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§1. Introduction

This article is a survey of the author’s work on generation theorems for
finite groups. The starting point is:

Theorem A (J. G. Thompson 1968). A finite group is soluble if
and only if every two elements generate a soluble subgroup.

Thompson obtained this result as a corollary of his classification of the
minimal simple groups [12]. A direct proof has been obtained by the
author [3]. A natural question to ask is:

what happens if we keep one of the generators fixed?
For a finite group G we define

sol(G)

to be the largest normal soluble subgroup of G.

Conjecture B. Let x be an element of the finite group G. Then

x ∈ sol(G) if and only if 〈x, y〉 is soluble for all y ∈ G.

The author has not yet been able to prove this conjecture. However,
much progress has been made and will be described in what follows.

In order to illustrate one of obstacles to proving Conjecture B, we
present a small but crucial part of the author’s proof of Theorem A.
Henceforth, the word group will mean finite group.

Lemma 1.1 (D. Goldschmidt [2]). Let z be a p-element of the sol-
uble group H. Then

Op′(CH(z)) ≤ Op′(H).
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Lemma 1.2 (M. B. Powell [1]). Let d be a p′-element of the group
G. If dg is a p′-element for all p′-elements g ∈ G then d ∈ Op′(G)

Lemma 1.3. Let G be a group in which every two elements generate
a soluble subgroup. Let z be a p-element of G. Then

Op′(CG(z)) ≤ Op′(G).

Proof. Choose d ∈ Op′(CG(z)), let g be a p′-element of G and set
H = 〈dz, g〉. Since d and z are commuting elements with coprime orders,
we have d, z ∈ H. By hypothesis, H is soluble so using Goldschmidt’s
Lemma we obtain

d ∈ Op′(CG(z)) ∩H ≤ Op′(CH(z)) ≤ Op′(H).

Then as g is a p′-element we see that dg is a p′-element. Powell’s Lemma
forces d ∈ Op′(G). Q.E.D.

Consequently, if G is a minimal counterexample to Theorem A then
we have

Op′(CG(z)) = 1

for every p-element z. This argument cannot be applied to the situation
in Conjecture B. Thus we have:

Problem 1. Obtain a generalization of Lemma 1.3 that is applicable
to Conjecture B.

§2. A characterisation of p-soluble groups

As a first step towards proving Conjecture B, the author has estab-
lished the following:

Theorem C ([4]). Let P be a Sylow p-subgroup of the group G.
Then G is p-soluble if and only if 〈P, g〉 is p-soluble for all g ∈ G.

We present an outline of the proof. The following elementary result,
which is a precursor of the Goldschmidt Lemma, is the starting point.

Lemma 2.1. Let P be a Sylow p-subgroup of the p-soluble group G.
If D is a p′-subgroup of G that is normalized by P then D ≤ Op′(G). In
particular, if d ∈ G then

d ∈ Op′(G) if and only if
〈
dP

〉
is a p′-subgroup.
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Suppose now that G is a minimal counterexample to Theorem C.
For each Q ∈ Sylp(G) define

Λ(Q) = {d ∈ G |
〈
dQ

〉
is a p′-subgroup}.

Define a graph Γ whose vertices are the Sylow p-subgroups of G and join
two distinct vertices Q and R by an edge if and only if

Q ∩R 6= 1, NQ(Q ∩R) ∈ Sylp(NG(Q ∩R))
and there exists n ∈ NG(Q ∩R) such that Qn = R.

Firstly it is shown that if {Q,R} is an edge of Γ then Λ(Q) = Λ(R).
A connectivity argument is applied to prove that Λ(Q) is independent
of Q. It is then shown that Λ(Q) is a subgroup and hence a normal
subgroup of G. Thus

Λ(P ) = Op′(G).

However, G is simple since it is a minimal counterexample to Theorem C,
so Λ(P ) = Op′(G) = 1.

