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If p is a prime then a finite group is p-soluble if each of its composition factors
is either a p-group or has order coprime to p. For example, soluble groups
are p-soluble. However, there are many insoluble groups that are p-soluble.
We shall prove the following result.

Theorem Let G be a finite group and p a prime. Then G is p-soluble if
and only if 〈P, g〉 is p-soluble whenever g ∈ G and P is a Sylow p-subgroup
of G.

Let G be a minimal counter-example to the above theorem. Since sub-
groups and quotients of p-soluble groups are themselves p-soluble, it follows
that G is a simple group in which every proper subgroup is p-soluble and
in which 〈P, g〉 6= G for all g ∈ G and P ∈ Sylp(G). The argument divides
into two cases depending on whether a Sylow p-subgroup contains a non-
cyclic abelian subgroup or not. These possibilities correspond to whether a
certain graph, with vertex set Sylp(G), is connected or not. In sections 2
and 3 we show that there are no groups satisfying the above conditions. The
classification of finite simple groups is not used.
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The author is indebted to Dr. Christopher Parker for many helpful dis-
cussions during this work.

1 Preliminaries

All groups considered are finite. If g is an element of, and P a subgroup of
a group G we let 〈gP 〉 = 〈gx | x ∈ P 〉 and we note that P ≤ N(〈gP 〉).

Lemma 1.1 Let p be a prime and H a p-soluble group.

(i) If Op′(H) = 1 then CH(Op(H)) ≤ Op(H).

(ii) If q is a prime and K is a {p, q}-subgroup of H then K is contained in
a Hall {p, q}-subgroup of H.

(iii) If P ∈ Sylp(H) and Q is a p′-subgroup of H that is normalized by P
then Q ≤ Op′(H).

(iv) If T is a p-subgroup of H then Op′(CH(T )) ≤ Op′(H).

Proof (i) is [1, Theorem 6.3.3, p.228].
(ii) This is due to Čunihin. See [2, Cor. D5.3].
(iii) Pass to H/Op′(H) and apply (i).
(iv) This is well known. Pass to H/Op′(H) then use Thompson’s P × Q-
Lemma [1, Theorem 5.3.4, p.179] and (i).

Remark We only need (ii) when H has cyclic or generalized quaternion
Sylow p-subgroups and K already contains a Sylow p-subgroup of H. In this
case, the proof of (ii) is easier.

Lemma 1.2 ([1, Theorem 6.2.4, p.225]) Let P be a p-subgroup and D a p′-
subgroup of a group G. Suppose that P ≤ N(D) and that P contains a
noncyclic abelian subgroup. Then D = 〈CD(T ) | 1 6= T ≤ P 〉.

Lemma 1.3 Let G be a group and p a prime. Define a graph Γ with vertex
set Sylp(G) and in which two distinct vertices P and Q are joined by an edge
if and only if

P ∩Q 6= 1, NP (P ∩Q) ∈ Sylp(N(P ∩Q)) and P n = Q
for some n ∈ N(P ∩Q).
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Then:

(i) G acts by conjugation as a transitive group of automorphisms of Γ.

(ii) If P, Q ∈ Γ and P ∩ Q 6= 1 then P and Q are in the same connected
component of Γ.

Proof (i) is obvious.
(ii) We proceed by induction on |P : P ∩Q|. If |P : P ∩Q| = 1 then P = Q,
hence result. Now suppose |P : P ∩Q| 6= 1. Let T = P ∩Q. Then T < P so
T < NP (T ) and also T < NQ(T ).

Choose R ∈ Sylp(G) such that NP (T ) ≤ NR(T ) ∈ Sylp(N(T )) and choose
n ∈ N(T ) such that NQ(T ) ≤ NR(T )n. We have T < NP (T ) ≤ P ∩ R so by
induction, P and R are in the same component. Also, T < NQ(T ) ≤ Q∩Rn

so again Q and Rn are in the same component. Observe that T ≤ R ∩ Rn.
If T < R ∩ Rn then by induction, R and Rn are in the same component. If
T = R ∩ Rn then by the definition of Γ, {R,Rn} is an edge. In both cases,
we see that P and Q are in the same component.

