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Abstract. We shall extend a fixed point theorem of Shult to arbitrary finite
groups. This will have applications to the study of group automorphisms.

1. Introduction

We shall prove the following:

Theorem A. Suppose that:

– R is a group of prime orderr that acts on ther′-groupG.
– V is a faithful irreducibleRG-module over a field of characteristicp.
– CV (R) = 0.

Then either[G,R] = 1 or r is a Fermat prime and[G,R] is a nonabelian
special2-group.

The configuration described in Theorem A was first considered by Shult.
His [10, Theorem 3.1, p.702] amounts to proving Theorem A whenG has
prime power order. Shult’s work is a nonmodular analogue of the cele-
brated work of Hall and Higman [7]. In the first edition of his bookFinite
Group Theory, Aschbacher extended Shult’s results, essentially proving
Theorem A whenG is soluble [1, (36.4), p.194].

Shult used his result to study automorphisms of soluble finite groups.
In [2] and [3], Theorem A will be applied to study automorphisms of arbi-
trary finite groups. Aschbacher’s motivation was a new proof of the Soluble
Signalizer Functor Theorem. If it is ever possible to prove the General Sig-
nalizer Functor Theorem outside of the inductive framework of the Classi-
fication of Finite Simple Groups, then Theorem A may have a role to play.

A number of further remarks are in order.
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– The exceptional case, when[G,R] 6= 1 does occur.
– The proof of Theorem A presented here does not use the Classification

of Finite Simple Groups. The heaviest tool used is Glauberman’sZ∗-
Theorem, which uses Modular Representation Theory. In a forthcoming
article, we shall examine the exceptional case in greater detail. This will
lead to a more elementary, though longer proof of Theorem A.

– A numerological proof of Theorem A is possible using the Classifica-
tion. In§7 we will outline our argument. This will give insight as to why
Theorem A is true.

– In the case thatr is not a Fermat prime, Theorem A follows easily from
Shult’s result.

Several problems for further study will suggest themselves to anyone
who studies the proof of Theorem A. Indeed, one result of a general na-
ture has already emerged – a criterion for a weakly closed subgroup to be
strongly closed, Theorem 4.1.

2. Preliminaries

Henceforth, group will mean finite group. We recall some elementary facts
about coprime action. If the groupR acts on the groupG andp is a prime
then

IG(R, p) = the set ofR-invariantp-subgroups ofG
I∗G(R, p) = the set of maximal members ofIG(R, p) under inclusion.

We say thatR actscoprimelyon G if R acts as a group of automorphisms
onG; R andG have coprime orders; and at least one ofR or G is soluble.
The following results are well known, see [1] for example.

Theorem 2.1(Coprime Action). Suppose thatR acts coprimely onG and
let p be a prime. Then:

(a) I∗G(R, p) ⊆ Sylp(G), soG possessesR-invariant Sylowp-subgroups.
(b) CG(R) acts transitively by conjugation onI∗G(R, p).
(c) If P ∈ I∗G(R, p) thenCP (R) ∈ Sylp(CG(R)).
(d) G = CG(R)[G,R]. In particular, [G,R] = [G,R,R].
(e) If G is abelian thenG = CG(R)× [G,R].
(f) If K is an R-invariant normal subgroup ofG and G = G/K then

CG(R) = CG(R).
(g) Any two elements ofCG(R) that are conjugate inG are already conju-

gate inCG(R).
(h) If R is elementary abelian then

G = 〈CG(R0) | R0 is a hyperplane ofR 〉.
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Lemma 2.2.Suppose thatR acts coprimely onG and thatH is an R-
invariant subgroup ofG with the property:

wheneverp ∈ π(|G : CG(R)|) there existsP ∈ I∗G(R, p) with
[P, R] ≤ H.

ThenG = CG(R)H.

Proof. It suffices to show that|G : CG(R)|p = |H : CH(R)|p for each
primep. If p ∈ π(|G : CG(R)|) then chooseP ∈ I∗G(R, p) with [P, R] ≤
H. If p 6∈ π(|G : CG(R)|) then chooseP ∈ Sylp(CG(R)), so P ∈
I∗G(R, p) and[P, R] ≤ H in this case also.

By Coprime Action,CP (R) ∈ Sylp(CG(R)) andP = CP (R)[P, R] so
then

|G : CG(R)|p = |P : CP (R)| = |[P, R] : C[P,R](R)|.
ChooseQ with [P, R] ≤ Q ∈ I∗H(R, p). Again,

|H : CH(R)|p = |[Q,R] : C[Q,R](R)|.
By Coprime Action, someCG(R)-conjugate ofQ is contained inP . As
[P, R,R] = [P, R], it follows that[Q,R] = [P,R]. Then|H : CH(R)|p =
|G : CG(R)|p, which completes the proof.

Lemma 2.3.Suppose thatR acts coprimely onG and thatM is an R-
invariant subgroup ofG. Then|CG(R) : CM (R)| divides|G : M |.
Proof. Let p be a prime. By Coprime Action, there exists anR-invariant
Sylow p-subgroupP of G with P ∩M ∈ Sylp(M). By Coprime Action,
CP (R) ∈ Sylp(CG(R)) andCP∩M (R) ∈ Sylp(CM (R)). Then

|CG(R) : CM (R)|p = |CP (R) : CP∩M (R)| = |CP (R)(P ∩M)|/|P ∩M |
is a power ofp bounded by|P : P ∩ M | = |G : M |p and hence divides
|G : M |p. This completes the proof.

Given a chain
V0 E V1 E · · ·E Vn (C)

of subgroups of the groupV and a groupG acting onV thenG stabilizes
(C) if G normalizes eachVi and acts trivially on each quotientVi/Vi−1.

Lemma 2.4.Suppose thatG stabilizes the chain1 E U E V , whereV is a
p-group. ThenG/CG(V ) is an abelianp-group. IfV is elementary abelian
then so isG/CG(V ).

Proof. As [V, G, G] = 1, the Three Subgroups Lemma implies[G,G] cen-
tralizesV . Using the identity[a, bc] = [a, c][a, b]c we have[v, gn] = [v, g]n
for all v ∈ V, g ∈ G andn ∈ N. Thusgq centralizesV , whereq is the
exponent ofV . The result follows.
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Suppose thatG,S andA are groups withA ≤ S ≤ G. If, for all g ∈ G,

Ag ≤ S implies Ag = A

then we sayA is weakly closed inS with respect toG. If, for all g ∈ G,

Ag ∩ S ≤ A

then we sayA is strongly closed inS with respect toG. The following is
well known and has a straightforward proof.

