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Abstract. We shall extend a fixed point theorem of Shult to arbitrary finite
groups. This will have applications to the study of group automorphisms.

1. Introduction

We shall prove the following:
Theorem A. Suppose that:

— Ris a group of prime order that acts on the’-groupG.
— Vis afaithful irreducibleRG-module over a field of characteristic
- Cy(R)=0.

Then eithe{G, R] = 1 or r is a Fermat prime andG, R] is a nonabelian
special2-group.

The configuration described in Theorem A was first considered by Shult.
His [10, Theorem 3.1, p.702] amounts to proving Theorem A wiidras
prime power order. Shult’s work is a nonmodular analogue of the cele-
brated work of Hall and Higman [7]. In the first edition of his bdeikite
Group Theory Aschbacher extended Shult’s results, essentially proving
Theorem A wher( is soluble [1, (36.4), p.194].

Shult used his result to study automorphisms of soluble finite groups.
In [2] and [3], Theorem A will be applied to study automorphisms of arbi-
trary finite groups. Aschbacher’s motivation was a new proof of the Soluble
Signalizer Functor Theorem. If it is ever possible to prove the General Sig-
nalizer Functor Theorem outside of the inductive framework of the Classi-
fication of Finite Simple Groups, then Theorem A may have a role to play.

A number of further remarks are in order.
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— The exceptional case, whé@, R| # 1 does occur.

— The proof of Theorem A presented here does not use the Classification
of Finite Simple Groups. The heaviest tool used is Glaubermafrs
Theorem, which uses Modular Representation Theory. In a forthcoming
article, we shall examine the exceptional case in greater detail. This will
lead to a more elementary, though longer proof of Theorem A.

— A numerological proof of Theorem A is possible using the Classifica-
tion. In§7 we will outline our argument. This will give insight as to why
Theorem A is true.

— In the case that is not a Fermat prime, Theorem A follows easily from
Shult’s result.

Several problems for further study will suggest themselves to anyone
who studies the proof of Theorem A. Indeed, one result of a general na-
ture has already emerged — a criterion for a weakly closed subgroup to be
strongly closed, Theorem 4.1.

2. Preliminaries

Henceforth, group will mean finite group. We recall some elementary facts
about coprime action. If the grouR acts on the grou andp is a prime
then

Na (R, p) = the set ofR-invariantp-subgroups of+
N5 (R, p) = the set of maximal members @i; (R, p) under inclusion

We say thatR actscoprimelyon G if R acts as a group of automorphisms
on G; R andG have coprime orders; and at least ondRadr G is soluble.
The following results are well known, see [1] for example.

Theorem 2.1(Coprime Action). Suppose thaR acts coprimely oriz and
let p be a prime. Then:

(@) NG (R, p) C Syl (G), soG possesseR-invariant Sylowp-subgroups.

(b) C(R) acts transitively by conjugation ang, (R, p).

(© If P € N5 (R,p) thenCp(R) € Syl,(Ca(R)).

(d) G = Cs(R)|G, R]. In particular, [G, R] = |G, R, R).

(e) If G is abelian therG = C(R) x [G, R].

(f) If K is an R-invariant normal subgroup oty and G = G/K then
Cz(R) = Cg(R).

(9) Any two elements @f(R) that are conjugate itz are already conju-
gate inCg(R).

(h) If R is elementary abelian then

G = (Cg(Rp) | Rois a hyperplane oR?).
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Lemma 2.2.Suppose thaf? acts coprimely onz and thatH is an R-
invariant subgroup o> with the property:

wheneverp € (|G : Cg(R)|) there existsP € U (R, p) with
[P,R] < H.

ThenG = C¢(R)H.

Proof. It suffices to show thalG : C(R)|, = |H : Cu(R)|, for each
primep. If p € 7(|G : Cg(R)|) then choose&® € U, (R, p) with [P, R] <
H. If p ¢ n(|G : Cg(R)|) then choose” € Syl,(Cc(R)), soP €
& (R, p) and[P, R] < H in this case also.
By Coprime ActionCp(R) € Syl,(Cc(R)) andP = Cp(R)[P, R] so
then
|G : Ca(R)|p = |P: Cp(R)| = |[P, R] : Cpg(R)|.

ChooseR with [P, R] < Q € U (R, p). Again,
|H : Cu(R)|, = [Q, R] : Clg,r (R)]-

By Coprime Action, some&’;(R)-conjugate of@ is contained inP. As
[P, R, R] = [P, R], it follows that[Q, R] = [P, R]. Then|H : Cy(R)|, =
|G : Ca(R)|p, which completes the proof.

Lemma 2.3.Suppose thak acts coprimely onz and thatM is an R-
invariant subgroup ofy. Then|Cg(R) : Cp(R)| divides|G : M].

Proof. Let p be a prime. By Coprime Action, there exists Banvariant
Sylow p-subgroupP of G with P N M € Syl,(M). By Coprime Action,
Cp(R) € Sy|p(Cg(R)) andCpny(R) € Sylp(CM(R)). Then

[Ca(R) : Cu(R)lp = [Cp(R) : Cpam(R)| = |Cp(R)(POM)[/|[POM

is a power ofp bounded by|P : PN M| = |G : M|, and hence divides
|G : M|,. This completes the proof.

Given a chain
VWwaVi <-.-4V, ©

of subgroups of the grou and a groug~ acting onV’ then(G stabilizes
(C) if G normalizes eacly; and acts trivially on each quotieht/V;_;.

Lemma 2.4.Suppose that? stabilizes the chait < U <V, whereV is a
p-group. ThenG/C (V) is an abeliarp-group. If V' is elementary abelian
then so iS5 /Cq (V).

Proof. As [V, G, G] = 1, the Three Subgroups Lemma impliés G| cen-
tralizesV'. Using the identitya, bc] = [a, c][a, b]¢ we havelv, g"] = [v, g]™
forallv € V,g € G andn € N. Thusg? centralizesV, wheregq is the
exponent ofi”. The result follows.
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Suppose that?, S and A are groups withd < § < G. If, forall g € G,
A9 < S implies A=A
then we saA is weakly closed iy with respect taz. If, for all g € G,
AINS<A

then we sayA is strongly closed ir6 with respect taz. The following is
well known and has a straightforward proof.

Lemma 2.5.Let G be a groupp a prime,S € Syl (G) andA < S. Then
the following are equivalent:

(a) A is weakly closed ity with respect ta.

(b) A is weakly closed iV (A) with respect td=.

(c) WheneverB is a conjugate ofd4 such thatA and B normalize one
another therd = B.

Lemma 2.6[1, (31.15), p.159]Let P be ap-subgroup of the soluble group
G. ThenOp/(CG(P)) < Op/(G)

Theorem 2.7.Let p be an odd prime. There exists a mappiligthat as-
signs to eachp-group P # 1 a characteristic subgroufx’ (P) # 1 that has
the following property:

if G is a group with abelian Sylow-subgroups,C(0,(G)) <
Op(G) and P € Syl (G) then

K(P) = K(0,(G)) 2.

Proof. Put K(P) = K*°(P)K(P) where K> and K, are the func-
tors defined by Glauberman [11, p.226]. By [11, (4.12)(3), p.203] and [11,
(5.8)(3), p.237] both>°(P) and K (P) are normal inG. ThenK (P) <
O,(G) and [11, (5.4)(ii), p.228] impliek (P) = K(O,(G)).

Theorem 2.8.Let L # 1 be a group andX a faithful GF'(2) L-module. Let
T andT™ be2-subgroups of.. Set

b= Cx(T), & =Cx(T),

r={o o' |lecL} and ¢=|o| > 1.
Suppose that

(@)L = (T,T*).

(b) X =& d*.

©) 27| = |2|.

(d) Distinct members of" have trivial intersection.

(e) T stabilizesd < & < X andT™ stabilized) < &* < X.
) [T = gand|T*| = q.
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Theng? — 1 divides|L|, |T| = ¢ and N1(T) acts transitively ori'#.

Proof. Let M = N (&) and letT; consist of those elements af that

stabilize0 < @ < X. ThenT < Ty < M. Consider the action df; on

I' —{®}.Using (b),Np, (?*) = 1so|I' = {®}| > |T1| > |T| > ¢q. On

the other hand, (b) and (d) imply’| < ¢+ 1. We deduce thdfl}| = |T'| =

¢, T QM,|I'| = ¢+ 1 and thatl" is regular on/” — { & }. Similarly, T is

regular onl” — { &* } so L is transitive onl” and thery + 1 dividesL.
From the above)M = N (T) and for allg € L,

T9NM #1 implies ge M.

Lemma 2.4 implies thal’ is elementary abelian. A simple argument in-
volving involutions, e.g. Lemma 5.3(b), implies thet s transitive oril'#.
In particular,g — 1 divides|M| and theny? — 1 divides| L.

Remarks. — One can show directly thdt is transitive onX #.
— Atheorem of Glauberman [4, Theorem 2, p.5] can be used to show that
L = SLs(q) and thatX is a natural module fof..

The following is a variant of ThompsonB x @-Lemma [1, (24.1), p.112].

Lemma 2.9.Suppose tha? x X x Y acts on the grou@’ [T, R],
that R, Y are 2'-groups andX,T are 2-groups. If[®(T), R] 1 and
[Cr(X),R,Y]=1then[T,Y] = 1.

Proof. SetT = T/&(T). SinceT = [T, R] we haveCx(R) = 1 by Co-
prime Action(e). LetQ = [Cr(X), R]. It follows from the Three Sub-
groups Lemma tha) = C(X). The P x -Lemma forcesT', Y] = 1.
Then[T,Y] = 1 by a well known result of Burnside.

Lemma 2.10.Suppose the grou@ acts2-transitively on a sef?2. Let M
be the stabilizer of a point ang a prime. If M does not contain a Sylow
p-subgroup ofG thenO, (M) < O,(G).

Proof. ChooseP € Syl (M). Now P ¢ Syl (G) so there existy €
Ng(P)—M.ThenO,(M) < P = P9 < M9Y. By 2-transitivity, Ng (M) =
M so M9 #+ M. Moreover,M acts transitively by conjugation ol ¢ —

{ M }. It follows that O, (M) is contained in every conjugate @f, so
Op(M) < Op(Mg) < Op(G).

Lemma 2.11[8, Theorem 5.4, p.277]Suppose thaf' is a2-group of class

at most2 and exponent at mogt Suppose thafz € T | 22 = 1} isa
subgroupN of T. Then|T| < [N 3.

Lemma 2.12.Suppose the groul acts on the group” and that the group
XY acts on the sef2. Suppose thak or Y is soluble, thatX andY have
coprime orders and that” is transitive onf2. ThenX fixes an element of
0.