2 The connected case

In this section we shall prove:

Theorem 2.1 There are no groups which satisfy the following hypotheses:

(i) G is a simple group and p is a prime divisor of |G|.

(ii) Every proper subgroup of G is p-soluble.

(iii) 〈P, g〉 6= G for all g ∈ G and P ∈ Sylp(G).

(iv) A Sylow p-subgroup of G contains a noncyclic abelian subgroup.

In the following sequence of lemmas, we assume the hypotheses of Theo-
rem 2.1. Let Γ be the graph defined in 1.3. For each P ∈ Sylp(G) define

Λ(P ) = {g ∈ G | 〈gP 〉 is a p′-subgroup}.
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Remark If G really were p-soluble then 1.1(iii) would imply Λ(P ) = Op′(G).
In particular, Λ(P ) would be a p′-subgroup defined independently of P . We
shall use a connectivity argument to establish the same conclusion for the
groups under consideration.

Lemma 2.2 Let P ∈ Γ and 1 6= T ≤ P be such that NP (T ) ∈ Sylp(N(T )).
If g ∈ Λ(P ) then there exist x ∈ Λ(P ) and c ∈ Op′(C(T )) such that g = cx
and x ∈ 〈T, T x〉.

Proof Set H = 〈P, g〉. Now g ∈ Λ(P ) so H = POp′(H) and g ∈ Op′(H). Set
K = 〈T, T g〉 ≤ H. Then KOp′(H) = TOp′(H) whence K = T (K ∩Op′(H)).
Then T, T g ∈ Sylp(K) so T g = T x for some x ∈ Op′(H) ∩ K. Then
x ∈ Λ(P ). Let c = gx−1 ∈ N(T ) ∩ Op′(H) = COp′(H)(T ). Now Op′(H)

is normalized by P so COp′(H)(T ) is normalized by NP (T ). But NP (T ) ∈
Sylp(N(T )) so 1.1(iv) implies COp′(H)(T ) ≤ Op′(N(T )) = Op′(C(T )). Then

c ∈ Op′(C(T )), g = cx and x ∈ 〈T, T x〉.

Lemma 2.3 If P, Q ∈ Γ and P ∩Q 6= 1 then Λ(P ) = Λ(Q).

Proof In view of 1.3, we may assume {P, Q} is an edge of Γ. Let T = P ∩Q
and choose n ∈ N(T ) such that P n = Q.

Let g ∈ Λ(P ) and choose c, x in accordance with 2.2. Then x ∈ 〈T, T x〉 =
〈T, T nx〉 ≤ 〈P, nx〉 = H. But 〈xP 〉 is a p′-group so x ∈ Op′(H) by 1.1(iii).
Now n = (nx)x−1 ∈ H so Q = P n ≤ H and hence 〈xQ〉 is a p′-group. Next
we have x ∈ 〈T, T x〉 = 〈T, T cx〉 ≤ 〈Q, cx〉 = K and again x ∈ Op′(K). Also
c = (cx)x−1 ∈ K. Using 1.1(iv) we have c ∈ Op′(C(T ))∩K ≤ Op′(CK(T )) ≤
Op′(K) whence g = cx ∈ Op′(K) and then g ∈ Λ(Q). Thus Λ(P ) ⊆ Λ(Q).
Similarly Λ(Q) ⊆ Λ(P ), hence result.

Lemma 2.4 Let P ∈ Γ. Then Λ(P ) is a p′-subgroup.

Proof Let L = 〈Op′(C(T )) | 1 6= T ≤ P 〉. We will show that Λ(P ) = L.
Then Λ(P ) will be a subgroup and so by its definition, it will be a p′-subgroup.