Lemma 2.5.Let G be a group,p a prime,S ∈ Sylp(G) andA ≤ S. Then
the following are equivalent:

(a) A is weakly closed inS with respect toG.
(b) A is weakly closed inNG(A) with respect toG.
(c) WheneverB is a conjugate ofA such thatA and B normalize one

another thenA = B.

Lemma 2.6[1, (31.15), p.159].LetP be ap-subgroup of the soluble group
G. ThenOp′(CG(P )) ≤ Op′(G).

Theorem 2.7.Let p be an odd prime. There exists a mappingK that as-
signs to eachp-groupP 6= 1 a characteristic subgroupK(P ) 6= 1 that has
the following property:

if G is a group with abelian Sylow2-subgroups,CG(Op(G)) ≤
Op(G) andP ∈ Sylp(G) then

K(P ) = K(Op(G)) E G.

Proof. Put K(P ) = K∞(P )K∞(P ) whereK∞ andK∞ are the func-
tors defined by Glauberman [11, p.226]. By [11, (4.12)(3), p.203] and [11,
(5.8)(3), p.237] bothK∞(P ) andK∞(P ) are normal inG. ThenK(P ) ≤
Op(G) and [11, (5.4)(ii), p.228] impliesK(P ) = K(Op(G)).

Theorem 2.8.LetL 6= 1 be a group andX a faithfulGF (2)L-module. Let
T andT ∗ be2-subgroups ofL. Set

Φ = CX(T ), Φ∗ = CX(T ∗),

Γ = {Φl, Φ∗l | l ∈ L } and q = |Φ| > 1.

Suppose that

(a) L = 〈T, T ∗ 〉.
(b) X = Φ⊕ Φ∗.
(c) |Φ∗| = |Φ|.
(d) Distinct members ofΓ have trivial intersection.
(e) T stabilizes0 < Φ < X andT ∗ stabilizes0 < Φ∗ < X.
(f) |T | ≥ q and|T ∗| ≥ q.
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Thenq2 − 1 divides|L|, |T | = q andNL(T ) acts transitively onT#.

Proof. Let M = NL(Φ) and letT1 consist of those elements ofM that
stabilize0 < Φ < X. ThenT ≤ T1 E M . Consider the action ofT1 on
Γ − {Φ }. Using (b),NT1(Φ

∗) = 1 so |Γ − {Φ }| ≥ |T1| ≥ |T | ≥ q. On
the other hand, (b) and (d) imply|Γ | ≤ q +1. We deduce that|T1| = |T | =
q, T E M, |Γ | = q + 1 and thatT is regular onΓ − {Φ }. Similarly,T ∗ is
regular onΓ − {Φ∗ } soL is transitive onΓ and thenq + 1 dividesL.

From the above,M = NL(T ) and for allg ∈ L,

T g ∩M 6= 1 implies g ∈ M.

Lemma 2.4 implies thatT is elementary abelian. A simple argument in-
volving involutions, e.g. Lemma 5.3(b), implies thatM is transitive onT#.
In particular,q − 1 divides|M | and thenq2 − 1 divides|L|.
Remarks. – One can show directly thatL is transitive onX#.
– A theorem of Glauberman [4, Theorem 2, p.5] can be used to show that

L ∼= SL2(q) and thatX is a natural module forL.

The following is a variant of Thompson’sP ×Q-Lemma [1, (24.1), p.112].

Lemma 2.9.Suppose thatR × X × Y acts on the groupT = [T,R],
that R, Y are 2′-groups andX,T are 2-groups. If [Φ(T ), R] = 1 and
[CT (X), R, Y ] = 1 then[T, Y ] = 1.

Proof. SetT = T/Φ(T ). SinceT = [T, R] we haveCT (R) = 1 by Co-
prime Action(e). LetQ = [CT (X), R]. It follows from the Three Sub-
groups Lemma thatQ = CT (X). TheP × Q-Lemma forces[T , Y ] = 1.
Then[T, Y ] = 1 by a well known result of Burnside.

Lemma 2.10.Suppose the groupG acts2-transitively on a setΩ. Let M
be the stabilizer of a point andp a prime. IfM does not contain a Sylow
p-subgroup ofG thenOp(M) ≤ Op(G).
Proof. ChooseP ∈ Sylp(M). Now P 6∈ Sylp(G) so there existsg ∈
NG(P )−M . ThenOp(M) ≤ P = P g ≤ Mg. By 2-transitivity,NG(M) =
M soMg 6= M . Moreover,M acts transitively by conjugation onMG −
{M }. It follows that Op(M) is contained in every conjugate ofM , so
Op(M) ≤ Op(MG) ≤ Op(G).
Lemma 2.11[8, Theorem 5.4, p.277].Suppose thatT is a2-group of class
at most2 and exponent at most4. Suppose that{x ∈ T | x2 = 1 } is a
subgroupN of T . Then|T | ≤ |N |3.

Lemma 2.12.Suppose the groupX acts on the groupY and that the group
XY acts on the setΩ. Suppose thatX or Y is soluble, thatX andY have
coprime orders and thatY is transitive onΩ. ThenX fixes an element of
Ω.

Proof. Set G = XY and chooseα ∈ Ω. ThenG = GαY . Using the
Schur-Zassenhaus Theorem we see thatGα contains a complement toY ,
which is then conjugate toX.
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3. Some special actions

Throughout this section, we assume the following:

Hypothesis 3.1.
– The groupR×A acts on the groupT .
– V is a faithfulRAT -module over an algebraically closed field of char-

acteristicp.
– R has prime orderr.
– T has prime power order and is an{ r, p }′-group.
– T = [T,R] 6= 1.
– A is anr′-group.
– CV (R) = 0.

Note thatr 6= p becauseCV (R) = 0.

Lemma 3.2.(a) r is a Fermat prime, sor = 2n + 1 for somen.
(b) T is a nonabelian special2-group and

T ′ = Z(T ) = Φ(T ) = CT (R).

(c) R centralizes everyR-invariant abelian subgroup ofT .
(d) The homogeneous components forT onV are the same as the homoge-

neous components forΦ(T ) on V . In particular, CV (Φ(T )) = CV (T )
and the homogeneous components are normalized byR.

(e) If T is extraspecial, for instance ifT is homogeneous onV , thenT ∼=
21+2n
− , R is irreducible onT/Φ(T ) and[T, A] = 1.