Proof. SetG = XY and choosex € (2. ThenG = G,Y. Using the
Schur-Zassenhaus Theorem we see thattontains a complement g,
which is then conjugate t&'.
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3. Some special actions

Throughout this section, we assume the following:

Hypothesis 3.1.

—The groupR x A acts on the grouff'.

—V is a faithful RAT-module over an algebraically closed field of char-
acteristicp.

— R has prime order-.

—T has prime power order and is &n-, p }’-group.

—T =|[T,R] #1.

— Ais anr’-group.

-Cy(R) = 0.

Note thatr # p becaus&’y (R) = 0.

Lemma 3.2.(a) r is a Fermat prime, se = 2" 4 1 for somen.
(b) T is a nonabelian speci&-group and

T' = Z(T) = &(T) = Cr(R).

(c) R centralizes everyz-invariant abelian subgroup d¢f.

(d) The homogeneous componentsfaosn V' are the same as the homoge-
neous components fdr(7') on V. In particular, Cy (?(T")) = Cy(T)
and the homogeneous components are normalizdgl by

(e) If T is extraspecial, for instance i is homogeneous ovi, thenT' =
212" Ris irreducible onT'/®(T) and[T, A] = 1.

Proof. (a),(b),(c). By [1, (36.2), p.193] is a Fermat prime[" is a2-group
andR centralizes everyz-invariant abelian subgroup @f. ThenT is non-
abelian. By [1, (24.7), p.114}, is special andZ (T') = Cr(R).

(d). Sinced(T') = Z(T), Schur's Lemma implies thak(7") acts ho-
mogeneously on any homogeneous component’fddence it suffices to
show that ifU is a homogeneous component #(1") thenU is contained
in a homogeneous component fBr

Now RT normalizesU becausé®(T'), RT| = 1. SetT = T/Cr(U).
ThenR acts onT, U is a faithful RT-module andC;(R) = 0. If T = 1
thenU < Cy(T) soU is contained in a homogeneous componentifor
Suppose thal' # 1. Applying (b) toT, U in the role ofT, V it follows
that T is a nonabelian speciakgroup. Now®(T) = &(T) sod(T) is
abelian and acts homogeneously @nHence®(T') is cyclic soT' is ex-
traspecial. By [1, (34.9), p.180] an extraspee@igroup has only one faith-
ful irreducible representation over an algebraically closed field. This
homogeneous asimodule.

(e). Assume now thdf’ is extraspecial. [1, (36.1), p.192] implies that
T =220 | etT = T/®(T) and recall that we may regaiidas aG F(2)-
orthogonal space. Theh has either™ (2" — 1) or 2°~1(2" + 1) non-
singular vectors depending on whether the Witt indef'dé n orn — 1
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respectively. Nowl" = [T, R] andT is abelian, so by Coprime Action(e),
C7(R) = 0. Thus the nonsingular vectors fall into orbits of s#Ze+ 1 un-
der the action of?. Consequentl{l” has Witt indexn — 1, so7T" = 212",

Every nontrivial R-invariant subspace & must contain at leagt® + 1
vectors and hence have dimension larger thaBincedim(T) = 2n, it
follows thatR is irreducible oril.

It remains to prove thall’, A] = 1. We may assume that is a ¢-
group for some primg. We claim thatC(A) # 0. This is clear ifg = 2
becausd’ is a2-group, so supposg# 2. Now A permutes the@” ! orbits
of R on the nonsingular vectors @f. As ¢ # 2 it follows that there is
an A-invariant orbit. Applying Lemma 2.12, witd and R in the roles of
X andY respectively, we obtaid’:(A) # 0 in this case also. NowR is
irreducible oril” and[R, A] = 1 whenceCx(A) = T. Then[T, A] < &(T).
Also [¢(T'), R] = 1 so it follows from the Three Subgroups Lemma that
[Tv A] -

Corollary 3.3. If A acts trivially on®(7T") then A acts trivially onT'.

Proof. Now [@(T'), RA] = 1 so Lemma 3.2(d) implies tha® A normal-
izes the homogeneous componentsfoHence we may assume tHatis
homogeneous olr. Apply Lemma 3.2(e).

Lemma 3.4.(a) SetT = T'//&(T). ThenCx(A) = [Cr(A), R].
(b) If A acts trivially onT'/&(T") then A acts trivially onT.

Proof. Let @ be the inverse image af7=(A) in 7. Then[Q, A, R] <
[@(T),R] = 1. Also [A,R] = 1s0[A, R, Q] = 1. The Three Subgroups
Lemma forcesR, Q, A] = 1. Thus|Q R] < Cr(A) < Q. Using Coprime
Action(d) we havdQ), R| = [Cr(A), R] and alsa) = Cg(R)[Q, R]. Now
Cq(R) < Cp(R) = &(T) whenceQ = [Cr(A), R]. This proves (a). Sup-
pose thatA acts trivially on7. ThenT = Cx(A) = [Cr(A), R], hence
T = &(T)Cr(A). This impliesT = Cr(A), proving (b).

Lemma 3.5.LetZ = [¢(T'), A] and suppose tha invertsV, soZ = Z,.
LetT = T/®(T). Then
1<[T,Al<T

and R acts irreducibly on both factors of this chain. MoreoV@r, A, A] =
land[T, A] = C(A).

Proof. Let U be an irreducibleR AT-submodule and lef{ = Cr(U).
Observe that

@PT)NK,A<ZNK=1.

Now K = Ck(R)[K,R]. As Cx(R) < Cr(R) = &(T) we see that
[Ck(R),A] = 1. Also ?(|K, R]) < &(T) so[®([K, R]),A] = 1. Thus
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[K, A] = 1 by Corollary 3.3 applied t¢X, R] in the role ofT". SinceK <
AT it follows that[ K, [T, A]] = 1.

Suppose that/ < V. SetV = V/U andT = T'/Cr(V). Now &(T)
(T) s0 by induction(; ., 7 (A) = [T/®(T), A]. Thusk < [T, AJ®(T
Now [K, [T, A]] = 1 and®(T) = Z(T) soK' = 1. ThenK’ < Cp(V)
Cr(U) = 1 and Lemma 3.2(c) force& < &(T). Henced(T/K)
&O(T)/K soT/d(T) = (T/K)/®(T/K) and the conclusion follows by
induction. Hence we may assume tif&47 is irreducible on/.

Now A stabilizes the chaih < Z < &(T') so Lemma 2.4 implies that
induces an elementary abeliazsgroup on®(T'). Corollary 3.3 implies that

A induces an elementary abeliargroup on7'. Then [T, A] < T. Also,
[@(T), A] = Z # 1 so by Lemma 3.4(b) we have

~—

>

1<[T,A] <T. (%)

The conclusiongT, A, A] = 1 and [T, A] = C5(A) follow once we
establish thatr is irreducible on each factor df). To do this, choose
a € Awith a nontrivial on®(7T) and setdy = (a ). Now Z = [¢(T), A] =
[@(T), Ag) and[T, Ag] < [T, A]. Hence we may assume that= Ay, so
thatA = (a).

Let W be a homogeneous component iSF on V. SinceA induces an
elementary abeliai-group onT’ we have[T, a?] = 1 soWa? = W. The
irreducibility of RAT onV forcesV = W + Wa. Lemma 3.2(e), applied
to the action ofRT on W, implies thatR has exactly one noncentral chief
factor onT/Cr(W). It follows that R has at most two noncentral chief
factors on7". Now Cr(R) = &(T) so C#(R) = 1. We deduce thak is
irreducible on each factor ¢k). The proof is complete.

Lemma 3.6.LetZ, = Z < &(T) and suppose that invertsV. SetT =
T/Z. Then either

(a) T is extraspecial and = ¢(T'), or
T o1 =i

(b) Cx(R) = &(T) = ®(T) =T = Z(T), soT is a nonabelian special
2-group.

Proof. By Coprime Action(f) and Lemma 3.2

CH(R) = Cr(R) = &(T) = o(T) =T < Z(T).

Let  be the inverse image of(T) in T and letVy,...,V,, be the ho-
mogeneous components féron V. Note thatZ N Cr(V;) = 1 because
Z inverts V. Suppose thaf) < Cp(V;)®(T) for somei. Then[Q,T] <
ZNCr(V;) =1s0Q < Z(T) = ¢(T) and (b) holds. Hence we may
suppose thaf) £ Cr(V;)®(T) for all 4.
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By Lemma 3.2(e)R is irreducible on the Frattini quotient @f/C(V;)
whencel' = QCr(V;). Also [Q,Cr(V;)] < ZN Cr(V;) = 1. ThusT =
Q * Cp(V;). Then for anyi, j we have

(Cr(Vi), T) = [Cr(Vi), Q + Cr(V;)] < Cr(Vy).

Fixing 7 and lettingj vary we obtain[Cr(V;),T] = 1. ThenCp(V;) <
Z(T)=®(T)soasl' =QxCp(V;) we havel = Q. Now [Q,T] < Z so
(a) holds.

4. Tl-subgroups

The material in this section is heavily influenced by the work of Timmesfeld
[12]. We shall comment on this point in more detail later. Recall that a
subgroup? of a groupG is aTl-subgroupif, for all g € G,

dNPI #£1 implies @ =PI,
Our goal is to prove the following:
Theorem 4.1.LetG be a group withO5(G) = 1 and supposé, M, S and
U are subgroups satisfying:
— & #£ 1is an elementary abelia2-group.

— M = Ng(®) andS € Syl,(M).
—U < Ny (S)and® < Z(U).

Suppose also that:

— & is weakly closed i/ with respect tas.
—@is aTI-subgroup.
— M is the unique maxima-local subgroup of= that containd’.

Then? is strongly closed inV/ with respect td~, so that for allg € G,
PINM#1 implies g e M.
In particular, S € Syl,(G) and M controlsG-fusion inS.

Theorem 4.1 may be viewed apashing ugheorem. The uniqueness and
weak closure hypotheses are statements about c@raital subgroups.
The conclusion thad/ controlsG-fusion in S is a statement about &t
local subgroups.

We consider the following:

Hypothesis 4.2.
— & is an elementary abelia?-subgroup of the grougr.
—@isaTI-subgroup of5.
—¢* € Y — { &} satisfiesNg« (P) # 1.
We adopt the notation

@8 = Ng=* (@) and &g = N@(@*).
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Theorem 4.1 is a straightforward consequence of the following, which is a
slight extension of a result of Timmesfeld [12, (3.8), p.252].

Theorem 4.3.Assume Hypothesis 4.2 and tkais weakly closed itV ()
with respect toG. LetU be a subgroup ofNg(®,) such that{ &3V ) is a
2-group. Then &3V ) is abelian.

