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1. (a) (i) Write down the definition of Z[ i ].

(ii) Prove that α ∈ Z[ i ] is a unit if and only if N(α) = 1.

(b) Determine the factors of −8+9i in Z[ i ].

(c) Let α ∈ Z[ i ] and suppose that N(α) = pq where p and q are distinct prime numbers.

(i) Prove that α is the product of at most two irreducible Gaussian integers.

(ii) State the relationship between irreducibles and primes in Z[ i ]. Prove that α is the

product of exactly two irreducible Gaussian integers.

[25]

2. (a) Use the Euclidean Algorithm to find all the solutions to

100x≡ 12 mod 144.

Throughout the remainder of the question, p is a prime and a is an integer with a 6≡ 0 mod p.

(b) (i) What is the order of a modulo p?

(ii) Let d be the order of a modulo p and let k ∈N. Prove that ak ≡ 1 mod p if and only

if d |k.

(iii) State Fermat’s Little Theorem and use it to deduce that d | p−1.

(c) Assume that k is a natural number with hcf(k, p−1) = 1.

(i) Using (b), show that the only solution to xk ≡ 1 mod p is x≡ 1 mod p.

(ii) Let l be an integer. Show that xk ≡ l mod p has at most one solution.

[25]
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3. (a) State Gauss’ Law of Quadratic Reciprocity and use it to evaluate the following Legendre

Symbols: (
5

19

)
,

(
15
37

)
and

(
14
23

)
.

(b) (i) What can you say about the number of quadratic residues and quadratic non residues

modulo a prime p. (Proof not required.)

(ii) State and prove Euler’s Criterion.

(c) Establish an analogue of Fermat’s Little Theorem for the ring Z[
√
−7 ], namely establish

a formula for α p where α ∈ Z[
√
−7 ] and p > 7 is a prime in Z.

[25]
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4. Let τ = 1
2(−1+

√
−7) and R = {a+bτ |a,b ∈ Z}.

Define a norm N : R−→ {0,1,2, . . .} by

N(α) = αα
∗

where α∗ is the complex conjugate of α .

(a) (i) Show that τ2 + τ +2 = 0 and briefly explain why this implies that R is a ring.

(ii) If a,b ∈ Z, show that

N(a+bτ) = a2−ab+2b2.

(iii) By completing the square, or otherwise, show that the units of R are 1 and −1.

[Standard properties of norms may be used without proof. Warning: (a+ bτ)∗ 6=
a−bτ .]

(b) Suppose that p ∈ Z is a positive prime number and that p is not irreducible in R.

(i) Prove that there exists an irreducible π ∈ R such that

p = ππ
∗

and N(π) = p.

(ii) Deduce that there exist integers a and b such that

a2−ab+2b2 = p

and then that there is an integer x such that

x2 ≡−7 mod p.

(c) Suppose that p∈Z is a positive prime number and that

(
−7
p

)
= 1. Prove that R contains

at least one, and at most four, elements with norm p.

[You may assume, without proof, that R is a UFD.]

[25]
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5. In parts (a) and (b) we suppose that x and y are integers that satisfy

y3 = x2 +4

and we work in the ring Z[i].

(a) Let d be a highest common factor of x+2i and x−2i.

Prove that d is associate to πt for some t, where π = 1+ i.

(b) (i) Prove that t is a multiple of 3 and deduce that y3/π2t is associate to the cube of a

Gaussian integer.

(ii) Determine the possibilities for x and y.

(c) Let p > 2 be a prime number. Investigate the number of integer solutions to

yp = x2 +4.

You may re-use appropriate parts of your working in (a) and (b).

[25]

6. Write an essay on the proof of the n = 3 case of Fermat’s Last Theorem. Your essay should

contain a discussion of the relevant background results and emphasize the role played by the

theory of unique factorization. Part of your essay should contain detailed mathematics. [25]
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