First we show that if 1 6= T ≤ P and h ∈ Op′(C(T )) then hΛ(P ) ⊆ Λ(P ).
Choose Q ∈ Sylp(G) such that NQ(T ) ∈ Sylp(N(T )). Let g ∈ Λ(Q). By 2.2
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there exist x ∈ Λ(Q) and c ∈ Op′(C(T )) such that g = cx and x ∈ 〈T, T x〉.
Then

x ∈ 〈T, T x〉 = 〈T, T hcx〉 ≤ 〈Q, hcx〉 = H.

Observe that x ∈ Op′(H) by 1.1(iii). Using 1.1(iv) we have hc = (hcx)x−1 ∈
H ∩ Op′(C(T )) ≤ Op′(CH(T )) ≤ Op′(H) whence hg = hcx ∈ Op′(H) and
hg ∈ Λ(Q). But 1 6= T ≤ P ∩ Q so Λ(P ) = Λ(Q) by the previous lemma.
Hence hΛ(P ) ⊆ Λ(P ).

Now 1 ∈ Λ(P ) so the previous paragraph implies L ⊆ Λ(P ). Let g ∈
Λ(P ), D = 〈gP 〉, 1 6= T ≤ P and d ∈ CD(T ). Choose Q ∈ Sylp(G) such
that NQ(T ) ∈ Sylp(N(T )). Using 2.3 we have d ∈ Λ(P ) = Λ(Q) whence

〈dNQ(T )〉 is a p′-subgroup of C(T ). Lemma 1.1(iii) implies d ∈ Op′(C(T )).
Thus CD(T ) ≤ L and 1.2 implies D ≤ L. We deduce that Λ(P ) = L.

Proof of Theorem 2.1 Fix P ∈ Sylp(G). First we argue that Γ is connected.
Let Σ be the connected component that contains P . Lemma 1.3 implies
N(T ) ≤ N(Σ) for all 1 6= T ≤ P . Let g ∈ G and set H = 〈P, g〉. Then
1.2 implies Op′(H) ≤ N(Σ). Let D be the inverse image of Op(H/Op′(H))
in H and set T = P ∩ D. Then D � H, T ∈ Sylp(D) and D = Op′(H)T .
Lemma 1.1(i) implies T 6= 1 so using the Frattini Argument, we see that
H = Op′(H)NH(T ) ≤ N(Σ). We deduce that G = N(Σ) and since G acts
transitively on Γ, it follows that Γ is connected.

Now Λ(P g) = Λ(P )g for all g ∈ G so the connectivity of Γ together with
2.3 and 2.4 imply that Λ(P ) is a normal p′-subgroup of G. The simplicity of
G forces Λ(P ) = 1.

Let g ∈ G and set H = 〈P, g〉. Then Λ(P ) = 1 forces Op′(H) = 1
and then 1.1(i) implies Z(P ) ≤ Op(H). Now Op(H) ≤ P so it follows that
[Z(P ), Z(P )g] = 1. We deduce that the normal closure of Z(P ) in G is
abelian. This contradicts the simplicity of G and proves 2.1.
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3 The disconnected case

In this section we shall prove:

Theorem 3.1 There are no groups which satisfy the following hypotheses:

(i) G is a simple group, p is a prime divisor of |G| and P ∈ Sylp(G).

(ii) Every proper subgroup of G is p-soluble.

(iii) 〈P, g〉 6= G for all g ∈ G.

(iv) P contains no noncyclic abelian subgroup.

Remark [1, Theorem 5.4.10, p.199] implies that P is either cyclic or gen-
eralized quaternion. By a deep theorem of Brauer and Suzuki, there are no
simple groups with generalized quaternion Sylow 2-subgroups. However, in
Lemma 3.2 we sketch a short fusion argument that allows us to deal with
this case in the same way as the cyclic case.

In the following sequence of lemmas, we assume the hypotheses of Theo-
rem 3.1.

Lemma 3.2 (i) N(P )/PC(P ) is a nontrivial cyclic p′-group.

(ii) If P ≤ H < G then H = Op′(H)NH(P ).