Timmesfeld invokes a deep result of Aschbacher to determine the possibil-
ities for the group @, ¢* ). He then reaches the conclusion of Theorem 4.3
with a case by case analysis. By contrast, the proof of Theorem 4.3 pre-
sented here is elementary and avoids the use of deep classification theo-
rems. The reader will however notice numerous similarities in the argu-
ments we employ and those developed by Timmesfeld [12].

Lemma 4.4.Assume Hypothesis 4.2. Then:

(@) |Po| = |&§| and we have symmetry betwekmand ¢*. In particular, if
&* < Ng () then[d*, §] = 1.

(b) &§ stabilizesl < &y < @ andQP stabilizesl < & < d*.

(€) (Do, D) = Do x P5<L( P, P*). In particular, @y x & may be regarded
as a module fof @, o).

(d) @ stabilizesl < @9 < @¢ x P andP* stabilizesl < & < Py x Dj.

Proof. We have[®g, ¢f] < ¢ NP* =1s0
<€150,€l58> = (150 X @6.

Let1 # a € @. Nowa is an involution that acts on the elementary abelian
2-group® soCg(a) # 1 and[P, a,a] = 1. Sinced* is T'I we obtain

[@,a] < Cp(a) < PN Ng(P*) = dy.

Thend, # 1 and there is symmetry betweérand®*. Now « was arbitrary
S0 [P, P < @¢. Then (b), (c) and (d) follow.

Suppose thap,| < |@f|. Consider the action ab on &, x &f. Then
for eachz € @, &5 N P # 1, s0P < Ng(Pj) because* is T'I. Hence
¢ = Py so|P| < |Pj| < |P*|, a contradiction. Thugby| > |&f| and (a)
follows by symmetry.

Proof of Theorem 4.3Assume false. We may suppose thgt< U. Choose
u € U with [( §§, 25" )| minimal subject to the condition

[P0, Po] # 1.
Claim 1. If &1 and®,, are distinct conjugates @ then
D1 N Cg(@g) =1.

Proof. Suppose there exisis# g € ¢ N Cg(P2). Then sinced; is T
we have?,; < Cg(g) < Ng(91), contrary to the weak closure @f .
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Claim 2. (a) (@ | h € &3+ ) is elementary abelian.
(b) 1 # [#, P5*] < Ca(P).
(© Nqsgu((ﬁ*) =1.

Proof. SetS = (&§, o). Since S is a nonabeliar2-group we have
(@3°) < S. The choice of: implies ( $3° ) is abelian. This proves (a).

Sinced} stabilizes the chain < ¢, < ¢ and sinceu € Ng(Py) <
N¢(9) it follows that ¢§* also stabilizes this chain. Thugg, "] <
Ca (@) by Lemma 2.4, proving (b).

Suppose there exists # a € Ng;«(9*). Using (b) and Claim 1 we
have[®§,a] < Cg+(P) = 1. Thend§ < Cg(a) < Ng(P*). Note that
o # ¢ becausew € Ng(Py) < Ng(P). Using (b) and Claim 1 we
havel # [®),di"] < Ce-(P) = 1. This contradiction proves (c) and
completes the proof of Claim 2.

Consider the chain
1 <Py < Py x P ©

Claim 3. ¢§* stabilizes(C).

Proof. Choosel # a € ¢§* and setk = (&§, P ). Claim 2(a) and (c)
imply that

K = &} x &2,
We will show that (&*,&**) normalizes K. Using Lemma 4.4(b),
[Bg, D*, D] < (@5, ] = 1. Also [P5e, By, &*] = [[DF, Po)?, P*] =

[1,9*] = 1 becauser € U < Ng(Pp). The Three Subgroups Lemma
forces[®*, 5%, Po] = 1. Now &;* < C(Pf) < N (P*) whence

(0%, P5%] < 2" N C(Po) < No=(P) = &5

Thus®* < Ng(K). Now a is an involution sak’ is a-invariant and then
(P* @**) < Ng(K).

Note that{ &*, &**) is a-invariant. By considering a-invariant Sylow
2-subgroup of{ ®*, ®**) and by using the weak closure &f, we may
choosgy € (&*,9**) such thats normalizes?*9. Claim 2(c) implies that
a does not normalizé sod; N ;7 = 1. Then agd;?| = |P,’| we obtain

K =&} x &Y. (1)
Also, since the involutiom acts on the-group®,? we have
Cgro(a) # 1.
Recall thatK' = & x @3*. Then visibly
Ck(a) = [K,a] = [Py, a] < Ck (D),
the inclusion following from Claim 2(b). Thus
1 # Cgra(a) < 2™ N Cq(P).



12 Paul Flavell

Claim 1 forcesp*? = &. Thend? < Cp(Df) < Ng(P*) = Py so as
|B5| = |Po| we havedy? = &. From (1) we obtainK = & x &f. In
particular,®, x & is a-invariant. Moreover

[K, a] < CK(Q) = @0 X C@a(@)

By Claim 1,Cg: (®) = 1 50[K, a] < @. Also [®, a] = 1 since[®g, Pj| =
1, u € Ng(®o) anda € @3*. This completes the proof of Claim 3.

We are now in a position to derive a contradiction. Lemma 4.4 and
Claim 3 imply that® and @j* stabilize(C). Since|®y| = |D§| = |25
and sinced* is T'I, it follows from Claim 2(c) that

Py x D = Py U U ot
tegyn

Chooser € & — @(. Such a choice is possible by the weak closuré of
Thend;” + &;. By the aboved," = & for somey € &*. Thenzy €
Ng(P§) < Ng(9*). Also, asz andy stabilize (C) we have[d}, zy] <
@6 Ndy =1 and[%,:cy] = 1. Thusxy € Cg(dso X @8)

Now &* acts ondy x &f so[P*, zy] < Cq(Py x ¢§). Thus

[@%, zy] < D" N Cq(Py) < Ng=«(P) = by,

whencery stabilizes the chailh < ¢ < ¢*. Lemma 2.4 yields
(zy)? € Ca(®Y).
Sincex andy are involutions (zy)? = [z,y]. Note thaty € &}* < U <
Ng(®P). Asxz € ¢ we obtain
[z,y] € 2N Cq(P*).

Claim 1 forceqz,y] = 1. Then

z € No(P™) = (No(27))" = & = Py,
contrary to the choice af. The proof is complete.
Proof of Theorem 4.1Suppose thay € G — M and thatd9 N M # 1.

Setd* = P9, Hypothesis 4.2 is satisfied and we adopt the notation defined
there. Without loss of generalitg; < S. Let M* = M9. Set

W= (dV) < M.

Now W is a2-group becaus& < N,,(S). Theorem 4.3 implies thal”
is abelian. Asp* is a Tl-subgroup we havd” < Cg(®5) < M* and so
&*W is a2-group.
SinceU < Ng (W) the uniqueness hypothesis implidg; (W) < M.
In particular,
Ng«(W) < P*N M = &}y < W.
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But &*1W is a 2-group so this force®* < W < M, contradicting the
weak closure ofp. Thus no sucly exists and the strong closure @&fis
established.

By the weak closure ob, N (S) < M, soS € Syl (G). Also® < S
sod N Z(S) # 1. SupposeA is any subgroup wittZ(S) < A < S. If
g € Ng(A)thenl # (&N Z(5))? < P9IN A < P9N M so the previous
paragraph forces € M. ThusNg(A) < M. Alperin’s Fusion Theorem
implies thatM controlsG-fusion inS.

5. Strong embedding

Recall that a proper subgroug of a groupG is strongly embeddeit G if

M has even order antff N MY has even order impliege M. The theory

of strong embedding and related ideas is developed fully in [6]. We require
only a special case, consequently much shorter proofs are possible. It is
emphasized that a large portion of this section is a presentation of material
from [6].

Theorem 5.1.LetG be a group® an elementary abelia-subgroup of=,
setM = Ng(®) and 2 = . Consider the conjugation action 6f on
Q.
Suppose thap is not normal inG, that® is noncyclic and that for all
g € @G,
PINM#1 implies g e M.

Letg € G — M, setD = M N M9%andm = || — 1. Then:

(a) G is 2-transitive onf2.
(b) Every involution of7 is conjugate to an element @i®.
(c) Suppose thab = Oy (D) x Oz(D). Then|2| = 2 mod m.

Remarks.

— (a) is a special case of a result of Aschbacher and Bender. We follow
closely the proof given in [6]. Our more restrictive hypothesis allows us
to truncate the argument at an early stage.

— Suppose tha@ is simple. A result of Aschbacher implies th&f is
strongly embedded i’ and then a result of Bender implies thatis
a Frobenius complement i . This implies thatD is semiregular on
2 —{®,49} and regular, by conjugation, @*. Then (c) follows. For
our purposes, it is precisely the congruence (c) that we need. A short
proof is possible, re-using arguments from the proof of (a).

Recall that ift is an involution in a groupX thent is isolatedin X if ¢ is
the only X -conjugate of that commutes with.

Suppose that the involutianacts on the grou® and thatt is isolated
in D(t), for example ifD has odd order. Set

Ip(t) ={d e D|dhas odd order and = d~'}.
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Ast is isolated, any two conjugates bfienerate a dihedral group of twice
odd order. Hence the map$, (¢)x — [z, t] andu — Cp(t)u are injections
from D/Cp(t) into Ip(t) andIp(t) into D/Cp(t), respectively, so

Ip(t) is atransversal t6'p(t) in D.

Hypothesis 5.2.
— G is a group with subgroup® and M.
-4 M <.
— & has even order.
—Forall g € G, 9 N M has even order implieg € M.

We adopt the notation:

—2Z ={z e G| zis aninvolution that is conjugate to an elementZof.

—ForeachX C GsetZy = Zn X.

- = &%, the set of conjugates @i. We regardG as a permutation
group, acting onf2 by conjugation.

—ForeachX C G, set2x = Fixo(X).

—Letm = ’ZM’

— For each primep, m,, is the largest power gf that dividesm.

Trivially we have:

— Each element of fixes a unique element 6f.
- Zy = Zp.
—Cg(z) < M forall z € Z,.

Lemma 5.3.Assume Hypothesis 5.2.

(a) Any pair of distinct elements @ is interchanged by an element &f

(b) Z is a single conjugacy class fcentral involutions an),, is a single
M-conjugacy class.