Proof. (a),(b),(c). By [1, (36.2), p.193]r is a Fermat prime,T is a2-group
andR centralizes everyR-invariant abelian subgroup ofT . ThenT is non-
abelian. By [1, (24.7), p.114],T is special andZ(T ) = CT (R).

(d). SinceΦ(T ) = Z(T ), Schur’s Lemma implies thatΦ(T ) acts ho-
mogeneously on any homogeneous component forT . Hence it suffices to
show that ifU is a homogeneous component forΦ(T ) thenU is contained
in a homogeneous component forT .

Now RT normalizesU because[Φ(T ), RT ] = 1. SetT = T/CT (U).
ThenR acts onT , U is a faithfulRT -module andCU (R) = 0. If T = 1
thenU ≤ CV (T ) soU is contained in a homogeneous component forT .
Suppose thatT 6= 1. Applying (b) toT , U in the role ofT, V it follows
that T is a nonabelian special2-group. NowΦ(T ) = Φ(T ) so Φ(T ) is
abelian and acts homogeneously onU . HenceΦ(T ) is cyclic soT is ex-
traspecial. By [1, (34.9), p.180] an extraspecial2-group has only one faith-
ful irreducible representation over an algebraically closed field. ThusU is
homogeneous as aT -module.

(e). Assume now thatT is extraspecial. [1, (36.1), p.192] implies that
T ∼= 21+2n. LetT = T/Φ(T ) and recall that we may regardT as aGF (2)-
orthogonal space. ThenT has either2n−1(2n − 1) or 2n−1(2n + 1) non-
singular vectors depending on whether the Witt index ofT is n or n − 1
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respectively. NowT = [T , R] andT is abelian, so by Coprime Action(e),
CT (R) = 0. Thus the nonsingular vectors fall into orbits of size2n + 1 un-
der the action ofR. ConsequentlyT has Witt indexn− 1, soT ∼= 21+2n

− .
Every nontrivialR-invariant subspace ofT must contain at least2n + 1

vectors and hence have dimension larger thann. Sincedim(T ) = 2n, it
follows thatR is irreducible onT .

It remains to prove that[T,A] = 1. We may assume thatA is a q-
group for some primeq. We claim thatCT (A) 6= 0. This is clear ifq = 2
becauseT is a2-group, so supposeq 6= 2. NowA permutes the2n−1 orbits
of R on the nonsingular vectors ofT . As q 6= 2 it follows that there is
anA-invariant orbit. Applying Lemma 2.12, withA andR in the roles of
X andY respectively, we obtainCT (A) 6= 0 in this case also. NowR is
irreducible onT and[R, A] = 1 whenceCT (A) = T . Then[T, A] ≤ Φ(T ).
Also [Φ(T ), R] = 1 so it follows from the Three Subgroups Lemma that
[T,A] = 1.

Corollary 3.3. If A acts trivially onΦ(T ) thenA acts trivially onT .

Proof. Now [Φ(T ), RA] = 1 so Lemma 3.2(d) implies thatRA normal-
izes the homogeneous components forT . Hence we may assume thatT is
homogeneous onV . Apply Lemma 3.2(e).

Lemma 3.4.(a) SetT = T/Φ(T ). ThenCT (A) = [CT (A), R].
(b) If A acts trivially onT/Φ(T ) thenA acts trivially onT .

Proof. Let Q be the inverse image ofCT (A) in T . Then [Q,A, R] ≤
[Φ(T ), R] = 1. Also [A,R] = 1 so [A,R,Q] = 1. The Three Subgroups
Lemma forces[R, Q,A] = 1. Thus[Q,R] ≤ CT (A) ≤ Q. Using Coprime
Action(d) we have[Q,R] = [CT (A), R] and alsoQ = CQ(R)[Q,R]. Now
CQ(R) ≤ CT (R) = Φ(T ) whenceQ = [CT (A), R]. This proves (a). Sup-
pose thatA acts trivially onT . ThenT = CT (A) = [CT (A), R], hence
T = Φ(T )CT (A). This impliesT = CT (A), proving (b).

Lemma 3.5.LetZ = [Φ(T ), A] and suppose thatZ invertsV , soZ ∼= Z2.
LetT = T/Φ(T ). Then

1 < [T , A] < T

andR acts irreducibly on both factors of this chain. Moreover,[T , A,A] =
1 and[T ,A] = CT (A).

Proof. Let U be an irreducibleRAT -submodule and letK = CT (U).
Observe that

[Φ(T ) ∩K, A] ≤ Z ∩K = 1.

Now K = CK(R)[K,R]. As CK(R) ≤ CT (R) = Φ(T ) we see that
[CK(R), A] = 1. Also Φ([K, R]) ≤ Φ(T ) so [Φ([K, R]), A] = 1. Thus



8 Paul Flavell

[K, A] = 1 by Corollary 3.3 applied to[K,R] in the role ofT . SinceK E
AT it follows that[K, [T, A]] = 1.

Suppose thatU < V . SetṼ = V/U andT̃ = T/CT (Ṽ ). Now Φ(T̃ ) =
Φ̃(T ) so by induction,C

T̃ /Φ(T̃ )
(A) = [T̃ /Φ(T̃ ), A]. ThusK̃ ≤ [T̃ , A]Φ(T̃ ).

Now [K, [T,A]] = 1 andΦ(T̃ ) = Z(T̃ ) soK̃ ′ = 1. ThenK ′ ≤ CT (Ṽ ) ∩
CT (U) = 1 and Lemma 3.2(c) forcesK ≤ Φ(T ). HenceΦ(T/K) =
Φ(T )/K so T/Φ(T ) ∼= (T/K)/Φ(T/K) and the conclusion follows by
induction. Hence we may assume thatRAT is irreducible onV .

NowA stabilizes the chain1 ≤ Z ≤ Φ(T ) so Lemma 2.4 implies thatA
induces an elementary abelian2-group onΦ(T ). Corollary 3.3 implies that
A induces an elementary abelian2-group onT . Then[T ,A] < T . Also,
[Φ(T ), A] = Z 6= 1 so by Lemma 3.4(b) we have

1 < [T ,A] < T. (∗)

The conclusions[T , A,A] = 1 and [T , A] = CT (A) follow once we
establish thatR is irreducible on each factor of(∗). To do this, choose
a ∈ A with a nontrivial onΦ(T ) and setA0 = 〈 a 〉. NowZ = [Φ(T ), A] =
[Φ(T ), A0] and[T , A0] ≤ [T ,A]. Hence we may assume thatA = A0, so
thatA = 〈 a 〉.