Now let g ∈ G and set H = 〈P, g〉. Then Op′(H) ≤ Λ(P ) = 1 so as
H is p-soluble we have Z(P ) ≤ CH(Op(H)) ≤ Z(Op(H)). Then Z(P )
commutes with Z(P )g and it follows that

Z(P ) ≤ Op(G),

contrary to the simplicity of G.
This argument, when the details are examined, appears to be a

generalization of Lemma 1.3. Unfortunately there is one case where it
is inapplicable. If P is cyclic of order p then the graph Γ has no edges,
so connectivity arguments are useless. This case is more difficult. A
transfer argument is used to obtain a contradiction.

§3. The normal closure of a Sylow subgroup

The next step is to replace p-soluble by soluble.

Conjecture D. Let P be a Sylow p-subgroup of the group G. Then

P ≤ sol(G) if and only if 〈P, g〉 is soluble for all g ∈ G.

This is much more difficult. Of course, a soluble group is p-soluble so us-
ing Theorem C it follows that a minimal counterexample to conjecture D
satisfies:
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Hypothesis 3.1.

(1) P is a Sylow p-subgroup of the group G.
(2) 〈P, g〉 is soluble for all g ∈ G.
(3) G = KP where K �G is a p′-subgroup and |P | = p.
(4) K is a non abelian characteristically simple group and K =

[K,P ].
(5) If H is a proper P -invariant subgroup of K then [H,P ] is sol-

uble.

Thus we have a problem involving coprime action and so the sub-
group CK(P ) plays a prominent role. We immediately hit upon a fun-
damental difficulty: since [CK(P ), P ] = 1, the fact that G is a minimal
counterexample to Conjecture D tells us nothing about CK(P ). Since
K = [K,P ], we are trying to show that Hypothesis 3.1 implies that K,
and hence CK(P ) is soluble. So:

Problem 2. Why cannot CK(P ) be simple?

As a final comment we note that the case where a Sylow p-subgroup
is cyclic is the difficult case in the proof of Theorem C. Moreover, in the
final configuration of the author’s proof of Theorem A one has a group G
in which the Sylow p-subgroups are cyclic for all p > 3. Consequently it
seems probable that in any proof of Conjecture B that the configuration
described in Hypothesis 3.1, with P = 〈x〉, will be the most difficult
case.

§4. Signalizer functors

Throughout this section we assume Hypothesis 3.1. Fix a prime
divisor q of |CK(P )|. A good starting point is to analyze the subgroups
CK(z) for q-elements 1 6= z ∈ CK(P ). These are proper P -invariant
subgroups of K so we know that [CK(z), P ] is soluble. By analogy with
Lemma 3.1, we would like to limit the structure of Oq′(CK(z)).

We begin with the following extension of Goldschmidt’s Lemma to
groups that admit a coprime operator group.

Lemma 4.1. Let G = PH be a group with P ∈ Sylp(G) and H =
Op′(G). Suppose that [H,P ] is soluble. Let q be a prime and let z be a
q-element of CH(P ). Then

(Oq′(CH(z)) ∩Oq′(CH(P ))) [Oq′(CH(z)), P ] ≤ Oq′(H).

Note that it is easy to construct examples in which Oq′(CH(z)) 6≤
Oq′(H).
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Returning now to Hypothesis 3.1, for each q-element 1 6= z ∈ CK(P )
define

θ(z) = (Oq′(CK(z)) ∩Oq′(CK(P ))) [Oq′(CK(z)), P )].

Just as in the proof of Lemma 1.3, we would like to be able to argue
that θ(z) ≤ Oq′(K) and hence deduce that θ(z) = 1. Unfortunately
there does not appear to be an easy extension of Powell’s Lemma that
will suffice.

We turn to ideas from Signalizer Functor Theory. In broad terms
the idea is as follows:

(a) Start with some collection C of subgroups of the group G that
ought to be contained in a proper normal subgroup of G.

(b) Show that the members of C intersect the proper subgroups of
G as they ‘ought to’.

(c) Using (b), show that 〈C〉 is a proper subgroup and use a con-
nectivity argument to force C �G.