(c) Lett € Zg_yrandz € Zy. SetD = M N M?. ThenD is t-invariant
andt is isolated inD(t ). Moreover,I5(t) is a transversal t&@y,(z) in
M and

m = |Zy| = |Ip(t)| = |D: Cp(2)| = |D: Cp(t)].
In particular, D acts transitively onz,,.
Proof. We claim:

Leta,b € Z, supposerb has even order and that the (%)
involution in{ ab) is contained iV . Then(a,b) < M. *

Indeed, consider the dihedral grofip= ( a,b) and letu be the involution
in (ab). Thenu € Z(F') andau is F-conjugate ta: or b. Henceau € $*
for somezr € G andthem € ZNCq(au) C ZNM* C &%, Thenu € ¢*
sou € Z.Asu € M we obtain(a,b) < Cg(u) < M.

Leta € Z,; andb € Zg_ ;. Thenab has odd order and
b = a* for somec € Z (4. (%)
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Indeed, ifab has even order then the involution(inb ) centralizes: and so
is contained inV/. But then(x) contradictd ¢ M. To prove the remaining
assertion ir(xx), choosgy € (ab) with b = a9 and putc = ag.

Observe that (a) follows frontx). We prove (c). Since? = 1, D is
t-invariant. Letd € D. Now Y € D < M andt ¢ M so(*) impliestt?
has odd order. Henass isolated inD(t ).

Letw € Zy. By (xx), w® = 2! for somes € Z. Thenw = 2! ¢
¢ N M sots € M. By (), ts has odd order. Sinceinvertsts, we have
ts € Ip(t). In particular,D is transitive onZy; andM = Cs(z)Ip(t).

Letd, e € Ip(t) and suppose? = z¢. Now dt, et € Z and

(dt)(et) = (dt)(et) ™t =de ! € Cg(z) < M.

Now dt ¢ M so(x) impliesde~! has odd order and is inverted by. We
have(dt,z) < Ng((de™')). By (x*), dt andz are conjugate i dt, z ).
Thus z invertsde~! also. Asz centralizesde~! we deduce thatl = e.
Thusu — Cy(2)u is an injection fromlp (¢) into M /Ci(z), so asM =
Cm(2)Ip(t), Ip(t) is a transversal t@'y/(z) in M and toCp(z) in D.
Sincet is isolated inD(t), Ip(t) is a transversal t@'p(t) in D. This
proves (c).

By (c), Z)s is a singleM-conjugacy class. Then by definitiog, is a
single G-conjugacy class. As fixes a unique point of?, M contains a
Sylow 2-subgroup ofG. Sincet is isolated inD(t) it follows thatt cen-
tralizes a Sylow2-subgroup ofD. Then|D : Cp(t)| is odd so (c) implies
m is odd. Nowm = |M : C/(z)| S0z is 2-central. This proves (b).

In order to proceed further, we must use Glaubermafi'sTheorem [9,
Theorem 7.1, p.131]. Namely, ifis an isolated involution in the grould
thent € Z*(X), the inverse image of (X/04 (X)) in X.

Lemma 5.4.Supposé is an isolated involution in the groui. Letp be
an odd prime. Then:

(@) % (t,p) C Syl,(X), soX possessesainvariant Sylowp-subgroup.
(b) If P € N (t,p) thenCp(t) € Syl,(Cx(1)).

Proof. By the Z*-Theorem¢ € Z*(X) so X = Cx(t)O»(X). LetP €
W% (t,p), chooseRy with Cp(t) < Py € Syl,(Cx(t)) and sety’ =
PyOy(X) < X. By Coprime Action,P = Cp(t)[ ,t], so as[P,t] <
Oo(X) we haveP < Y. Also Y|, = | X|, so Sy},(Y) C Syl,(X). Apply
Coprime Action to the action afon the2’-groupY’.

Lemma 5.5.Assume Hypothesis 5.2. Lk, ~) be a pair of distinct ele-
ments off? that is interchanged by € Z. Letp be an odd prime and set
D = Gg,. Then:

(a) D possessesainvariant Sylowp-subgroup.

(b) If P is at-invariant p-subgroup ofD then|Ip(t)| < m,, with equality
if P € Syl,(D).
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Proof. Lemma 5.3(c) and th&*-Theorem implyt € Z*(D(t)), so (a) fol-
lows from Lemma 5.4. To prove (b), choos® with P < P* € U%(t, p).
By Lemma 5.4 we havé* € Syl (D) andCp-(t) € Syl,(Cp(t)). Using
Lemma 5.3(c)m, = |D : Cp(t)|, = |P* : Cp=(t)| = |Ip«(t)|. Since
Ip(t) C Ip«(t), (b) follows.

Hypothesis 5.6.
— Hypothesis 5.2.
— & is a noncyclic elementary abeli@agroup.

Lemma 5.7.Assume Hypothesis 5.6. lzgbe an odd primeP a p-subgroup
of G and setN = Ng(P). Suppose that every pair of distinct elements of
2p is interchanged by an element &f;. Then:

|Qp| <2 or [P, ZN] =1.

Proof. Supposes € Zy and[P, s| # 1. Without loss,s € ®. If ¢ € 2p
thenP < Ng(®) = M so[P,s] < PN ® = 1 becausep is a2-group.
Thus® ¢ (2p. Recall thats has a unique fixed point of2, namely®. Then
s is fixed point free or2p.

Suppose thag N Cn(s) # { s }. Then there exista = Zy x Zy with
s € A < NandA# C Z.HenceA < Cg(s) < M and by Coprime
Action(h),

P ={(Cp(a)] aeA#> <M,

contradicting® ¢ 2p. We deduce that
ZNCn(s)={s}.

It follows that s is isolated inN and thatZy = sV. Glauberman’sZ*-
Theorem implies that € Z*(N). Let L = (s)O(N). ThenZy C
L whencel is transitive on{2p. Choosea € 2p. Now L, < Oqg/(N)
because is fixed point free on2p. By hypothesis, each coset bf, that
is not equal taL, contains an element & . This forcesL, = Oy (N).
Hence|2p| = |L : L,| = 2.

Lemma 5.8.Assume Hypothesis 5.6. lzgbe an odd primeP a p-subgroup
of G and suppose

[Ip(u)| = my # 1
for someu € Z N Ng(P). Then|2p| < 2.

Proof. Assume false and leP be a maximal counterexample. St =
N¢g(P). If wis not isolated inV then the same argument as in the proof
of Lemma 5.7 proves thaP, u] = 1, contrary to|/p(u)| # 1. Henceu is
isolated inN.

We claim that any paif3, v) of distinct elements of?p is interchanged
by an element of . By Lemma 5.3(a) there existsc Z that interchanges
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(8,7). U_sing Lemma 5.5(a) and conjugatihigy a suitable element @f 5.,
there existg) with

P <Q=Q" € Syl,(Gg).

If P =(Q thent € N.Hence we may assume that< @. Lemma 5.5(b)
implies|Ig(t)| = m, so the maximal choice aP implies2g = { 3,7 }.
Now |2| = |f2g] = 2mod p andp is odd so it follows that every-
subgroup of7 has at least two fixed points.

Let A = Ng(P) > P and choos&3 with A < B € Syl (N). Now u
is isolated inN sowu normalizes a Syloww-subgroup ofV by Lemma 5.4.
Conjugatingu by a suitable element a¥ we may assume € Ng(B).
Recall that: has a unique fixed point of? and that 23| > 2. Hence there
existsd € (2p with § # §*. ThenB is au-invariant subgroup of7ss..
Lemma 5.5(b) implie$/g(u)| < m,. Now P < B and|Ip(u)| = m, SO
Ip(u) = Ip(u). Also B = Cp(u)Ip(u) so[B,u] < (Ip(u)) < P.

Now P < A < B so A is u-invariant and/4(u) = Ip(u). Thus
|7a(u)| = m,. Recall thatA = Ng(P) > P. The maximal choice of
forces(24 = { 3,7 }. Sinceu normalizesA and has a unique fixed point,
it follows thatw interchange$s, ). This completes the proof of the claim.
Now apply Lemma 5.7.

Lemma 5.9.Assume Hypothesis 5.6. Lebe a prime such thaty, # 1,
let (o, 3) be a pair of distinct elements ¢f that is interchanged by € Z
and letP be at-invariant Sylowp-subgroup of, 3. Then:

(@) 2p = {a, 8} and P € Syl (G).
(b) Na:(Gap) = Gap(t).

Proof. Lemmas 5.5(b) and 5.8 impl§2p = {«, 3 }. Sincep is odd, a
Sylow p-subgroup ofN¢(P) must fixa and 8, so P € Syl (Ng(P))
and thenP € Syl,(G). This proves (a) and (b) follows from a Frattini
Argument.

The following is elementary.

Lemma 5.10(Bender’s Criterion). Suppose the grou acts on the set
A, with |A] > 2. Letp be an odd prime. Suppose thatp = {«, 3}
whenever and 3 are distinct members af and P € Sylp(Xag). ThenX
is 2-transitive onA.

Proof of Theorem 5.1(aHypothesis 5.6 is satisfied. Note thaf, = &7
som = |@| — 1. Since® is noncyclic there exists a primewith m,, # 1.
Apply Lemma 5.9 and Bender’s Criterion.

Proof of Theorem 5.1(b)t suffices to take an involution € G — M and
show thats is conjugate intaD®. SetE = M N M*. By Lemma 5.3(a),
M?* = M for somet € Z. Using Lemma 5.9(b) we havec Ng(E) =
E(t). Nowt is isolated inE(t) so it is2-central inE(t ). Conjugatings
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by a suitable element df we may suppose thit, t] = 1. Chooseb* € (2
witht € &* and setM* = Ng(9*). Thens € Cq(t)NEt C M*NMP* =
(M* N M)®*. Apply 2-transitivity.

Lemma 5.11.Assume Hypothesis 5.6, Itbe a2-point stabilizer and sup-
pose thatD = Oy (D) x O2(D). Letp be a prime withm,, # 1 and letP
be ap-subgroup of7 with |2p| > 3. Then

m,, divides |D|,/|P]|.

Proof. We may suppose thdt is maximal subject tof2p| > 3. SetN =
Ng(P)andA = 2p. Let o, § be distinct members of\. Lemma 5.9(a)
implies P ¢ Syl,(Gap). ThusP & Syl,(Nag) and ifQ € Syl (Nypz) then
Ag = { «, 3} by the maximality ofP. Bender’s Criterion implies thav
is 2-transitive onA.

Let n andz interchang€(a, 5) with n € N a2-element andt € Z.
Then

S Gagn = (OQ/(GQB) X OQ(Gag)) n.

Conjugatingz by a suitable element af/,3, we may suppose that ¢
O2(Gop)n. Now P < Oy (G,p3) Whencez € N. Sincea and g were
arbitrary, Lemma 5.7 implieg?, Zx] = 1. In particular,[P, z] = 1.

By 2-transitivity we may suppose th&! = G,3. Now z interchanges
(o, ) so Lemma 5.3(c), with, G, andGj in the roles oft, M and M*
respectively, implies that, = |D : Cp(z)|. As P < Cp(z), the result
follows.