Let W be a homogeneous component forRT onV . SinceA induces an
elementary abelian2-group onT we have[T, a2] = 1 soWa2 = W . The
irreducibility of RAT onV forcesV = W + Wa. Lemma 3.2(e), applied
to the action ofRT onW , implies thatR has exactly one noncentral chief
factor onT/CT (W ). It follows that R has at most two noncentral chief
factors onT . Now CT (R) = Φ(T ) soCT (R) = 1. We deduce thatR is
irreducible on each factor of(∗). The proof is complete.

Lemma 3.6.LetZ2
∼= Z ≤ Φ(T ) and suppose thatZ invertsV . SetT =

T/Z. Then either

(a) T is extraspecial andZ = Φ(T ), or
(b) CT (R) = Φ(T ) = Φ(T ) = T

′ = Z(T ), soT is a nonabelian special
2-group.

Proof. By Coprime Action(f) and Lemma 3.2

CT (R) = CT (R) = Φ(T ) = Φ(T ) = T
′ ≤ Z(T ).

Let Q be the inverse image ofZ(T ) in T and letV1, . . . , Vm be the ho-
mogeneous components forT on V . Note thatZ ∩ CT (Vi) = 1 because
Z invertsV . Suppose thatQ ≤ CT (Vi)Φ(T ) for somei. Then[Q,T ] ≤
Z ∩ CT (Vi) = 1 so Q ≤ Z(T ) = Φ(T ) and (b) holds. Hence we may
suppose thatQ 6≤ CT (Vi)Φ(T ) for all i.
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By Lemma 3.2(e),R is irreducible on the Frattini quotient ofT/CT (Vi)
whenceT = QCT (Vi). Also [Q,CT (Vi)] ≤ Z ∩ CT (Vi) = 1. ThusT =
Q ∗ CT (Vi). Then for anyi, j we have

[CT (Vi), T ] = [CT (Vi), Q ∗ CT (Vj)] ≤ CT (Vj).

Fixing i and lettingj vary we obtain[CT (Vi), T ] = 1. ThenCT (Vi) ≤
Z(T ) = Φ(T ) so asT = Q ∗CT (Vi) we haveT = Q. Now [Q,T ] ≤ Z so
(a) holds.

4. TI-subgroups

The material in this section is heavily influenced by the work of Timmesfeld
[12]. We shall comment on this point in more detail later. Recall that a
subgroupΦ of a groupG is aTI-subgroupif, for all g ∈ G,

Φ ∩ Φg 6= 1 implies Φ = Φg.

Our goal is to prove the following:

Theorem 4.1.LetG be a group withO2(G) = 1 and supposeΦ,M, S and
U are subgroups satisfying:

– Φ 6= 1 is an elementary abelian2-group.
– M = NG(Φ) andS ∈ Syl2(M).
– U ≤ NM (S) andΦ ≤ Z(U).

Suppose also that:

– Φ is weakly closed inM with respect toG.
– Φ is aTI-subgroup.
– M is the unique maximal2-local subgroup ofG that containsU .

ThenΦ is strongly closed inM with respect toG, so that for allg ∈ G,

Φg ∩M 6= 1 implies g ∈ M.

In particular, S ∈ Syl2(G) andM controlsG-fusion inS.

Theorem 4.1 may be viewed as apushing uptheorem. The uniqueness and
weak closure hypotheses are statements about certain2-local subgroups.
The conclusion thatM controlsG-fusion inS is a statement about all2-
local subgroups.

We consider the following:

Hypothesis 4.2.
– Φ is an elementary abelian2-subgroup of the groupG.
– Φ is aTI-subgroup ofG.
– Φ∗ ∈ ΦG − {Φ } satisfiesNΦ∗(Φ) 6= 1.

We adopt the notation

Φ∗0 = NΦ∗(Φ) and Φ0 = NΦ(Φ∗).
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Theorem 4.1 is a straightforward consequence of the following, which is a
slight extension of a result of Timmesfeld [12, (3.8), p.252].

Theorem 4.3.Assume Hypothesis 4.2 and thatΦ is weakly closed inNG(Φ)
with respect toG. Let U be a subgroup ofNG(Φ0) such that〈Φ∗U0 〉 is a
2-group. Then〈Φ∗U0 〉 is abelian.

Timmesfeld invokes a deep result of Aschbacher to determine the possibil-
ities for the group〈Φ,Φ∗ 〉. He then reaches the conclusion of Theorem 4.3
with a case by case analysis. By contrast, the proof of Theorem 4.3 pre-
sented here is elementary and avoids the use of deep classification theo-
rems. The reader will however notice numerous similarities in the argu-
ments we employ and those developed by Timmesfeld [12].

Lemma 4.4.Assume Hypothesis 4.2. Then:

(a) |Φ0| = |Φ∗0| and we have symmetry betweenΦ andΦ∗. In particular, if
Φ∗ ≤ NG(Φ) then[Φ∗, Φ] = 1.

(b) Φ∗0 stabilizes1 ≤ Φ0 ≤ Φ andΦ0 stabilizes1 ≤ Φ∗0 ≤ Φ∗.
(c) 〈Φ0, Φ

∗
0 〉 = Φ0×Φ∗0E〈Φ,Φ∗ 〉. In particular,Φ0×Φ∗0 may be regarded

as a module for〈Φ,Φ∗ 〉.
(d) Φ stabilizes1 < Φ0 < Φ0 × Φ∗0 andΦ∗ stabilizes1 < Φ∗0 < Φ0 × Φ∗0.

Proof. We have[Φ0, Φ
∗
0] ≤ Φ ∩ Φ∗ = 1 so

〈Φ0, Φ
∗
0 〉 = Φ0 × Φ∗0.

Let 1 6= a ∈ Φ∗0. Now a is an involution that acts on the elementary abelian
2-groupΦ soCΦ(a) 6= 1 and[Φ, a, a] = 1. SinceΦ∗ is TI we obtain

[Φ, a] ≤ CΦ(a) ≤ Φ ∩NG(Φ∗) = Φ0.

ThenΦ0 6= 1 and there is symmetry betweenΦ andΦ∗. Nowa was arbitrary
so[Φ,Φ∗0] ≤ Φ0. Then (b), (c) and (d) follow.

Suppose that|Φ0| < |Φ∗0|. Consider the action ofΦ on Φ0 × Φ∗0. Then
for eachx ∈ Φ, Φ∗0 ∩ Φ∗x0 6= 1, soΦ ≤ NG(Φ∗0) becauseΦ∗ is TI. Hence
Φ = Φ0 so |Φ| < |Φ∗0| ≤ |Φ∗|, a contradiction. Thus|Φ0| ≥ |Φ∗0| and (a)
follows by symmetry.