This idea was used in the proof of Theorem C. It is also a basic tool in
the classification of simple groups, see [11].

In the situation at hand, C is the collection of subgroups θ(z) as z
ranges over the q-elements of CK(P ). Turning to (b), let 1 6= z ∈ CK(P )
be a q-element and let M be a proper P -invariant subgroup of K that
contains z. We want to show that

θ(z) ∩M ≤ Oq′(M).

This amounts to showing that D ≤ Oq′(M) where

D = [Oq′(CH(z)), P ] ∩M.

Now D = [D,P ]CD(P ) and by Lemma 4.1 we have [D,P ] ≤ Oq′(M).
However, we still have CD(P ) to consider. This lead the author to make
the following discovery:

Theorem E ([5]). Let P be a group of prime order p > 2 that acts
as a group of automorphisms on the soluble p′-group H. Then

C[H,P ](P ) =
〈
C[h,P ](P ) | h ∈ H

〉
.

The restriction that p 6= 2 is essential. Indeed if p = 2 then since
any pair of involutions generate a dihedral group we have C[h,P ](P ) = 1
for all h ∈ H.

Using Theorem E and additional arguments, the author has estab-
lished the following:
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Theorem F ([6]). Assume Hypothesis 3.1 and that p > 2. Let z
be a q-element of CK(P ) and let M be a proper P -invariant subgroup of
K. Then

θ(z) ∩M ≤ Oq′(M).

Note that we do not require z to be contained in M . An illustration
of how Theorem E is used will be given later. At the time of writing, it
has not been possible to show that θ(z) ≤ Oq′(K). However we have at
least a partial solution to Problem 1.

§5. A characterisation of F2(G).

Although it has not been possible to complete the program outlined
in the previous section, the author feels that Theorem E will play a
fundamental role in any proof of Conjecture B or D. Indeed the proof of
the following special case of Conjecture B uses Theorem E. Recall that
F2(G) is the inverse image of F (G/F (G)) in G.

Theorem G ([7]). Let G be a group and x ∈ G. Then

x ∈ F2(G) if and only if x ∈ F2(〈x, y〉) for all y ∈ G.

Later we shall see how Theorems E and G can be used to solve
Problem 2.

§6. A conjecture on coprime action

Conjecture H. Let P be a group of prime order p > 2 that acts as
a group of automorphisms on the p′-group H. Then

C[H,P ](P ) =
〈
C[h,P ](P ) | h ∈ H

〉
.

Theorem E shows this conjecture to be true whenH is soluble. If proved,
Conjecture H would have implications for Conjecture B. To see why,
suppose that G is a minimal counterexample to Conjecture B and set
P = 〈x〉 ∼= Zp. Assume further that G satisfies Hypothesis 3.1 and that
p > 2. As we have remarked earlier, this could be the most difficult case
in any proof of Conjecture B.

Now let k ∈K and consider [k, P ]. Using Sylow’s Theorem we may
suppose that k ∈ [k, P ]. Let c ∈ CK(P ). Then

k ∈ [k, P ] ≤
〈
P, P k

〉
=

〈
P, P ck

〉
≤ 〈P, ck〉 .

By hypothesis, 〈P, ck〉 is soluble. As k ∈ 〈P, ck〉 we deduce that 〈[k, P ], c〉
is soluble. Consequently

〈
C[k,P ](P ), c

〉
is soluble for all c ∈ CK(P ) and
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then the minimality of G forces C[k,P ](P ) ≤ sol(CK(P )). Recall that
K = [K,P ]. Then the truth of Conjecture H would imply that CK(P )
is soluble.

Next we give an interpretation of Conjecture H. We have

H = CH(P )[H,P ]

so there is a natural epimorphism

H −→ CH(P )/ (CH(P ) ∩ [H,P ]) .

Set
D =

〈
C[h,P ](P ) | h ∈ H

〉
� CH(P ).

