $\mathbb{Z}[i]$ and the norm $N:\mathbb{Z}[i]\longrightarrow\mathbb{Z}$.
 - (ii) Determine the factors of 1+8i in $\mathbb{Z}[i]$.
 - (b) (i) Let $\alpha \in \mathbb{Z}[i]$. Prove that if $N(\alpha)$ is irreducible in \mathbb{Z} , then α is irreducible in $\mathbb{Z}[i]$.
 - (ii) Let $\alpha \in \mathbb{Z}[i]$ and suppose that $N(\alpha)$ is prime in \mathbb{Z} . What can you say about α ? [A few sentences at most.]
 - (c) (i) Let x be an odd natural number. Show that $x^2 + 2 \equiv 3 \mod 4$ and deduce that there exists a prime p with

$$p \mid x^2 + 2$$
 and $p \equiv 3 \mod 4$.

- (ii) Use (i) to show that there are infinitely many prime numbers p with $p \equiv 3 \mod 4$. [Hint: Let x be the product of certain primes.]
- (iii) Deduce that there are infinitely many counterexamples to the converse of (b)(i).
- 2. (a) Use the Euclidean Algorithm to determine all the solutions to

$$33x \equiv 6 \mod 108$$
.

- (b) (i) State and prove the theorem of Lagrange concerning the number of roots of a polynomial modulo a prime.
 - (ii) Let p be a prime and d a natural number with $d \mid p-1$. Prove that

$$x^d \equiv 1 \mod p$$

has exactly d distinct solutions modulo p.

(c) Let p be a prime and d a natural number with $d \mid p-1$. Investigate the number of solutions to

$$x^d \equiv 1 \mod p^2$$
.

[Hint: Consider integers of the form s+yp, where s is a solution to $x^d\equiv 1 \mod p$.]

 (a) State Gauss' Law of Quadratic Reciprocity and use it to evaluate the following Legendre symbols.

$$\left(\frac{5}{23}\right)$$
, $\left(\frac{20}{31}\right)$ and $\left(\frac{35}{43}\right)$.

- (b) Let p be an odd prime. Prove that there are the same number of quadratic residues modulo p as there are nonresidues. Clearly indicate where you use the fact that p is prime.
- (c) For each $n\in\mathbb{N}$ define the n^{th} Mersenne number by $M_n=2^n-1$. Let p and q be primes. Assume that $p\equiv 3 \mod 4$ and q=2p+1. By considering the Legendre symbol $\left(\frac{2}{q}\right)$, or otherwise, prove that $q\mid M_p$. Deduce that M_{23} is not prime.
- **4.** In parts (a) and (b) we assume that $x, y \in \mathbb{Z}$ satisfy

$$y^3 = x^2 + 4$$
.

- (a) (i) Write down the units of $\mathbb{Z}[i]$ and verify that each unit is the cube of a unit.
 - (ii) Let d be a highest common factor of x+2i and x-2i. Prove that d is an associate of π^t for some $t \ge 0$, where $\pi = 1+i$.
- (b) (i) Prove that t is a multiple of 3 and deduce that y^3/π^{2t} is associate to the cube of a Gaussian integer.
 - (ii) Show that x + 2i is the cube of a Gaussian integer.
 - (iii) Determine the possibilities for x and y.
- (c) Let k be a natural number. Obtain an upper bound for the number of integer solutions to

$$y^3 = x^2 + 4^k$$
.

Where appropriate, you may merely indicate modifications to, or re-use, your previous answers.

Write an essay which discusses the Method of Descent and illustrates its use by discussing the special case

$$x^3 + y^3 = z^3$$

of Fermat's Last Theorem. Your essay should demonstrate that you have knowledge of the necessary background material and contain a significant amount of mathematical detail.

6. For each $n \in \mathbb{N}$ define the n^{th} Mersenne number by

$$M_n=2^n-1.$$

Define a sequence r_0, r_1, \ldots by

$$r_0 = 4$$
 and $r_{i+1} = r_i^2 - 2$.

Let

$$\tau = 2 + \sqrt{3}$$

We will work in the ring $\mathbb{Z}[\sqrt{3}]$, which possesses a conjugate function defined by $\overline{a+b\sqrt{3}}=a-b\sqrt{3}$ for all $a,b\in\mathbb{Z}$.

- (a) (i) Let $n \in \mathbb{N}$. Prove that if M_n is prime, then so is n.
 - (ii) Prove that $\tau \overline{\tau} = 1$.
 - (iii) Prove that $r_i = \tau^{2^i} + \overline{\tau}^{2^i}$ for all $i \ge 0$.
- (b) (i) Let $\alpha \in \mathbb{Z}[\sqrt{3}]$ and let p be an ordinary prime number. Prove that

$$\alpha^p \equiv \left\{ \begin{array}{l} \alpha & \text{if } p \equiv \pm 1 \bmod 12 \\ \overline{\alpha} & \text{if } p \equiv \pm 5 \bmod 12. \end{array} \right\} \bmod p.$$

Any significant results that your proof requires should be clearly stated. You may assume without proof that

$$\left(\frac{3}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \mod 12\\ -1 & \text{if } p \equiv \pm 5 \mod 12. \end{cases}$$

- (ii) Let a and q be elements of a ring R. What is the order of a modulo q?
- (iii) Let a and d be elements of a ring R, let d be the order of a modulo q, and let $k \in \mathbb{N}$. Prove that $a^k \equiv 1 \mod q$ if and only if k is a multiple of d.
- (c) Let $n \in \mathbb{N}$, $n \ge 3$, and assume that

$$r_{n-2} \equiv 0 \mod M_n$$
.

Let q be a prime factor of M_n .

- (i) Show that $\tau^{2^{n-1}} \equiv -1 \mod q$ and that $\tau^{2^n} \equiv 1 \mod q$.
- (ii) Deduce that the order of τ modulo q is 2^n .
- (iii) Suppose that $q\equiv \pm 1 \mod 12$. Apply (b)(i) to obtain a contradiction.
- (iv) Apply (b)(i) to prove that $M_n=q$ and deduce that M_n is prime.