Proof of Theorem 4.3.Assume false. We may suppose thatΦ∗0 ≤ U . Choose
u ∈ U with |〈Φ∗0, Φ∗u0 〉| minimal subject to the condition

[Φ∗0, Φ
∗u
0 ] 6= 1.

Claim 1. If Φ1 andΦ2 are distinct conjugates ofΦ then

Φ1 ∩ CG(Φ2) = 1.

Proof. Suppose there exists1 6= g ∈ Φ1 ∩ CG(Φ2). Then sinceΦ1 is TI
we haveΦ2 ≤ CG(g) ≤ NG(Φ1), contrary to the weak closure ofΦ1.
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Claim 2. (a) 〈Φ∗h0 | h ∈ Φ∗u0 〉 is elementary abelian.
(b) 1 6= [Φ∗0, Φ

∗u
0 ] ≤ CG(Φ).

(c) NΦ∗u
0

(Φ∗) = 1.

Proof. Set S = 〈Φ∗0, Φ∗u0 〉. SinceS is a nonabelian2-group we have
〈Φ∗S0 〉 < S. The choice ofu implies〈Φ∗S0 〉 is abelian. This proves (a).

SinceΦ∗0 stabilizes the chain1 ≤ Φ0 ≤ Φ and sinceu ∈ NG(Φ0) ≤
NG(Φ) it follows that Φ∗u0 also stabilizes this chain. Thus[Φ∗0, Φ

∗u
0 ] ≤

CG(Φ) by Lemma 2.4, proving (b).
Suppose there exists1 6= a ∈ NΦ∗u

0
(Φ∗). Using (b) and Claim 1 we

have[Φ∗0, a] ≤ CΦ∗(Φ) = 1. ThenΦ∗0 ≤ CG(a) ≤ NG(Φ∗u). Note that
Φ∗u 6= Φ becauseu ∈ NG(Φ0) ≤ NG(Φ). Using (b) and Claim 1 we
have1 6= [Φ∗0, Φ

∗u
0 ] ≤ CΦ∗u(Φ) = 1. This contradiction proves (c) and

completes the proof of Claim 2.

Consider the chain
1 < Φ0 < Φ0 × Φ∗0. (C)

Claim 3. Φ∗u0 stabilizes(C).
Proof. Choose1 6= a ∈ Φ∗u0 and setK = 〈Φ∗0, Φ∗a0 〉. Claim 2(a) and (c)
imply that

K = Φ∗0 × Φ∗a0 .

We will show that 〈Φ∗, Φ∗a 〉 normalizes K. Using Lemma 4.4(b),
[Φ0, Φ

∗, Φ∗a0 ] ≤ [Φ∗0, Φ
∗a
0 ] = 1. Also [Φ∗a0 , Φ0, Φ

∗] = [[Φ∗0, Φ0]a, Φ∗] =
[1, Φ∗] = 1 becausea ∈ U ≤ NG(Φ0). The Three Subgroups Lemma
forces[Φ∗, Φ∗a0 , Φ0] = 1. Now Φ∗a0 ≤ CG(Φ∗0) ≤ NG(Φ∗) whence

[Φ∗, Φ∗a0 ] ≤ Φ∗ ∩ CG(Φ0) ≤ NΦ∗(Φ) = Φ∗0.

ThusΦ∗ ≤ NG(K). Now a is an involution soK is a-invariant and then
〈Φ∗, Φ∗a 〉 ≤ NG(K).

Note that〈Φ∗, Φ∗a 〉 is a-invariant. By considering ana-invariant Sylow
2-subgroup of〈Φ∗, Φ∗a 〉 and by using the weak closure ofΦ∗, we may
chooseg ∈ 〈Φ∗, Φ∗a 〉 such thata normalizesΦ∗g. Claim 2(c) implies that
a does not normalizeΦ∗0 soΦ∗0 ∩Φ∗g0 = 1. Then as|Φ∗a0 | = |Φ∗g0 | we obtain

K = Φ∗0 × Φ∗g0 . (1)

Also, since the involutiona acts on the2-groupΦ∗g0 we have

CΦ∗g
0

(a) 6= 1.

Recall thatK = Φ∗0 × Φ∗a0 . Then visibly

CK(a) = [K, a] = [Φ∗0, a] ≤ CK(Φ),

the inclusion following from Claim 2(b). Thus

1 6= CΦ∗g
0

(a) ≤ Φ∗g ∩ CG(Φ).
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Claim 1 forcesΦ∗g = Φ. ThenΦ∗g0 ≤ CΦ(Φ∗0) ≤ NΦ(Φ∗) = Φ0 so as
|Φ∗0| = |Φ0| we haveΦ∗g0 = Φ0. From (1) we obtainK = Φ0 × Φ∗0. In
particular,Φ0 × Φ∗0 is a-invariant. Moreover

[K, a] ≤ CK(Φ) = Φ0 × CΦ∗0(Φ).

By Claim 1,CΦ∗0(Φ) = 1 so[K, a] ≤ Φ0. Also [Φ0, a] = 1 since[Φ0, Φ
∗
0] =

1, u ∈ NG(Φ0) anda ∈ Φ∗u0 . This completes the proof of Claim 3.

We are now in a position to derive a contradiction. Lemma 4.4 and
Claim 3 imply thatΦ andΦ∗u0 stabilize(C). Since|Φ0| = |Φ∗0| = |Φ∗u0 |
and sinceΦ∗ is TI, it follows from Claim 2(c) that

Φ0 × Φ∗0 = Φ0 ∪
⋃

t∈Φ∗u
0

Φ∗t0 .

Choosex ∈ Φ − Φ0. Such a choice is possible by the weak closure ofΦ.
ThenΦ∗x0 6= Φ∗0. By the above,Φ∗xy

0 = Φ∗0 for somey ∈ Φ∗u0 . Thenxy ∈
NG(Φ∗0) ≤ NG(Φ∗). Also, asx andy stabilize(C) we have[Φ∗0, xy] ≤
Φ∗0 ∩ Φ0 = 1 and[Φ0, xy] = 1. Thusxy ∈ CG(Φ0 × Φ∗0).