Proof Since P ∈ Sylp(N(P )) it follows that N(P )/PC(P ) is a p′-group.
We have already remarked that P is either cyclic or generalized quaternion.
Then every p′-subgroup of Aut(P ) is cyclic and consequently N(P )/PC(P )
is cyclic. Suppose P is cyclic. Burnside’s Normal p-Complement Theorem
implies that N(P )/PC(P ) 6= 1. Suppose that P ≤ H < G. Set H =
H/Op′(H). Then Op(H) ≤ P so that 1.1(i) implies Op(H) = P . Thus
Op′(H)P � H and the Frattini Argument yields H = Op′(H)NH(P ).

Now suppose that P is generalized quaternion, so p = 2. Set M =
N(Z(P )). Since Z(P ) is the unique subgroup of order two in P we have
N(T ) ≤ M for all 1 6= T ≤ P . The simplicity of G and a theorem of Alperin
[1, Theorem 7.4.1, p.251] imply

P = P ∩G′ = 〈[T, N(T )] | 1 6= T ≤ P 〉 ≤ M ′.
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In particular, M does not have any nontrivial quotients that are 2-groups.
Applying 1.1(i) to M = M/O2′(M) we see that M/O2(M) is isomorphic
to a subgroup of Out(O2(M)) that contains a nontrivial element of odd or-
der. But O2(M) is cyclic or generalized quaternion whence O2(M) ∼= Q8

and Out(O2(M)) ∼= S3. Consequently M/O2(M) ∼= Z3,O2(M) = P , P ∼=
Q8,O2′(M)P � M = O2′(M)N(P ) and finally N(P )/PC(P ) ∼= Z3. This
proves (i). To prove (ii) apply 1.1(i) to H/Op′(H) and use the fact that
P ∼= Q8.

Remark If G really were p-soluble then G = Op′(G)N(P ) and there would
be a natural homomorphism G −→ N(P )/PC(P ). We will define a map ∆
that corresponds to this homomorphism. It does not seem possible to show
directly that ∆ is a homomorphism. However, we can show that ∆ behaves
sufficiently well to enable the use of a transfer argument.

Let
δ : N(P ) −→ N(P )/PC(P )

be the natural homomorphism.

Lemma 3.3 Let g ∈ G, then:

(i) There exist x ∈ G and n ∈ N(P ) such that g = nx, x ∈ 〈P, P x〉 and
〈xP 〉 is a p′-group.

(ii) If y ∈ G and m ∈ N(P ) are such that g = my and 〈yP 〉 is a p′-group
then δ(m) = δ(n).

Proof (i) Set H = 〈P, P g〉. By 3.2(ii) there exists x ∈ Op′(H) such that
P g = P x. Let n = gx−1. This proves (i).
(ii) Set K = 〈P, y〉. Observe that x ∈ 〈P, P x〉 = 〈P, P y〉 ≤ K. Since 〈xP 〉
and 〈yP 〉 are p′-groups, 1.1(iii) implies x, y ∈ Op′(K). But nx = my so
m−1n = yx−1 ∈ N(P ) ∩ Op′(K) ≤ C(P ) whence δ(m) = δ(n).

For each g ∈ G, choose n and x in accordance with 3.3(i) and define

∆(g) = δ(n).

By 3.3(ii), ∆ is a well defined map G −→ N(P )/PC(P ).
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Lemma 3.4 (i) If n ∈ N(P ) then ∆(n) = δ(n).

(ii) If g ∈ G and m ∈ N(P ) then ∆(mg) = ∆(m)∆(g).

(iii) If P ≤ H < G then ∆H , the restriction of ∆ to H, is a homomorphism.
Moreover, Op′(H) = {g ∈ H | g is a p′-element and ∆(g) = 1}.

(iv) If g ∈ G and m ∈ N(P ) then ∆(mg) = ∆(m).