Proof of Theorem 5.1(c)Let p be a prime withm,, # 1 and letA be
an orbit for the action oD on 2 — {$, P9 }. Choosey € A, so|A| =
|D : D,|. Let P € Syl,(D,). Then|{2p| > 3 so Lemma 5.11 impliesu,
divides|D|,/|P| = |Al,. We deduce that: divides|A| and then thatn
divides|2 — { &, #9 }|. The proof is complete.

6. The minimal counterexample

For the remainder of this paper we assume Theorem A to be false and let
G be a minimal counterexample. Henceforth we adopt the notation defined
in the statement of Theorem A. We may suppose that the field of definition
for V' is algebraically closed. This section establishes basic propertigs of

Lemma 6.1.(a) p andr are distinct odd primes.
(b) r is a Fermat prime, se = 2™ + 1 for somen.

© (G : Ca(R))) ={2,p}.

Proof. SinceR is anr-group andCy (R) = 0 it follows thatp # r. Let
o = 7(|G : Ca(R)|). Applying Lemma 3.2(a,b) tdz-invariant Sylow
subgroups of5 we see that C {2,p} and thato C {p} if ris not a
Fermat prime.
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If o = O then|G, R] = 1, contrary to the fact tha® is a counterexample
to Theorem A. Suppose that= { ¢ } for someq. ChooseR € U (R, q).
ThenG = C¢(R)Q and thenG, R] = [Q, R] # 1. Recall thaG, R] <
G. Now O,(G) = 1 by the irreducibility of RG, soqg = 2 andp # 2.
Lemma 3.2(b) implies th&i, R] is a nonabelian speciatgroup, again
contrary to the fact that is a counterexample. We deduce that {2,p },
thatp # 2 and that- is a Fermat prime.

Lemma6.2.Let (Q be an R-invariant abelian2-subgroup ofG. Then

[Q,R] = 1.

Proof. By Coprime Action(d) we may assum@ = [Q,R]. Apply
Lemma 3.2(c).

Lemma 6.3.Suppose thati is a proper R-invariant subgroup of5. Set
K =[H,R| < H.LetQ € U} (R,2). Then:

(@) K = QOp(K), in particular, K is a{ 2, p }-subgroup.
(b) @ = [Q, R]. If Q # 1 thenQ is a nonabelian special-group and

Q' =2(Q) =2(Q) = Cq(R).

() H = Nu(Q)Op(H) = (Cu(R) N Nu(Q))QO,(H).
(d) If P € (R, p) then

P = Np(Q)O,(H) = (Cp(R) N Np(Q))Op(H)
and P(Q is a subgroup.

Proof. The minimality of G implies that X' induces a2-group on each
RK-composition factor of’. Now O,(RK) is the largest subgroup of
RK that acts trivially on everyR K-composition factor ofi’, so (a) fol-
lows. SinceK = [K, R] we have@ = [Q, R]. Now p # 2 so (b) follows
from Lemma 3.2(b). Als®,(K) < O,(H) soQO,(H) < H. A Frattini
argument and Coprime Action(d) prove (c) and the first part of (d). Now
Op(K) < P soPQ = PK, which is a subgroup. The proof is complete.

Lemma 6.4.(a) G = [G, R] = O*(G).

(b) F(G) = Z(G),[Z(G), R] = 1 and Z(G) is a cyclicp’-group that acts
semiregularly ori/ 7.

(C)If P e NL(R,p) and S € UL (R, 2) thenG = ([P, R], [S, R]).

Proof. The irreducibility of RG on V implies thatO,(G) = 1. Then
O,(|G, R]) = 1. Suppose& # [G, R]. Then[G, R] is proper so apply-
ing Lemma 6.3 tdG, R| in the role ofH, and recallindG, R| = |G, R, R]
by Coprime Action(d), we conclude from Lemma 6.3(a) that R is a2-
group. But now Lemmas 6.1(b) and 6.3(a,b) contradict the choice af
a counterexample. Thus = |G, R|. Lemma 3.2(c) yield$Z(G), R] = 1
and so the irreducibility oRG implies thatZ(G) is a cyclicp’-group that
acts semiregularly ol .
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Suppose, for a contradiction, thdt(G), R] # 1. Now O,(G) = 1 so
Lemma 6.1(c) impliesO2(G), R] # 1. ThenO2(G) £ Z(G). Let H =
Cq(02(G)) < GandK = [H, R] < 4G. ThenO,(K) < O,(G) = 1so
Lemma 6.3(a) implies thak’ is a2-group. ThusK < 0:(G) < Cg(K)
so K is abelian. Lemma 6.2 impligds, R] = 1. By Coprime Action(d),
K = [K,R]whence[H,R| =1.NowH <G = [G,R] s0oH < Z(G). In
particular,H is ap’-group.

ChooseP € U (R,p). Lemma 6.1(c) implies thak is faithful on P.
As H is ap’-group, RP is faithful on O2(G). Then [1, (36.4), p.194] im-
plies thatCy (R) # 0, a contradiction. We deduce th@t(G), R] = 1.
SinceG = [G, R], this forcesF'(G) < Z(G), completing the proof of (b).

Suppose thaD?(G) < G. Now O,(0O?(G)) = 1 so Lemma 6.3(a)
yields [0%(G), R] < 02(0*(G)) < O2(G). ConsequentlyO?(G), R] =
[0%(G), R, R] = 1 by (b). Butthenr(|G : Cg(R)|) C {2}, contrary to
Lemma 6.1(c). Thu®?(G) = G, which completes the proof of (a).

Assume the hypothesis of (c) and #ét= ([P, R], [S, R] ). Lemmas 2.2
and 6.1(c) imply thatz = Cg(R)H. ThenG = [G,R] = [H,R] < H,
proving (C).

7. Notation and outline

We define the notation that will be used throughout the remainder of this
paper and give an outline of the proof of Theorem A. Let

Mpr ={M < G| M is maximal subject to being-invariant}.
For eachX < G let
Mr(X)={MeMpr|X <M}
We once and for all fiXS € U (R, 2) and set
T =[S,R|<S.

Lemma 6.1(c) implies thdf’ # 1. Lemma 3.2(b) implies thaf’ is a non-
abelian specia-group and that

14T = Z(T) = &(T) = Cr(R).

Set
& =d(T).
Note that® is elementary abelian becaugas special. Let
G=G/Z(G).

Lemma 6.4 implies thak'(G) = 1 and thatZ(G) is cyclic. Let
Z=Z(G)N&.
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ThenZ =1 or Z = Zs. In the latter cas€? invertsV.
If H e Mg(T)thenH = Cy(R)[H, R] and Lemma 6.3(a) implies

[H, R] = TO,([H, R]).
We distinguish two cases:

The even caseO,([H, R]) = 1forall H € Mg(T).
The odd case O,([H, R]) # 1 for someH € Mpr(T).

The fact that = O?(G) implies that considerablg-fusion must take
place inS. On the other hand, Lemma 3.2(e) indicates tRatauses so
much fusion that there is room for no more. Thus we often derive a contra-
diction by arguing thaty # O?(G) or thatr divides|G|. A good example
is Lemma 7.2 below. There follows a more detailed outline of the proof of
Theorem A.

The first aim is to establish

— Mg(T) ={Nc(®)}.
— ¢ is aTI-subgroup of5.
— & is weakly closed inVg (2) with respect tas.

The odd case is relatively straightforward. Proving weak closure in the even
case is more subtle. Assuming the contrary, we show@hlahs a section
isomorphic toSLs(q), whereq = |®|. A numerical argument shows that
r divides¢® — 1, contrary to the fact that’ is ans/-group. A significant
difficulty arises ifZ # 1 since there may be elements®@fthat centralize
@ but not®.

Next we set

Q2 =d% M = Ng(P),Go = Ca(R), 20 = ¢ and My = Cys(R).

We regard andG( as permutation groups ai and (2, respectively. In-
voking Theorems 4.1 and 5.1 it follows th@tis 2-transitive on(?. Letting
D be a2-point stabilizer, we obtain

|G:M|=1+|M:D|. (1)

If |£2o] = 1thenC(R) < M andsdG : M| = 1 mod r. Butthen(1) im-
pliesr divides|G|, a contradiction. Thug?2| > 1 and another application
of Theorem 5.1 implies thaf is 2-transitive on(2,. We obtain

|Go : Mo| =1+ [Mp : Do|. (2)

Manipulations involving(1) and(2) force¢? — 1 to divide |G| andr to di-

vide ¢ — 1. In fact, using a result of Burnside, we could pursue the analysis
further to show thaGy = SLs(q). In any event, we have contradicted the
fact thatG is anr’-group and completed the proof of Theorem A.

Lemma 7.1.(a) T is weakly closed iV (7T') with respect taG.
(b) N5(T) = N¢(T) andT is weakly closed itNg(T') with respect taG.
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Proof. Suppose thal’ < @ < S. Then[Q,R] < [S,R] =T < @ soQ is
R-invariant. Setd = Ng(Q). ThenT € Syl,([H, R]) by Lemma 6.3(a) so
T = QN[H, R]<H whenceH < Ng(T). Then (a) follows from Alperin’s
Fusion Theorem and (b) follows readily.

Lemma7.2.9 # 1.

Proof. Assume false. The® = Z = Z,. Let H = Ng(T), so thatH =
Cu(R)[H, R].Now® < Z(G) so Corollary 3.3 implies thaC'y (R), T] =

1. In particular, asS = Cg(R)T andT’ = Z we haveT < Z(S). Then
Lemma 7.1 implies thall controlsG-fusion in S. Now G = O?(G) by
Lemma 6.4 so the Focal Subgroup Theorem yields

H = O0*H).

However,H = Cy(R)[H,R], [H,R] = TO,([H,R)]), [Cu(R),T] =1
andCy(R)NT = Z.Thusl # T is a homomorphic image df, contrary
to the above.

8. The even case

The following will be proved:

Theorem 8.1.Assume the even case. 3ét= N (P). ThenM = Ng(T)
and

@Mp(T)={M}.
(b) @ is weakly closed i/ with respect ta.
(c) @ is an elementary abeliaii I-subgroup of.

Throughout this section, we assume the even case and set
M = Ng(®).
Note thatM < G by Lemmas 6.4(b) and 7.2.

Lemma8.2.(a) M = Ng(T) = Cy(R)T and[M,R] =T.
(b) Mr(T) ={M}. _
(c) @ is an elementary abeliai /-subgroup ofG.