Now Φ∗ acts onΦ0 × Φ∗0 so[Φ∗, xy] ≤ CG(Φ0 × Φ∗0). Thus

[Φ∗, xy] ≤ Φ∗ ∩ CG(Φ0) ≤ NΦ∗(Φ) = Φ∗0,

whencexy stabilizes the chain1 ≤ Φ∗0 ≤ Φ∗. Lemma 2.4 yields

(xy)2 ∈ CG(Φ∗).

Sincex andy are involutions,(xy)2 = [x, y]. Note thaty ∈ Φ∗u0 ≤ U ≤
NG(Φ). As x ∈ Φ we obtain

[x, y] ∈ Φ ∩ CG(Φ∗).

Claim 1 forces[x, y] = 1. Then

x ∈ NΦ(Φ∗u) = (NΦ(Φ∗))u = Φu
0 = Φ0,

contrary to the choice ofx. The proof is complete.

Proof of Theorem 4.1.Suppose thatg ∈ G − M and thatΦg ∩ M 6= 1.
SetΦ∗ = Φg. Hypothesis 4.2 is satisfied and we adopt the notation defined
there. Without loss of generality,Φ∗0 ≤ S. Let M∗ = Mg. Set

W = 〈Φ∗U0 〉 ≤ M.

Now W is a2-group becauseU ≤ NM (S). Theorem 4.3 implies thatW
is abelian. AsΦ∗ is a TI-subgroup we haveW ≤ CG(Φ∗0) ≤ M∗ and so
Φ∗W is a2-group.

SinceU ≤ NG(W ) the uniqueness hypothesis impliesNG(W ) ≤ M .
In particular,

NΦ∗(W ) ≤ Φ∗ ∩M = Φ∗0 ≤ W.
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But Φ∗W is a 2-group so this forcesΦ∗ ≤ W ≤ M , contradicting the
weak closure ofΦ. Thus no suchg exists and the strong closure ofΦ is
established.

By the weak closure ofΦ, NG(S) ≤ M , soS ∈ Syl2(G). Also Φ E S
so Φ ∩ Z(S) 6= 1. SupposeA is any subgroup withZ(S) ≤ A ≤ S. If
g ∈ NG(A) then1 6= (Φ ∩ Z(S))g ≤ Φg ∩ A ≤ Φg ∩M so the previous
paragraph forcesg ∈ M . ThusNG(A) ≤ M . Alperin’s Fusion Theorem
implies thatM controlsG-fusion inS.

5. Strong embedding

Recall that a proper subgroupM of a groupG is strongly embeddedin G if
M has even order andM ∩Mg has even order impliesg ∈ M . The theory
of strong embedding and related ideas is developed fully in [6]. We require
only a special case, consequently much shorter proofs are possible. It is
emphasized that a large portion of this section is a presentation of material
from [6].

Theorem 5.1.LetG be a group,Φ an elementary abelian2-subgroup ofG,
setM = NG(Φ) andΩ = ΦG. Consider the conjugation action ofG on
Ω.

Suppose thatΦ is not normal inG, thatΦ is noncyclic and that for all
g ∈ G,

Φg ∩M 6= 1 implies g ∈ M.

Letg ∈ G−M , setD = M ∩Mg andm = |Φ| − 1. Then:

(a) G is 2-transitive onΩ.
(b) Every involution ofG is conjugate to an element ofDΦ.
(c) Suppose thatD = O2′(D)×O2(D). Then|Ω| ≡ 2 mod m.

Remarks.
– (a) is a special case of a result of Aschbacher and Bender. We follow

closely the proof given in [6]. Our more restrictive hypothesis allows us
to truncate the argument at an early stage.

– Suppose thatG is simple. A result of Aschbacher implies thatM is
strongly embedded inG and then a result of Bender implies thatD is
a Frobenius complement inM . This implies thatD is semiregular on
Ω−{Φ, Φg } and regular, by conjugation, onΦ#. Then (c) follows. For
our purposes, it is precisely the congruence (c) that we need. A short
proof is possible, re-using arguments from the proof of (a).

Recall that ift is an involution in a groupX thent is isolatedin X if t is
the onlyX-conjugate oft that commutes witht.

Suppose that the involutiont acts on the groupD and thatt is isolated
in D〈 t 〉, for example ifD has odd order. Set

ID(t) = { d ∈ D | d has odd order anddt = d−1 }.
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As t is isolated, any two conjugates oft generate a dihedral group of twice
odd order. Hence the mapsCD(t)x 7→ [x, t] andu 7→ CD(t)u are injections
from D/CD(t) into ID(t) andID(t) into D/CD(t), respectively, so

ID(t) is a transversal toCD(t) in D.

Hypothesis 5.2.
– G is a group with subgroupsΦ andM .
– Φ E M < G.
– Φ has even order.
– For all g ∈ G, Φg ∩M has even order impliesg ∈ M .

We adopt the notation:

– Z = { z ∈ G | z is an involution that is conjugate to an element ofΦ }.
– For eachX ⊆ G setZX = Z ∩X.
– Ω = ΦG, the set of conjugates ofΦ. We regardG as a permutation

group, acting onΩ by conjugation.
– For eachX ⊆ G, setΩX = FixΩ(X).
– Letm = |ZM |.
– For each primep, mp is the largest power ofp that dividesm.

Trivially we have:

– Each element ofZ fixes a unique element ofΩ.
– ZM = ZΦ.
– CG(z) ≤ M for all z ∈ ZM .

Lemma 5.3.Assume Hypothesis 5.2.

(a) Any pair of distinct elements ofΩ is interchanged by an element ofZ.
(b)Z is a single conjugacy class of2-central involutions andZM is a single

M -conjugacy class.
(c) Let t ∈ ZG−M andz ∈ ZM . SetD = M ∩M t. ThenD is t-invariant

andt is isolated inD〈 t 〉. Moreover,ID(t) is a transversal toCM (z) in
M and

m = |ZM | = |ID(t)| = |D : CD(z)| = |D : CD(t)|.
In particular, D acts transitively onZM .

Proof. We claim:

Let a, b ∈ Z, supposeab has even order and that the
involution in〈 ab 〉 is contained inM . Then〈 a, b 〉 ≤ M . (∗)

Indeed, consider the dihedral groupF = 〈 a, b 〉 and letu be the involution
in 〈 ab 〉. Thenu ∈ Z(F ) andau is F -conjugate toa or b. Henceau ∈ Φx

for somex ∈ G and thena ∈ Z ∩CG(au) ⊆ Z ∩Mx ⊆ Φx. Thenu ∈ Φx

sou ∈ Z. As u ∈ M we obtain〈 a, b 〉 ≤ CG(u) ≤ M .

