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1. (a) Determine the factors of 5− 2
√−2 in Z[

√−2 ].

(b) Let p ∈ Z, p > 0, be irreducible in Z. Suppose that p is not irreducible in Z[
√−2 ].

(i) Prove that

p = ππ∗

for some π ∈ Z[
√−2 ].

(ii) Deduce that there are integers a and b such that p = a2 + 2b2 and then that
(−2

p

)
= 1.

(c) State and prove the converse to the result proved in (b).

[Standard properties of Z[
√−2 ] may be used without proof provided that they are stated

clearly.]

2. (a) (i) Define the term multiplicative function.

(ii) Define µ : N −→ C by

µ(n) =





1 if n = 1

0 if p2 | n for some prime p

(−1)r if n is the product of r distinct primes.

Prove that µ is multiplicative.

(b) For any function f : N −→ C define f̂ : N −→ C by

f̂(n) =
∑

d|n
f(d).

(i) Prove that µ̂(n) =

{
1 if n = 1

0 if n > 1.

(ii) State and prove the Möbius Inversion Formula.

(c) Let φ denote the Euler φ-function.

(i) Prove that φ̂(n) = n for all n ∈ N and deduce that φ is multiplicative.

(ii) Where in your answer to (c)(i) have you used, implicitly or explicitly, the fact that

Z is a Euclidean ring?

[Standard properties of multiplicative functions may be used without proof provided that they

are stated clearly.]
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3. (a) (i) Use the Euclidean Algorithm to determine the solutions to

48x ≡ 45 mod 69.

(ii) Suppose that a, b ∈ Z and n ∈ N. Prove that if hcf(a, n) | b then

ax ≡ b mod n

has at least one solution.

(b) Suppose that p is a prime and that a is an integer with a 6≡ 0 mod p.

(i) What is the order of a modulo p?

(ii) Let d be the order of a modulo p and let k ∈ N. Prove that ak ≡ 1 mod p if and

only if d | k.

(iii) Use Fermat’s Little Theorem to deduce that d | p− 1. [Two lines at most.]

(iv) Let k ∈ N with hcf(k, p− 1) = 1. Use (b)(ii),(iii) to prove that the only solution to

xk ≡ 1 mod p

is x ≡ 1 mod p.

(c) Let p be a prime and k ∈ N with hcf(k, p − 1) = 1. Prove that every integer has a kth

root modulo p.

4. (a) State Gauss’ Law of Quadratic Reciprocity and use it to evaluate the following Legendre

symbols: (
19
37

)
and

(
15
89

)
.

(b) Determine the primes p for which 3 is a quadratic residue modulo p.

(c) State and prove Gauss’ Lemma.
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5. Let ω = e2πi/3 and Z[ ω ] = { a + bω | a, b ∈ Z }.

(a) (i) Show that ω3 = 1, that ω∗ = ω2, that ω2 + ω + 1 = 0 and deduce that

ω = 1
2(−1 +

√−3).

(ii) Define N : Z[ ω ] −→ Z by N(α) = αα∗. Show that

N(a + bω) = a2 − ab + b2

for all a, b ∈ Z.

(iii) By completing the square, or otherwise, show that the units of Z[ ω ] are ±1,±ω and

±ω2. [You may assume, without proof, that α is a unit if and only if N(α) = 1.]

(b) Let λ = 1− ω.

(i) Show that λ2 is associate to 3.

(ii) Show that every member of Z[ω ] can be written in the form a+bλ, for some a, b ∈ Z.

(iii) Show that if α ∈ Z[ ω ] then α3 ≡ n mod λ3 for some n ∈ Z.

(iv) Suppose that u is a unit of Z[ ω ] such that

u ≡ α3 mod λ3

for some α ∈ Z[ ω ]. Prove that u is a cube of a unit.

(c) Give an outline of the proof of Fermat’s Last Theorem in the case n = 3. Pay particular

attention to how the conclusion of (b) is used.
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6. In this question we consider the ring

Z[
√

5 ] = { a + b
√

5 | a, b,∈ Z }

and the conjugate function : Z[
√

5 ] −→ Z[
√

5 ] defined by a + b
√

5 = a − b
√

5 for all

a, b ∈ Z.

(a) Let p ∈ Z, p > 0, be irreducible in Z. In other words, p is an ordinary prime number.

(i) Use the Binomial Theorem to prove that

(α + β)p ≡ αp + βp mod p

for all α, β ∈ Z[
√

5 ]. You may use any property of binomial coefficients provided

that it is stated clearly.

(ii) Prove that

αp ≡
{

α if p ≡ ±1 mod 5

α if p ≡ ±2 mod 5

}
mod p

for all α ∈ Z[
√

5 ].

You may use, without proof, the fact that
(

5
p

)
=

{
1 if p ≡ ±1 mod 5

−1 if p ≡ ±2 mod 5
.

(b) Let τ = 2 +
√

5 and define a sequence r1, r2, . . . , by

r1 = 18 and rk+1 = r2
k − 2.

(i) Prove that ττ = −1. [One line.]

(ii) Prove that rk = τ2k
+ τ2k

for all k ∈ N.

Let n ∈ N and put p = 2n − 1. Assume that p is irreducible in Z and that p ≡ 2 mod 5.

(iii) Use(a)(ii) to prove that τ2n ≡ −1 mod p.

(iv) Deduce that rn ≡ −2 mod p and then that

rn−1 ≡ 0 mod p.

(c) Let n ∈ N, n ≥ 3 and put M = 2n − 1. Assume that M has a prime factor q with

q ≡ ±2 mod 5 and that

rn−1 ≡ 0 mod M.

(i) Use(b)(ii) to show that τ2n ≡ −1 mod q. Deduce that the order of τ modulo q is

2n+1.

(ii) Use (a)(ii) to show that τ2(q+1) ≡ 1 mod q. Deduce that M = q, so that M is prime.
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