Proof (i) This follows from the definition of ∆.
(ii) Choose n ∈ N(P ) and x ∈ G in accordance with 3.3(i). Observe that
mg = (mn)x, mn ∈ N(P ) and 〈xP 〉 is a p′-group. Then 3.3(ii) implies
∆(mg) = δ(mn) = δ(m)δ(n) = ∆(m)∆(g).
(iii) By 3.2(ii) we have H = NH(P )Op′(H). Let g, h ∈ H, then g = nx
and h = my for some n, m ∈ NH(P ) and x, y ∈ Op′(H). Now gh =
(nm)(xmy), nm ∈ N(P ) and xmy ∈ Op′(H). Then 3.3(ii) implies ∆(gh) =
δ(nm) = δ(n)δ(m) = ∆(g)∆(h), so ∆H is a homomorphism.

If g ∈ Op′(H), then n ∈ NH(P ) ∩ Op′(H) ≤ C(P ) so 1 = δ(n) = ∆(g).
Suppose g ∈ H is a p′-element and that ∆(g) = 1. Then δ(n) = 1 whence
n ∈ PCH(P ). Lemma 1.1(iii) implies CH(P ) ≤ POp′(H) so g ∈ POp′(H).
Since g is a p′-element we deduce that g ∈ Op′(H). This proves (iii).
(iv) Again choose n and x in accordance with 3.3(i) so that g = nx. Let
l = mn ∈ N(P ). Now

x ∈ 〈P, P x〉 = 〈P, P lx〉 ≤ 〈P, lx〉 = H,

so x, l ∈ H. Using (iii) and the fact that N(P )/PC(P ) is abelian, we see that
∆(lx) = ∆(l). Then ∆(mg) = ∆(mnx) = ∆(lx) = ∆(l) = ∆(mn) = ∆(m).

Remark Recall that if A, B, C ≤ G then A permutes with B if and only if
AB = BA, if and only if AB is a subgroup. Moreover, if A and B permute
with C then so does 〈A, B〉 whence 〈A, B〉C is a subgroup.

Lemma 3.5 Let q 6= p be a prime divisor of |N(P )/PC(P )|. Then there
exists Q ∈ Sylq(G) such that PQ = QP and NQ(P ) ∈ Sylq(N(P )). In
particular, PQ is a Hall {p, q}-subgroup of G.
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Proof Assume false. Since a Sylow q-subgroup of N(P ) permutes with
P we may choose a q-subgroup Q ≤ G maximal subject to PQ = QP
and to NQ(P ) ∈ Sylq(N(P )). By assumption, Q 6∈ Sylq(G). Note that
PQ is a {p, q}-subgroup and that Op′(PQ) = Oq(PQ) ≤ Q. Let N =
Oq(N(P )/PC(P )). Lemma 3.2(i) implies that N is cyclic and contains every
q-element of N(P )/PC(P ). Moreover, as NQ(P ) ∈ Sylq(N(P )) we have

N = δ(NQ(P )) = ∆(NQ(P )).

Now Q 6∈ Sylq(G) and so N(Q) − Q contains q-elements. If g is such an
element then 3.4(iii) applied to 〈P, g〉 implies that ∆(g) is a q-element, whence
∆(g) ∈ N . Since N is cyclic, there exists m ∈ NQ(P ) such that ∆(m)∆(g)
generates N . Observe that mg is also a q-element of N(Q) − Q and 3.4(ii)
implies that ∆(mg) generates N .

By the preceding argument, we may choose a q-element g ∈ N(Q) − Q
such that N = 〈∆(g)〉. Set H = 〈P, g〉. Then HQ is a subgroup since P and
〈g〉 permute with Q. Now 〈Q, g〉 is a q-subgroup of HQ and so Q 6∈ Sylq(HQ).
The maximality of Q and 1.1(ii) imply

G = HQ = QH. (*)

Next we show that CQ(P ) = 1. Let

W = 〈CQ(P )x | x ∈ G and CQ(P )x ≤ Q〉.