Leta ∈ ZM andb ∈ ZG−M . Thenab has odd order and
b = ac for somec ∈ Z〈 a,b 〉.

(∗∗)
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Indeed, ifab has even order then the involution in〈 ab 〉 centralizesa and so
is contained inM . But then(∗) contradictsb 6∈ M . To prove the remaining
assertion in(∗∗), chooseg ∈ 〈 ab 〉 with b = ag and putc = ag.

Observe that (a) follows from(∗∗). We prove (c). Sincet2 = 1, D is
t-invariant. Letd ∈ D. Now ttd ∈ D ≤ M andt 6∈ M so(∗) implies ttd

has odd order. Hencet is isolated inD〈 t 〉.
Let w ∈ ZM . By (∗∗), ws = zt for somes ∈ Z. Thenw = zts ∈

Φts ∩M so ts ∈ M . By (∗), ts has odd order. Sincet invertsts, we have
ts ∈ ID(t). In particular,D is transitive onZM andM = CM (z)ID(t).

Let d, e ∈ ID(t) and supposezd = ze. Now dt, et ∈ Z and

(dt)(et) = (dt)(et)−1 = de−1 ∈ CG(z) ≤ M.

Now dt 6∈ M so(∗) impliesde−1 has odd order and is inverted bydt. We
have〈 dt, z 〉 ≤ NG(〈 de−1 〉). By (∗∗), dt andz are conjugate in〈 dt, z 〉.
Thus z invertsde−1 also. Asz centralizesde−1 we deduce thatd = e.
Thusu 7→ CM (z)u is an injection fromID(t) into M/CM (z), so asM =
CM (z)ID(t), ID(t) is a transversal toCM (z) in M and toCD(z) in D.
Sincet is isolated inD〈 t 〉, ID(t) is a transversal toCD(t) in D. This
proves (c).

By (c), ZM is a singleM -conjugacy class. Then by definition,Z is a
singleG-conjugacy class. Asz fixes a unique point ofΩ, M contains a
Sylow 2-subgroup ofG. Sincet is isolated inD〈 t 〉 it follows that t cen-
tralizes a Sylow2-subgroup ofD. Then|D : CD(t)| is odd so (c) implies
m is odd. Nowm = |M : CM (z)| soz is 2-central. This proves (b).

In order to proceed further, we must use Glauberman’sZ∗-Theorem [9,
Theorem 7.1, p.131]. Namely, ift is an isolated involution in the groupX
thent ∈ Z∗(X), the inverse image ofZ(X/O2′(X)) in X.

Lemma 5.4.Supposet is an isolated involution in the groupX. Let p be
an odd prime. Then:

(a) I∗X(t, p) ⊆ Sylp(X), soX possesses at-invariant Sylowp-subgroup.
(b) If P ∈ I∗X(t, p) thenCP (t) ∈ Sylp(CX(t)).

Proof. By theZ∗-Theorem,t ∈ Z∗(X) soX = CX(t)O2′(X). Let P ∈
I∗X(t, p), chooseP0 with CP (t) ≤ P0 ∈ Sylp(CX(t)) and setY =
P0O2′(X) ≤ X. By Coprime Action,P = CP (t)[P, t], so as[P, t] ≤
O2′(X) we haveP ≤ Y . Also |Y |p = |X|p so Sylp(Y ) ⊆ Sylp(X). Apply
Coprime Action to the action oft on the2′-groupY .

Lemma 5.5.Assume Hypothesis 5.2. Let(β, γ) be a pair of distinct ele-
ments ofΩ that is interchanged byt ∈ Z. Let p be an odd prime and set
D = Gβγ . Then:

(a) D possesses at-invariant Sylowp-subgroup.
(b) If P is a t-invariant p-subgroup ofD then|IP (t)| ≤ mp, with equality

if P ∈ Sylp(D).
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Proof. Lemma 5.3(c) and theZ∗-Theorem implyt ∈ Z∗(D〈 t 〉), so (a) fol-
lows from Lemma 5.4. To prove (b), chooseP ∗ with P ≤ P ∗ ∈ I∗X(t, p).
By Lemma 5.4 we haveP ∗ ∈ Sylp(D) andCP ∗(t) ∈ Sylp(CD(t)). Using
Lemma 5.3(c),mp = |D : CD(t)|p = |P ∗ : CP ∗(t)| = |IP ∗(t)|. Since
IP (t) ⊆ IP ∗(t), (b) follows.

Hypothesis 5.6.
– Hypothesis 5.2.
– Φ is a noncyclic elementary abelian2-group.

Lemma 5.7.Assume Hypothesis 5.6. Letp be an odd prime,P ap-subgroup
of G and setN = NG(P ). Suppose that every pair of distinct elements of
ΩP is interchanged by an element ofZN . Then:

|ΩP | ≤ 2 or [P,ZN ] = 1.

Proof. Supposes ∈ ZN and[P, s] 6= 1. Without loss,s ∈ Φ. If Φ ∈ ΩP

thenP ≤ NG(Φ) = M so [P, s] ≤ P ∩ Φ = 1 becauseΦ is a2-group.
ThusΦ 6∈ ΩP . Recall thats has a unique fixed point onΩ, namelyΦ. Then
s is fixed point free onΩP .

Suppose thatZ ∩ CN (s) 6= { s }. Then there existsA ∼= Z2 × Z2 with
s ∈ A ≤ N andA# ⊆ Z. HenceA ≤ CG(s) ≤ M and by Coprime
Action(h),

P = 〈CP (a) | a ∈ A# 〉 ≤ M,

contradictingΦ 6∈ ΩP . We deduce that

Z ∩ CN (s) = { s }.
It follows that s is isolated inN and thatZN = sN . Glauberman’sZ∗-
Theorem implies thats ∈ Z∗(N). Let L = 〈 s 〉O2′(N). ThenZN ⊆
L whenceL is transitive onΩP . Chooseα ∈ ΩP . Now Lα ≤ O2′(N)
becauses is fixed point free onΩP . By hypothesis, each coset ofLα that
is not equal toLα contains an element ofZN . This forcesLα = O2′(N).
Hence|ΩP | = |L : Lα| = 2.

Lemma 5.8.Assume Hypothesis 5.6. Letp be an odd prime,P ap-subgroup
of G and suppose

|IP (u)| = mp 6= 1

for someu ∈ Z ∩NG(P ). Then|ΩP | ≤ 2.

Proof. Assume false and letP be a maximal counterexample. SetN =
NG(P ). If u is not isolated inN then the same argument as in the proof
of Lemma 5.7 proves that[P, u] = 1, contrary to|IP (u)| 6= 1. Henceu is
isolated inN .