Proof. Let H € Mp(T'). Since we are in the even casg,([H, R]) = 1.
Lemma 6.3 implie§H,R] = T'< H. ThenH < M soH = M. This
proves (a) and (b). To prove (c), lete G and suppose tha N ¢9 £ Z.
Recall thaf RT, ] = 1 so using (b) we have

TI9 < Cg((ﬁﬁéﬁg) < M = N¢g(T).

Lemma 7.1 force§9 = T sodY = &. The proof is complete.
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Recall thatG = G/Z(G). Elements ofG that centralizep but not®
require special handling. To this end, we define

N =Cg(®) and Q=[T,N].
Now 7' < N so Lemma 8.2(a) impliesv < M. ThenN < M and so
¢ =T <Q<M.HenceM = Ng(Q).
Also recall thatZ = & N Z(G) and that ifZ # 1 thenZ = Zs andZ
invertsV'.
Lemma 8.3.Suppose thdth, N| # 1. Then:
(a) If X is a2-subgroup of\/ or if X < N thenX stabilizes the chain

P<Q<LT.
(b) If X < N and[®, X] # 1then[®, X] = Z andQ = [T, X]®.
© [Ca(Q), R < Q.
Proof. SinceN' < N¢(®) we obtain[®, N| = Z = Z,. This proves the

first assertion of (b). Lel” = T /®. Consider the action oRM on T.
Note thatT" acts trivially becausé = T”. Moreover,M = Cj;(R)T so it

follows that[T", X] is R-invariant for anyX < M.
_Now N = Cn(R)T hence[®,Cn(R)] = Z. Also Q = [T,N] =
[T, Cn(R)]. Lemma 3.5 implies that

1<Q<T, ()

[Q.N]=1,Q = Cz(N) and that® acts irreducibly on both factors ¢%).

(a). Sinceq is the full inverse image of) it suffices to show thafy
stabilizes(x). If X < N, this is clear. Suppose that is a2-subgroup of
M. As M = TCy(R) by Lemma 8.2, and a® is irreducible on both

factors in(x), X is trivial on these factors and’, X] = 1 or Q.

(b). As just observed, eithél’, X] = 1 or [T, X] = Q. Suppose that
[T,X] = 1. Then[T, X] < & = Z(T) soT stabilizesl < ¢ < &X.
This forces[®X,T"] = 1. ButT" = ¢ and[®, X| # 1. We deduce that
[T, X] = Q. Then (b) follows by taking inverse images.

(¢). Let L = [Ce(Q), R]. SinceT < Ng(Q), Lemma 8.2 implies
Cq(Q) < M.ThusL < [M, R] = T. Now Ris irreducible o) = [T, N
SO elther{L N]=10r[L,N]=Q.If [L,N] = 1thenas) = C5(N) we
haveL < Q which proves (c) in this case.

Suppose,foracontradlctlon,tt{m; N] = Q. Observe tha[Q L,N] <
[Z(G),N] = 1. Using (a) andL < T we have[N,Q,L| < [¢,L] = 1.
The Three Subgroups Lemma fordés N, Q] = 1. Since[L, N] = Q we
have[L, N|® = Q. Then[@, Q] = 1. Lemma 6.2 implies thgdt), R] = 1.
Then@ < Cr(R) =@ so(Q = 1. This contradictg*) and completes the
proof of (c).
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Lemma 8.4.Supposé®d, N| # 1. Then( is weakly closed in/ with re-
spect toG.

Proof. Assume false. By Lemma 2.5, there existse G such that@
and@* normalize one another b@ # Q. ThenQ* < Ng(Q) = M.
Lemma 8.3(a) implies thdf", Q] < @, soT < Ng(QQ"), and also that
[Q, Q%] < ®. By symmetry,

(T,T%) < Ne(QQ") and [Q,Q"] <PNI”.
Now z ¢ M so® N d* < Z(G), by Lemma 8.2(c). In particulaf)” <

Ca(Q), so Lemma 8.3(c) yields
Q% R] < Q.

Also, Q is R-invariant so we deduce th@Q” is R-invariant. ButM r(T") =
{ M } so we obtain

T* < No(QQ") < M = Ng(T).
This contradicts the weak closure’5f Lemma 7.1. The proof is complete.
Lemma 8.5.Letz € G and suppose that
[@,97] = 1.
Then[®, 7] = 1.

Proof. Assume false. Now* < N so[®, N] # 1. Also, M = Ng(P)
sox ¢ M. Lemma 8.3(b) and the fact thétis T'I in G imply that Z =
(@, 5] <PNP* < PN Z(G) = Z. ThenZy = Z = & N &* anddd” is
a subgroup.
Consider the chain

b < PP (*)
By Lemma 8.3(a)[Q, ¢*] < @ so( stabilizes(x). Also &* stabilizes(x)
becausd®, ¢*] = Z < . Lemma 8.3(b) implies tha®) = [T, $*|P so
(&*T") stabilizes(x). Moreover,

Q < (") (%)
We claim that{®*T") is abelian. Indeed, let € T and consider the
action of®*t on (). Now ¢&7 is nonabelian so it possesses a nonidentity
element that does not have order two. Howewes elementary, whence

ou | o S Do
gegpzt

Now @ is T'T in G so the intersection of distinct conjugatesfois equal to
Z. Thus the left hand side has cardinali@f + | : Nga: (D%)|(|P%| — 2)
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and the right hand side has cardinaltip|®. Thus|Ng.: ()| > 2 and we
may choosé: € Ng.: (") with h & Z(G).

Sinced! stabilizes() we havelh, %] < N &* = Z so ash” is T1
in G we obtaind” < Ng(P*). Then[®®, d*] < & N P™ = Z. Ast was
arbitrary, the claim is established.

The claim implies that ¢*7' )@ is abelian. In particular{ *7 )¢ <
N*. From(xx) we haveQ) < N* < M*. Asz ¢ M = Ng(Q), we have
contradicted the weak closure @ Lemma 8.4. The proof is complete.

Corollary 8.6. Letx € G and suppose that

(@)
is abelian. Then®®, R] = 1.

Proof. Every RG-conjugate ofp is in fact aG-conjugate becaud@, R| =

1. Lemma 8.5 implies that®*!? ) is an R-invariant abeliar2-group. Apply
Lemma 6.2.

Lemma 8.7.9 is weakly closed i/ with respect ta-.

Proof. Assume false. Then there existss G such thatt and®® normal-
ize one another bup # ®*. ThenT # T*. Moreover, if[®@, N] # 1 then
Q # Q" becauseNg(Q) = M.

Since® is T1 in G we have[d, %] = 1. Lemma 8.5 implies that
[@,9%] = 1. Now Cg(®) = (Ce(R) N Cq(P))T. Corollary 3.3 implies
[Ca(R)NCq(P),T) =1, whence

Ce(P) = (Ca(R)NCa(T)) = T. (*)

In particular,[T, ] < T' = &.
Let X = ¢&*, so then

X =& x o7,

andT normalizesX. In fact, T" stabilizes the chaifh < ¢ < X. By sym-
metry, 7% < Ng(X) andT™” stabilizesl < ¢* < X. Set

L={(T,T") < Ng(X) and L=L/CL(X).

SinceMpg(T) = { M }, the weak closure df’ implies thatL is not con-
tained in any propeR-invariant subgroup ofs.

Claim 1. C7(X) is an abeliar2-group.
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Proof. Suppose that’;,(X) > C(X). Interchangingp and®*® if neces-
sary, we may assunmé, Cr,(X)] # 1. ThenC(X) < N and[®, N| # 1.
Lemma 8.3(b) yields

Q = [T, CL(X))® < C1(X) < Ca(@) < M.

The weak closure af), Lemma 8.4, force§) = Q*. This is not the case so
we deduce that', (X ) = C(X).

Let] = (c? | ¢ € CL(X)). Since[®(T), R] = 1 it follows from (x)
that! < Cq(R) N Cq(T). Similarly, I < Cq(T*). ThusI is R-invariant
andL < Cg(I). SinceL is not contained in any propét-invariant sub-
group, we havd < Z(G). The claim follows.

Set B
q= 12|,
sog > 1 by Lemma 7.2.

Claim 2. |T| > q.

Proof. If (#*7) is abelian then Corollary 8.6 forcés”, R] = 1 whence
L is contained in theR-invariant subgroupVe (X). This is not the case.

We deduce that®=) is nonabelian.

Choosep € R such tha{d®, $7] # 1. Now &* < M and[M, R] =
S0T'®d” is R-invariant. Asd* < C'(X) we obtaing®» < Té+ =T, Thus
it suffices to show thaitfffp\ > q. Note thatd*” stabilizes

l<d< X

becausd does.

Leth € &*?NCL(X) and suppose that¢ Z(G). ThenX < Cg(h) <
N¢(9%°) and so[X,P""] < &N P* < Z(G). Butd® < X so we have
contradicted®®, $*¢] # 1. Thus®*? N C(X) < Z(G) and asy = || =
|®/® N Z(G)|, the claim follows.

We also havd!TﬂC

IT| = ¢ and thatV; (T T) acts tran3|t|vely o, (In fact, L = SLQ( ).)
Let

D:NL(T) and A:CT(Y)

The weak closure of implies thatD = N (T). Then D normalizesA
and acts transitively ofil’/A)#. Note thatl’ < D < M and[M,R] =T
so D is R-invariant. If A is R-invariant thenR acts on(7'/A)* so asD
is transitive on(T'/A)#, Lemma 2.12 implies thaR has a fixed point on

(T/A)*. This is absurd becausgr(R) = ¢ < A. We deduce thatl is not
R-invariant.
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Let p be a generator foR and setB = A” # A. Now B is D-invariant
becausé is R-invariant. The transitivity oD on (7'/A)# forcesT = AB.

Recall thatG = G/Z(G) and that[Z(G),R] = 1. ThenT N Z(G) =
TNZ(G)NCq(R)=®NZ(G) = Z.Now® # 1 so Lemma 3.6 implies
Z(T) = &. Also, A andB are abelian by Claim 1 so &= AB we have
AN B < ®.Sinced < AN B we deduce that

ANB=47.

Now g = |T| = |T/A| = |[AB/A| = |A : &|. Similarly, ¢ = |B : @|.
Then
IT:®|=|A:D||B:d| =g
SinceR = Z, andCr(R) = @ it follows thatr dividesq? — 1. Butg? — 1

divides|f/] so we have contradicted the fact tidats anr’-group. The proof
of the weak closure of is complete.

Theorem 8.1 now follows form Lemmas 8.2 and 8.7.

9. The odd case

The following will be proved:
Theorem 9.1.Assume the odd case. Sdt= N (). Then:

@ Mp(T)={M}
(b) @ is weakly closed i/ with respect ta&.
(c) @ is an elementary abeliafi/-subgroup of.