Define a map
δ : H −→ CH(P )/D

as follows: let h ∈ H. By Sylow’s Theorem there exists k ∈ [h, P ] such
that Ph = P k. Thus we can write

h = ck

with k ∈ [h, P ] and c ∈ CH(P ). Define

δ(h) = Dc.

It is easily verified that δ is well defined.
If Conjecture H is true then δ is a homomorphism and it coincides

with the natural epimorphism H −→ CH(P )/ (CH(P ) ∩ [H,P ]). Con-
versely, if δ is a homomorphism then Conjecture H is true.

§7. Large 2-generated soluble subgroups

When attempting to prove Conjecture B, it seems inevitable that
one has to consider modules for a soluble group in which some critical
element has a large fixed point subspace. Such modules arose in the
proofs of Theorems E and F, a contradiction being obtained by show-
ing that such a module could not exist. There was other information
available so it was not necessary to delve too deeply into the structure
of modules for soluble groups.

After many false starts, the author has been able to extend these
arguments and put them in a more general setting. The following theory
emerged.
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Theorem I ([8]). Let G be a soluble group, let P be a subgroup
of G with prime order p > 3 such that G =

〈
PG

〉
. Suppose that V is

a faithful irreducible G-module over a field of non zero characteristic.
Then

dimCV (P ) <
1
2

dimV.

This result appears to be highly non trivial.
Next, let G be a group and P a subgroup of G with prime order

p > 3. Define

ΣG(P ) = {A ≤ G | A is soluble and A = 〈P, P a〉 for some a ∈ A}.

This set is partially ordered by inclusion and we let

Σ∗
G(P )

denote the set of maximal elements of ΣG(P ).
Using Theorem I it is possible to establish the following fundamental

property of members of Σ∗
G(P ).

Theorem J ([8]). Let G be a group and P a subgroup of G with
prime order p > 3. Let A ∈ Σ∗

G(P ). Then

F (A)V

is nilpotent for every nilpotent subgroup V that is normalized by A.

Corollary K ([8]). If G is soluble then π(F (A)) ⊆ π(F (G)).

Thus the members of Σ∗
G(P ) exert global control over the structure of a

soluble group. In fact, one can go much further:

Corollary L ([9]). Let G be a soluble group, P a subgroup of G with
prime order p > 3 and suppose that G =

〈
PG

〉
. Then there exists g ∈ G

such that 〈P, P g〉 has the same Fitting height as G and g ∈ 〈P, P g〉.

For a group G and a subgroup P of prime order p > 3 we let

ΣfG(P )

be the set of members of ΣG(P ) with maximal Fitting height. If G is
soluble we define

ψ(G)

to be the smallest normal subgroup of G such that G/ψ(G) has Fitting
height less than that of G. If G 6= 1 then 1 6= ψ(G) ≤ F (G).
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Corollary M ([9]). Let G be a soluble group and P a subgroup of
G with prime order p > 3. If A ∈ ΣfG(P ) then

ψ(A) ≤ F (G).

Thus, just by examining the members of ΣG(P ), one can write down
a subnormal nilpotent subgroup of G. This suggests an obvious strategy
for proving Conjecture B, one which involves aiming directly at the Fit-
ting subgroup. The following result provides evidence that this strategy
could work and also shows that the theory developed so far is effective
in proving generation theorems.

Theorem N. Let C be a conjugacy class of the group G and suppose
that the members of C have order prime to 6. Then 〈C〉 is soluble if and
only if every four members of C generate a soluble subgroup.

Proof. Let x ∈ C. We may suppose that x has prime order p >
3. Set P = 〈x〉 and choose A ∈ ΣfG(P ). Let g ∈ G and set H =
〈A,Ag〉. By hypothesis, H is soluble. Now A and Ag are members
of ΣfH(P ) so Corollary M implies that 〈ψ(A), ψ(A)g〉 is nilpotent. The
Baer-Suzuki Theorem implies that ψ(A) ≤ F (G). Now apply induction
to G/F (G). Q.E.D.

