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1. (a) (i) Write down the definition of Z[ i ].

(ii) Let α ∈ Z[ i ]. Prove that α is a unit if and only if the norm N(α) = 1.

(b) Determine the factors of 9+2i in Z[ i ].

(c) (i) Let π = a+bi with a,b ∈ Z and a,b 6= 0. Suppose that π is associate to π∗, where

π∗ is the complex conjugate of π . Prove that a = b or a =−b.

(ii) Let π = a+bi with a,b ∈ Z and a,b 6= 0. Suppose that π is irreducible in Z[ i ] and

that π is not associate to 1+ i. Prove that π and π∗ are coprime.

(iii) Prove that there exist infinitely many Gaussian integers α with the following proper-

ties:

• N(α) is the product of two prime numbers.

• At least one of the potential factors of α , as discovered by the “norm method”

for determining factors, is not actually a factor.

[Hint: you may assume without proof the fact that there are infinitely many prime

numbers that are congruent to 1 modulo 4.]
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2. (a) Use the Euclidean Algorithm to determine all the solutions of

51x≡ 6 mod 87.

(b) Suppose that a and b are integers and that n is a natural number. Consider the equation

aX ≡ b mod n. (∗)

Let h = hcf(a,n).

(i) Prove that (∗) has a solution if and only if h | b.

Now suppose that x0 is a solution to (∗).

(ii) Prove that x0 + k
n
h

is also a solution to (∗) for each k ∈ Z.

[This should take no more than three lines.]

(iii) Suppose that y is a solution to (∗). Prove that there exists k ∈ Z such that

y≡ x0 + k
n
h

mod n and 0≤ k < h.

(c) Let p be an odd prime number.

(i) Using (b) or otherwise, show that if a ∈ Z with a 6≡ 0 mod p then there exists a

unique a′ with aa′ ≡ 1 mod p.

(ii) Referring to (c)(i), determine the values of a for which a′ ≡ a mod p.

(iii) Deduce that (p−1)!≡−1 mod p.
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3. (a) (i) Define the terms quadratic residue and quadratic nonresidue.

(ii) State Gauss’ Law of Quadratic Reciprocity and use it to evaluate the following Leg-

endre symbols. (
5

29

)
,

(
14
29

)
,

(
19
29

)
.

(b) (i) State Gauss’ Lemma.

(ii) Use Gauss’ Lemma to evaluate

(
3

11

)
.

(iii) Prove Gauss’ Lemma.

(c) Let p be an odd prime.

(i) Define the term primitive root modulo p.

(ii) Suppose that ω is a primitive root modulo p. What is

(
ω

p

)
?

(iii) Using primitive roots, prove that there are as many quadratic residues modulo p as

there are nonresidues.
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4. Let τ = 1
2(−1+

√
−11) and R = { a+bτ | a,b ∈ Z }.

Define a norm N : R−→ {0,1,2, . . .} by

N(α) = αα
∗

where α∗ is the complex conjugate of α .

(a) (i) Show that τ2 + τ +3 = 0 and briefly explain why this implies that R is a ring.

(ii) If a,b ∈ Z, show that

N(a+bτ) = a2−ab+3b2.

(iii) By completing the square, or otherwise, show that the units of R are 1 and −1.

[Standard properties of norms may be used without proof.

WARNING: (a+bτ)∗ 6= a−bτ .]

(b) Suppose that p ∈ Z is an odd positive prime number and that p is not irreducible in R.

(i) Prove that there exists an irreducible π ∈ R such that

p = ππ
∗ and N(π) = p.

(ii) Deduce that there exist integers a and b such that

a2−ab+3b2 = p

and then that the Legendre symbol(
−11

p

)
= 1.

(c) Throughout the remainder of this question, you may assume that R is a Euclidean Ring.

(i) State the relationship between irreducibles and primes in a Euclidean Ring.

(ii) State and prove the converse of the result proved in (b).
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5. Throughout this question, ω = e2πi/3, Z[ω ] = { a+bω | a,b ∈ Z } and λ = 1−ω .

You may assume without proof that N(λ ) = 3.

(a) (i) Show that ω3 = 1 and that ω2 +ω +1 = 0.

(ii) Write down, without proof, the units of Z[ω ].

(iii) Show that λ 2 is associate to 3.

(iv) Show that { 0,1,2 } is a complete set of residues mod λ in Z[ω ].

(b) Let x,y,z ∈ Z[ω ]−{ 0 }, let u be a unit of Z[ω ] and suppose that

• x3 + y3 = uz3,

• x and y are coprime in Z[ω ], and

• λ | z, λ - x and λ - y.

Set

A = { x+ y, x+ωy, x+ω
2y }.

(i) Show that the difference of any two distinct members of A is associate to λy. De-

duce that λ is a factor of every member of A .

(ii) Show that λ is a highest common factor of any two distinct members of A .

(iii) Show that exactly one member of A is a multiple of λ 2.

(c) In approximately a page, outline the proof of Fermat’s Last Theorem for exponent 3. Indi-

cate how the conclusion of (b) is used.

6. Write an essay on Mersenne primes and analogues of Fermat’s Little Theorem.

You may wish to refer to the numbers

µ = 1+
√

3 and τ = 2+
√

3.

You may use the fact that the Legendre symbol(
3
p

)
=

{
1 if p≡ 1,11 mod 12

−1 if p≡ 5,7 mod 12

provided that you give a brief indication of how it is proved.
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