Throughout this section, we assume the odd case.

Lemma 9.2.0ne of the following holds:

(2) m(P) > 3.

(b) m(®) = 2,p = 3and if P € Ng(R,p) is chosen maximal subject to
TP = PT # G thenCg(R) N Np(T) acts transitively o .

Proof. ChooseP € Ug(R,p) maximal subject td’P = PT # G. Then
P # 1 because we are in the odd case. Bet PT andP; = Cp(R) N
Np(T). Lemma 6.3(d) yields

P = PO, (H).

Recall thatp # 2. Consider the action P, on® and suppose that (a) and
(b) fail. Then[®, P;] = 1 whence[®, P;] = 1. Corollary 3.3 implies that
[T, 1] = 1. We deduce thdl’ < N¢(P). AsO,(G) =1, G # Ng(P).
Lemma 6.3(d) and the maximal choice®fimply that P € Syl,(Ng(P)).
Then P € Syl (G). But now Lemma 6.4(c) implies tha¥ = (P, T),

contradictingO,(G) = 1. Thus one of (a) or (b) holds.
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Let
L={PeWgR,p) | TCa(T) < Ng(P)}

and let
E*
be the set of maximal members 6funder inclusion.

Lemma9.3.Let H € Mgr(TCqs(T)). Then every member & that is
contained inH is contained inO,(H). Moreover, ifO,(H) # 1 then
Op(H) € L*.

Proof. Let K = [H,R] so K = TO,(K) < H by Lemma 6.3(a). By the
Frattini Argument,H = Ny (T')O,(K) whence

Op(Ca(T))Op(K) < Op(H).

ChooseP € £ with P < H. Now P = Cp(T)[P,T]. We haveCp(T) <
0,(Cc(T)) becauseP is TCq(T)-invariant. Also[P,T] < PN K <
Op(K). HenceP < O,(H). Now suppose&),(H) # 1. ChooseP with
Op(H) < P € L*. ThenNp(O,(H)) is a member of contained inH.
HenceNp(O,(H)) < O,(H) soP = O,(H) and the proof is complete.

Corollary9.4. If P.Q € L*and PN Q # 1thenP = Q.

Proof. Assume false and consider a counterexample Wit P N Q
maximal. Then/ < Np(I) € £LandI < Ng(I) € L. ChooseH with
Na(I) < H e MR(TCq(T)). Lemma 9.3 implies that

I < Np(I)<PNO,(H) and O,(H) € L.

The maximality of/ forcesP = O,(H). Similarly, Q = O,(H), SOP =
Q, a contradiction.

Lemma 9.5. L contains nontrivial members.

Proof. Since we are in the odd case,([H, R]) # 1 for someH &
MRg(T). SetK = [H,R]. Now K = TO,(K) and K = [K,R] so

[Op(K), R] # 1. By Lemma 9.2m (&) > 2 so
Op(K) = (0p(K) N Cila) | a € &— Z(G)).
Thus there exists € ¢ — Z(G) with
1 # [Op(K) N Cq(a), R).

Since[Cg(a), R] = TO,([Ca(a), R]) we havel # O,([Cq(a), R]) <
0,(Ca(a)) € L.

Lemma 9.6.L possesses a unique maximal member.



A Hall-Higman-Shult Type Theorem for Arbitrary Finite Groups 29

Proof. ChooseP,Q € L*. We must show thal® = Q. Let &y be a
complement toZ in ¢. Note thatCg(a) is contained in a member of

MRp(TCq(T)) foralla € @#. By Lemma 9.2m(®y) > 2.
Suppose thatn(®y) > 3. By Coprime Action there is a hyperplane
@, of &y with Cp(@1) # 1. Now m(P1) > 2 s0Cp(a) # 1 for some

a € ®7. ChooseH with Cg(a) < H € Mg(TCq(T)). Now Cp(a) and
Cg(a) are nontrivial members of that are contained it/. Lemma 9.3
and Corollary 9.4 imply? = ). Hence we may suppose tha(@o) =2.

ChooseP maximal subjecttd® < P € Na(R, p) andPT = TP # G.
SetPy = Cg(R) N N3(T). By Maschke’s Theorem we may choogso
that it is Py-invariant. Lemma 9.2 implies thd, is transitive omSU#.

Now P, normalizes botf’'C:(T') and R hence( P™ ) is RTC(T)-
invariant. Since Pﬁ0> is ap-group it follows that( Pﬁ0> € L.NowP €
£* so we deduce thaP is Py-invariant. Recall thatn(®y) = 2. Hence
Cp(a) # 1 for somea € 45# As P is Py-invariant andP, is transitive

on &, we haveCp(a) # 1 for all a € 7. Now chooser € &7 with
Cg(a) # 1. Asin the casen(Pg) > 3, it foIIows thatP = Q. The proof is
complete.

For the remainder of this section we fiXxsuch that
L£*={P}.
Lemma 9.5 implies? # 1. Set
M = Ng(P).
Lemma 9.3 implies® = O, (M).
Theorem 9.7.M = Ng(T)P and Mp(T) = { M }.

Proof. Let N = N¢(T'). By Lemma 6.3(c)N = Cn(R)TO,(N). Now
TO,(N) < M becausel'Cq(T) < M. Also, Cn(R) normalizes both
R andTCq(T) so Cn(R) permutesC* = {P}. ThusN < M. By
Lemma 6.3(c)M = NP.

Now suppose tha! € Mz(T). By Lemma6.3(c)H = Ny (T)O,(H).
If Co(T) < H thenO,(H) € L whenceO,(H) < PandH < M.
In particular,Cg(a) < M for all a € & — Z(G). Returning to arbitrary
H € Mpg(T) we have

Op(H) = (Co,m(a) [a € &= Z(G)) <M
becausen(®) > 2. HenceH < M. We deduce thaM g(T) = { M }.

Lemma 9.8.Letg € G and suppose thah(®9 N M) > 2. Theng € M.
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Proof. Now PT < M so P® < M and we may conjugaté? by a suit-
able member off” to suppose tha®#? N M normalizes®. Consider the
action of®9 N M on ¢ and recall thatn(®) > 2. If m(®) = 2 then as
m(P9 N M) > 2, there exists € 99 N M# with [@, #] = 1. Theorem 9.7
implies thatC(a@) < M’. Thend < M”. In particularyn(® N M9) > 2.
Suppose that($) > 3. Chooser € $9 N M7 . Sincea induces an involu-
tion on the elementary abeli@agroup® we havem(Cgz(a)) > im(P) >
3. Thusm(Cx(@)) > 2. As before,Cx(a) < MY som(@NM9) > 2in
this case also. Thus we have the symmetrical configuration

m(@INM)>2 and m(®NMI) > 2.
Using Coprime Action and Theorem 9.7 we have
P9 =(Cps(a) |lae PN MI—Z(G)) < M.

Let
D = (¢ N M)PITP.

Note thatD is a soluble{ 2, p }-subgroup of\/ becaus@?9N M normalizes
P9andTP I M. Leta € 9N M — Z(G). Now Cg(a) < MY so using
Lemma 2.6 we obtain

Cps(a) < Ox(Cg(a))ND < O (Cp(a)) < Ox(D) = Op(D).

Sincem(®9 N M) > 2 we have
P9 = (Cps(a) |lac P!NM — Z(G)) < Op(D).
Note thatP < D becausd) < M, whence
O,(D) = PP?

andT < Ng(PP9).

Now [D,R] < [M,R] < TO,(M) = TP < D soD and hence
O,(D), are R-invariant. Theorem 9.7 forceSg(PPY9) < M. By symme-
try, 79 < Ng(PPY9)soTY9 < M. Using the weak closure @f, Lemma 7.1,
there existsn € M with 79" = T'. Thengm € Ng(T) < M sog € M,
completing the proof.

Corollary 9.9. Assumen(®) > 3. Letg € G and suppose thakd N M #
1. Theng € M.

Proof. As in the proof of Lemma 9.8 we may suppose tééatn M nor-
malizes®. Choosea € 9 AM”. As in Lemma 9.8m(C5(@) > 2,
Ca(@) < M? and som(® N M9) > 2. Lemma 9.8 implieg € M.

Lemma 9.10.N5;(®) is transitive ond”.
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Proof. By Lemma 9.2 we may suppose tha{®) > 3. Now TP < M
so®P < M. Corollary 9.9 implies that Hypothesis 5.2 is satisfied with
@P in the role ofé. Lemma 5.3(b) implies that/ acts transitively on the
involutions oféP. SinceM = Ny;(®)P, the conclusion follows.

Lemma 9.11.¢ < M, so thatM = Ng (D).

Proof. Assume false. We will argue that' contains a Sylow-subgroup

of G, contrary to Lemma 6.4(c). Note thaf” < M. By Lemma 9.10, either
Cy(P) = Z or Cs(P) = &. In the latter casep = O1(PP) < M. Hence

we haveCy(P) = Z. ChooseP* € 1},(R,p) and set

H=TP*" and L = dP*.

Both H and L are subgroups because= O,(M) < P*, TP < M and
PP I M.

We claim thatO,(H) = O,(L). ClearlyO,(H) < O,(L). LetY =
TO,(L) € H. ThenY is a subgroup becausg,(L) normalizesI'P and
P < 0Op(L). By Lemma 6.3(d), witiy” in the role ofH,

Op(L) = (Ca(R) N No,r)(T))Op(Y).

Now [No,)(T),®] < &N Op(L) = 1 so Corollary 3.3 implies that
[Ca(R)N No,1)(T),T] = 1. ThenT' < N (Op(L)) s00,(L) < Oy(H)
and the claim is established.

We apply Theorem 2.7, tb. Now P < O, (L) andCg(P) = Z whence
CL(Op(L)) < Op(L)Z. Note thatL has abelian Sylo®-subgroups. Theo-
rem 2.7 yields # K (P*) = K(O,(L)). Actually, we must considett/Z,
but this causes no difficulty becau8e< Z(G).

SinceO,(L) = O,(H) we haveK (P*) = K(O,(H)) < H, whence
T < Ng(K(P*)). Theorem 9.7 impliesV (K (P*)) < M. In particular,
Ng(P*) < M. ButP* € Uy, (R, p) so this forces”* € Syl (G) and then
Lemma 6.4(c) supplies a contradiction. The proof is complete.

Proof of Theorem 9.1(a) follows from Lemma 9.11 and Theorem 9.7.

Now m(®) > 2 by Lemma 9.2 so (b) follows from Lemma 9.8. To prove
(c), letg € G and suppose thg@N @y £ Z(G). Now [@, RT| = 1 so using
(a) we havedd < Co(PnNP9) < M. Thend?d = ¢ by (b).