The results I-M are invalid without the hypothesis that p > 3. How-
ever it should be a routine matter to extend the theory so that the hy-
pothesis prime to 6 in Theorem N can be removed, provided that four
is replaced by some larger number.

This theory can also be used to solve Problem 2, at least if p > 3.

Theorem O. Assume Hypothesis 3.1 and that p > 3. Then

F2(CK(P )) 6= 1.

Proof. By Theorem G there exists g ∈ G such that P 6≤ F2(〈P, g〉).
Set H = 〈P, g〉 and H0 =

〈
PH

〉
� H, so that H0 has Fitting height

at least 3. Now P is a Sylow subgroup of H0 so we have H0 =
〈
PH0

〉
.

Corollary L implies that the members of ΣfH0
(P ) and hence the members

of ΣfG(P ) have Fitting height at least 3.
ChooseA ∈ ΣfG(P ). Let ψ2(A) denote the inverse image of ψ(A/ψ(A))

in A. Then ψ2(A) has Fitting height 2. As A =
〈
PA

〉
we have P ∩

ψ2(A) = 1 so then ψ2(A) ≤ K.
Let c ∈ CK(P ), choose a ∈ A such that A = 〈P, P a〉, and set L =

〈A, c〉. Now a ∈ A = 〈P, P a〉 = 〈P, P ca〉 ≤ 〈P, ca〉 whence L = 〈P, ca〉
and L is soluble. Let L0 =

〈
PL

〉
� L. Then A ≤ L0 =

〈
PL0

〉
and
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Corollary L implies that A has the same Fitting height as L0. It follows
that ψ2(A) ≤ ψ2(L0) whence ψ2(A) ≤ F2(L). We deduce that

Cψ2(A)(P ) ≤ F2

(〈
Cψ2(A)(P ), c

〉)
for all c ∈ CK(P ). Theorem G implies that

Cψ2(A)(P ) ≤ F2 (CK(P )) .

Since ψ2(A) has Fitting height 2 we have Cψ2(A)(P ) 6= 1. This completes
the proof of Theorem O. Q.E.D.

References

[ 1 ] Blackburn, N. and Huppert, B. Finite groups II. Grundlehren der Math-
ematischen Wissenschaften, vol 242. Berlin, Heidelberg, New York.
Springer-Verlag 1981.

[ 2 ] Blackburn, N. and Huppert, B. Finite groups III. Grundlehren der Math-
ematischen Wissenschaften, vol 243. Berlin, Heidelberg, New York.
Springer-Verlag 1982.

[ 3 ] Flavell, P.J. Finite groups in which every two elements generate a soluble
subgroup. Invent. Math. 121, 279-285(1995).

[ 4 ] Flavell, P.J. A characterisation of p-soluble groups. Bull. London Math.
Soc. 29, 177-183(1997).

[ 5 ] Flavell, P.J. The fixed points of coprime action. Submitted, Arch. Math.
[ 6 ] Flavell, P.J. Soluble radicals an signalizer functors. Preprint.
[ 7 ] Flavell, P.J. A characterisation of F2(G). Preprint.
[ 8 ] Flavell, P.J. Large two generated subgroups of finite groups. Preprint.
[ 9 ] Flavell, P.J. On the Fitting height of a soluble group that is generated by

a conjugacy class. Preprint.
[10] Gorenstein, D. Finite groups, 2nd edn. Chelsea Publishing Company, New

York, 1980.
[11] Gorenstein, D. Finite simple groups, an introduction to their classifica-

tion. University series in mathematics, Plenum Press, 1982
[12] Thompson, J.G. Non-solvable groups all of whose local subgroups are

solvable, I-VI. Bull. Amer. Math. Soc. 74, 383-437(1968); Pacific J.
Math. 33, 451-536(1970); 39, 483-534(1971); 48, 511-592(1973); 50,
215-297(1974); 51, 573-630(1974).

Paul Flavell
The School of Mathematics and Statistics
The University of Birmingham
Birmingham B15 2TT
Great Britain