Clearly N(Q) ≤ N(W ). Now ∆(CQ(P )) = δ(CQ(P )) = 1 so 3.4(iv),(iii)
imply W ≤ Op′(PQ) = Oq(PQ) ≤ Q and consequently PQ ≤ N(W ). But
g ∈ N(Q) so (∗) implies G ≤ N(W ) forcing 1 = W = CQ(P ).

The next objective is to prove that H ∩Q = NQ(P ). Let K = PQ ∩H.
Then P ≤ K so K = P (Q ∩ H), Q ∩ H ∈ Sylq(K) and Oq(K) ≤ Q ∩ H.
Using 1.1(iii) we have Oq(K) ≤ Q∩Op′(H) ≤ K ∩Op′(H) ≤ Oq(K) whence

Oq(K) = Q ∩ Op′(H).

But P normalizes Oq(K) whilst g normalizes Q and Op′(H). Then Oq(K) �

H, (∗) implies 〈Oq(K)G〉 ≤ Q, the simplicity of G forces Oq(K) = 1 and
3.2(ii) yields P � K. Thus H ∩Q ≤ NQ(P ).

By 3.3(iii), ∆H is a homomorphism. Now ∆H(P ) = δ(P ) = 1, 〈∆H(g)〉 =
N and H = 〈P, g〉, thus ∆H(H) = N . By 3.2(ii) we have H = Op′(H)NH(P )
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and by 3.4(iii) we have Op′(H) ≤ Ker(∆H). Thus ∆H(NH(P )) = N and if we
choose R ∈ Sylq(NH(P )) we have ∆H(R) = N . Now NQ(P ) ∈ Sylq(N(P ))
and so Rn ≤ NQ(P ) for some n ∈ N(P ). By (∗), there are h ∈ H and
k ∈ Q such that n = hk. Observe that Rh ≤ H ∩ Q ≤ NQ(P ). However,
∆(Rh) = ∆(R) = N = ∆(NQ(P )) and since CQ(P ) = 1, the restriction of ∆
to NQ(P ) is injective. Hence NQ(P ) = Rh ≤ Q ∩H ≤ NQ(P ) so

H ∩Q = NQ(P ).

Since g ∈ H ∩ N(Q) it follows that g ∈ N(NQ(P )). Let z ∈ Q. Then
zg is a q-element of N(Q) − Q so as previously, there exists l ∈ NQ(P )
such that N = 〈∆(lzg)〉. But lzg is also a q-element of N(Q) − Q so the
preceeding argument, with lzg in place of g, yields lzg ∈ N(NQ(P )). Since
l, g ∈ N(NQ(P )) we have z ∈ N(NQ(P )) and we deduce that NQ(P ) � Q.
By construction, NQ(P ) 6= 1 and hence

G = 〈NQ(P )G〉 = 〈NQ(P )QH〉 = 〈NQ(P )H〉 ≤ H = 〈P, g〉,

contrary to hypothesis. Hence result.

Proof of Theorem 3.1 By 3.2(i) there exists a prime q 6= p that di-
vides |N(P )/PC(P )|. The previous lemma implies G contains a Hall {p, q}-
subgroup H = PQ with Q ∈ Sylq(G) and NQ(P ) ∈ Sylq(N(P )).

Let τ be the transfer of G into N(P )/PC(P ) relative to H and ∆H .
Let n ∈ NQ(P ). By [1, Theorem 7.3.3, p.249] there exist g1, . . . gt ∈ G
and r1, . . . , rt ∈ N such that g−1

i nrigi ∈ H for all i,
∑

ri = |G : H| and
τ(n) = ∆(

∏
g−1

i nrigi). The simplicity of G together with 3.4(iii),(iv) imply

1 = τ(n) =
∏

∆(g−1
i nrigi) =

∏
∆(nri) = ∆(n)|G:H|.

But ∆(n) is a q-element and |G : H| is coprime to q. Thus ∆(n) = 1 and
it follows that NQ(P ) ≤ C(P ). But NQ(P ) ∈ Sylq(N(P )) so N(P )/PC(P )
is a q′-group. This contradicts the choice of q and completes the proof of
Theorem 3.1.
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