10. The final contradiction
Henceforth we adopt the following notation:
Q2 =% M = Ng(®), Gy = Cg(R), 29 = °° and My = Cy(R).

We regardG and Gy as permutation groups of? and (2, respectively.
Recall that o
G=G/Z(Q)

that® # 1 by Lemma 7.2, and that < G,
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Lemma 10.1.(a) Mr(T) = { M }.

(b) @ is aT I-subgroup.

(c) @ is weakly closed i/ with respect ta-.

(d)Forallg € G, N M # 1impliesg € M.

(e) If H is an R-invariant subgroup otz and® N H # 1 thenM contains
a member of1}; (R, 2).

(f) M controlsG-fusion inS and M = O?(M).

(9) @ is noncyclic.

Proof. (a), (b) and (c) follow from Theorems 8.1 and 9.1. (d) follows from
Theorem 4.1 withRG, &, RM, S and RT in the roles ofG, ®, M, S and
U respectively. To prove (e), we may suppose tHais a 2-group. Recall
thatS € U (R,2) andT = [T, R] < S. By Coprime Action, 9 < S for
someg € Cg(R). Theng € M by (d), henced < M and we are done.
Theorem 4.1 implies that/ controlsG-fusion inS. Now G = O%(G) by
Lemma 6.4 so (f) follows from the Focal Subgroup Theorem.

To prove (g) suppose that is cyclic. Then[®, M] = 1 so M in-
duces a2-group on®d. As M = O?(M) we have[®, M] = 1. Now
M = My[M,R] and [M,R] = TO,([M,R]) by Lemma 6.3. Corol-
lary 3.3 implies[M, T] = 1. But thenT is an image of\/, contradicting
M = O*(M). This completes the proof.

Lemma 10.2.(a) G is 2-transitive on(?.
()T =[M,R] <M and M = M,T.

Proof. (a). This follows from Theorem 5.1(a) and Lemma 10.1(d,g) with
G, M and® in the roles ofG, M and.

(b). By Lemma 6.40,(G) = 1 and M does not contain a Syloyw
subgroup ofG. Using Lemma 2.10 we hav@,([M, R]) < O,(M) <
O,(G) = 1. Since[M, R] = TO,([M, R]), we are done.

Lemma 10.3.|£2y| > 1 and G is 2-transitive onf2.

Proof. Choosey € G — M and setD = M N M9. SinceG is 2-transitive
on 2 we have
|G:M|=1+|M : D|. (%)

Recall thatGy = Cg(R). If Go < M thenNgr(R) = RGy < RM
andR € Syl.(RG), so RM is the unique point oRG/RM fixed by R.
Thus|G : M| = 1 mod r. Then(x) impliesr divides|M : D|, which is
absurd becaus@ is anr’-group. Thusz, £ M and another application of
Theorem 5.1 completes the proof.

Lemma 10.4.LetZ; =~ X < M. ThenCx(X) < M.

Proof. Assume false. Lefl be the inverse image @fz(X) in G. Then
H £ M. Recall thatZ (G) < Gy by Lemma 6.4(b). The full inverse image
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of X is a nilpotent subgroup af so there is &-subgroupX < Gy that
maps ontoX and satisfieX <H. Also, RH stabilizes the chaih<Z(G)N
X < X so Lemma 2.4 implies tha H induces an abelia2-group onX.

Now 1 # C3(X) < &N H. Lemma 10.1(e) implies that/ contains a
member o1}, (R, 2). ConjugatingX by a suitable element di,, we may
suppose that

SNHeWyR,2).
Set
K =[H,R] and Q=SnNK € Uk(R,?2).

Since RH induces an abelia@-group onX we have[X, K] = 1. By
Lemma 6.3(b),Q = [@,R], so asT' = [S, R] we have@ < Crp(X).
Moreover,[Cr(X), R] < @, whence

Q= [CT(X)VR]
Claim 1. m(®(Q)) < 1.
Proof. Assume false. By Lemma 6.3(b}f = Ng(2(Q))O,(K). Also

Q) < &(T) = »and Mp(T) = { M }. Sinced(Q) is noncyclic it
follows from Coprime Action(h) and Lemma 10.1(d) th@j(K) < M.
As @ is TI we haveNg(®(Q)) < M, soH < M, a contradiction.

Claim 2. M n H induces &-group ond.

Proof. Lemma 10.2(b) implies thaf' = [M, R] < M whenceM N H =
(MoNH)MNH,R| < (MyNnH)T.As® = Z(T) it suffices to prove
that My N H induces a&-group ond. LetY < My N H have odd order.
Then[X,Y] = 1 since H induces a-group onX. Now @) = TN K
soY normalizes. By Claim 1,[®(Q),Y] = 1 so Corollary 3.3 forces
[Q,Y] = 1. Applying Lemma 2.9 to the action d® x X x Y onT we
obtain[T, Y] = 1. Then[®, Y] = 1 and the claim is established.

Let
$=PNH.
Note thatd; <l M N H because < M. By Lemma 10.1(d), for alj € H,
7N (M N H) # 1impliesg € M N H. Moreover,M N H < H because
H £ M. Lemma 5.3(b) implies thal N I acts transitively o, " . Then

Claim 2 forcesn(®,) < 1. o B
Now & = C5(X) so asZy = X < M = Ng(2) we have

m(®1) > 5m(P).
Also m(®) > 2 by Lemma 10.1(g). It follows thain(®) = 2 and thatX

acts nontrivially ond. Now Aut(®) = Sym(3) whenceZ, is an image of
M. But M = O?(M) by Lemma 10.1(f). This contradiction completes the

proof of Lemma 10.4.
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Corollary 10.5. Mj is strongly embedded i@, so thathZ, N1, has odd
order for allg € Gy — Mp.

Proof. By Coprime Action,C5(R) € Syk(Gy). Moreoverd < Gy so
Lemma 10.1(d) impliesV-(Cg(R)) < Mo. Apply Lemma 10.4.

Chooseu € Gy — My with u conjugate to an element & Set
D=MNM" Dy=Cp(R) and Q=[D,R|<D.
Note thatD is R-invariant because € G. Recall that
Z=Z(G)Nd=2ZG)NT
and that eithe = 1 or Z = Z, andZ invertsV.

Lemma 10.6.D, has odd order{Dy, Q] = 1andD = Dy x Q. If Q # 1
then@ < T, Q is extraspecial witlb(Q)) = Z = Z, and R acts irreducibly

onQ/d(Q).

Proof. Corollary 10.5 impliesD, has odd order. Suppose thiat# 1. Now
Q =[D,R] < [M,R] =Ts0®(Q) < ®(T) = &. Sinceu is an involution,
D is u-invariant. Thenu € Ng(®(Q)). As@ isTI in G andu ¢ M
it follows that?(Q) < Z(G)N® = Z. Now @ = [Q,R] # 1s0Q
is a nonabelian specig&tgroup by Lemma 3.2(b). The#(Q) = Z and
Q is extraspecial. Lemma 3.2(e) implies thal, Q] = 1 and thatR is
irreducible onQ/&(Q).

Set | |
— T:P

g=|?| and o= ———- —1.
2 Q- Q)]

Now @ N D,y = 1 becauseD, has odd order, so
| Mo : Do| = Bq
for somes € N.

Lemma 10.7.(a) o € N andr dividesa.
(b) (1 + Bq)(¢ — 1) divides both G| and a.

Proof. (a). By Lemma 3.2(b)P(Q) = Co(R) = QN Cr(R) = QN &.
Thusa = |T/® : QP/P| —1 € Z.If a = 0thenT = QP soT = @ and
then® = ¢(T') = ¢(Q) < Z, contradicting Lemma 10.1(g). Thuse N.
As Cp(R) = ¢ andCg(R) = 9(Q) we haveT : ¢| = |Q : 2(Q)| =
1 mod r. Hencex = 0 mod r.

(b). By 2-transitivity,

|GM|:1—|—‘MD| and |G02M0|:1—|—‘M01D0|.
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The quotientG : M|/|Go : My| is an integer by Lemma 2.3, so dividing
and subtracting yields

My : D M:D
‘ 0 0’ (‘ ’—1>EZ. (*)
1+‘M0:D0| ‘M():DO‘

Now M = MyT,MyNT =&, D = Dy@Q andDy N Q = $(Q) = Q N &.
Thus

o |M : Mo| _ M :D| _ |2 —1
|DIDO‘ |M0!D0| |.Qo|—1
It follows from (%) and(xx) that1+ 3¢ dividesa. Also, 1+ 8q = |Gy : M|
sol + f(q divides|G]|.
Putm = ¢ — 1. By Lemma 10.6D = Oy (D) x O2(D) so two appli-
cations of Theorem 5.1(c) yield

|2| = [{2] = 2 mod m.
This and(xx) imply & = 0 mod m. By Lemma 5.3(b) M is transitive on

3" som divides|G|. Also, 1 + 8¢ = |{2| = 2 mod m so asm is odd,
1+ Bq andm are coprime. This proves (b).

Lemma 10.8.a < ¢® — 1.

Proof. Theorem 5.1(b) implies that all involutions 6f are conjugate into
D@, and hence int@)® by Lemma 10.6. Sincé/ controlsG-fusion in.S
it follows that all involutions inT” are M -conjugate intaQ®.

Suppose thaf) = 1. Then all involutions ofl" are contained i® so
Lemma 2.11 impliesT| < |®|3, whencea < ¢*> — 1. Hence we may
assume tha) # 1.

Let U be a homogeneous component for the actioff” @n V' and set
T, = Cp(U). Lemma 3.2(d) implies thdtf and7; are R-invariant. Using
Lemma 10.6,

— 1. (%)

(QPNT) <P(Q)NTy=ZNTy =1.

because invertsV. ThenQ®NT; is R-invariant and abelian so Lemma 6.2
forcesQ® N1y < Cr(R) = &. Infact,(QP)Y NT; < Pforallg € M
sinceT < M and soUg~! is also a homogeneous component forWe
deduce that all involutions df; are contained i®. Lemma 2.11 implies
ITh| < @

From the previous paragrap@,NTh < enN@ENTy =ZNnTy =1
and R is irreducible on the Frattini quotient &f/7; by Lemma 3.2(d).
ThusT = QT;. Note that|/T;| = |T1| becausd’} N Z = 1 and recall that
D(Q) = Z = Zsy. Then

T 9| |71 | 52
a=—————-1=—==—-1Z|P|" - 1.
Qo@l T =7

The proof is complete.
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Lemmas 10.7 and 10.8 imply
(1+8g)(g—1) <a<q’ —1.

We must have equality, and therdivides|G|. Butr dividesa andG is an
r’-group. This final contradiction completes the proof of Theorem A.
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