We claim that any pair(β, γ) of distinct elements ofΩP is interchanged
by an element ofZN . By Lemma 5.3(a) there existst ∈ Z that interchanges
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(β, γ). Using Lemma 5.5(a) and conjugatingt by a suitable element ofGβγ ,
there existsQ with

P ≤ Q = Qt ∈ Sylp(Gβγ).

If P = Q thent ∈ N . Hence we may assume thatP < Q. Lemma 5.5(b)
implies |IQ(t)| = mp so the maximal choice ofP impliesΩQ = {β, γ }.
Now |Ω| ≡ |ΩQ| ≡ 2 mod p and p is odd so it follows that everyp-
subgroup ofG has at least two fixed points.

Let A = NQ(P ) > P and chooseB with A ≤ B ∈ Sylp(N). Now u
is isolated inN sou normalizes a Sylowp-subgroup ofN by Lemma 5.4.
Conjugatingu by a suitable element ofN we may assumeu ∈ NG(B).
Recall thatu has a unique fixed point onΩ and that|ΩB| ≥ 2. Hence there
existsδ ∈ ΩB with δ 6= δu. ThenB is a u-invariant subgroup ofGδδu .
Lemma 5.5(b) implies|IB(u)| ≤ mp. Now P ≤ B and|IP (u)| = mp so
IB(u) = IP (u). Also B = CB(u)IB(u) so[B, u] ≤ 〈 IB(u) 〉 ≤ P .

Now P ≤ A ≤ B so A is u-invariant andIA(u) = IP (u). Thus
|IA(u)| = mp. Recall thatA = NQ(P ) > P . The maximal choice ofP
forcesΩA = {β, γ }. Sinceu normalizesA and has a unique fixed point,
it follows thatu interchanges(β, γ). This completes the proof of the claim.
Now apply Lemma 5.7.

Lemma 5.9.Assume Hypothesis 5.6. Letp be a prime such thatmp 6= 1,
let (α, β) be a pair of distinct elements ofΩ that is interchanged byt ∈ Z
and letP be at-invariant Sylowp-subgroup ofGαβ. Then:

(a) ΩP = {α, β } andP ∈ Sylp(G).
(b) NG(Gαβ) = Gαβ〈 t 〉.
Proof. Lemmas 5.5(b) and 5.8 implyΩP = {α, β }. Sincep is odd, a
Sylow p-subgroup ofNG(P ) must fix α and β, so P ∈ Sylp(NG(P ))
and thenP ∈ Sylp(G). This proves (a) and (b) follows from a Frattini
Argument.

The following is elementary.

Lemma 5.10(Bender’s Criterion). Suppose the groupX acts on the set
∆, with |∆| > 2. Let p be an odd prime. Suppose that∆P = {α, β }
wheneverα andβ are distinct members of∆ andP ∈ Sylp(Xαβ). ThenX
is 2-transitive on∆.

Proof of Theorem 5.1(a).Hypothesis 5.6 is satisfied. Note thatZM = Φ#

som = |Φ| − 1. SinceΦ is noncyclic there exists a primep with mp 6= 1.
Apply Lemma 5.9 and Bender’s Criterion.

Proof of Theorem 5.1(b).It suffices to take an involutions ∈ G −M and
show thats is conjugate intoDΦ. SetE = M ∩ M s. By Lemma 5.3(a),
M s = M t for somet ∈ Z. Using Lemma 5.9(b) we haves ∈ NG(E) =
E〈 t 〉. Now t is isolated inE〈 t 〉 so it is2-central inE〈 t 〉. Conjugatings
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by a suitable element ofE we may suppose that[s, t] = 1. ChooseΦ∗ ∈ Ω
with t ∈ Φ∗ and setM∗ = NG(Φ∗). Thens ∈ CG(t)∩Et ⊆ M∗∩MΦ∗ =
(M∗ ∩M)Φ∗. Apply 2-transitivity.

Lemma 5.11.Assume Hypothesis 5.6, letD be a2-point stabilizer and sup-
pose thatD = O2′(D)×O2(D). Letp be a prime withmp 6= 1 and letP
be ap-subgroup ofG with |ΩP | ≥ 3. Then

mp divides |D|p/|P |.
Proof. We may suppose thatP is maximal subject to|ΩP | ≥ 3. SetN =
NG(P ) and∆ = ΩP . Let α, β be distinct members of∆. Lemma 5.9(a)
impliesP 6∈ Sylp(Gαβ). ThusP 6∈ Sylp(Nαβ) and ifQ ∈ Sylp(Nαβ) then
∆Q = {α, β } by the maximality ofP . Bender’s Criterion implies thatN
is 2-transitive on∆.

Let n andz interchange(α, β) with n ∈ N a 2-element andz ∈ Z.
Then

z ∈ Gαβn = (O2′(Gαβ)×O2(Gαβ))n.

Conjugatingz by a suitable element ofGαβ , we may suppose thatz ∈
O2(Gαβ)n. Now P ≤ O2′(Gαβ) whencez ∈ N . Sinceα and β were
arbitrary, Lemma 5.7 implies[P,ZN ] = 1. In particular,[P, z] = 1.

By 2-transitivity we may suppose thatD = Gαβ . Now z interchanges
(α, β) so Lemma 5.3(c), withz, Gα andGβ in the roles oft, M andM t

respectively, implies thatm = |D : CD(z)|. As P ≤ CD(z), the result
follows.

Proof of Theorem 5.1(c).Let p be a prime withmp 6= 1 and let∆ be
an orbit for the action ofD on Ω − {Φ,Φg }. Chooseγ ∈ ∆, so |∆| =
|D : Dγ |. Let P ∈ Sylp(Dγ). Then|ΩP | ≥ 3 so Lemma 5.11 impliesmp

divides|D|p/|P | = |∆|p. We deduce thatm divides|∆| and then thatm
divides|Ω − {Φ,Φg }|. The proof is complete.

6. The minimal counterexample

For the remainder of this paper we assume Theorem A to be false and let
G be a minimal counterexample. Henceforth we adopt the notation defined
in the statement of Theorem A. We may suppose that the field of definition
for V is algebraically closed. This section establishes basic properties ofG.

Lemma 6.1.(a) p andr are distinct odd primes.
(b) r is a Fermat prime, sor = 2n + 1 for somen.
(c) π(|G : CG(R)|) = { 2, p }.
Proof. SinceR is anr-group andCV (R) = 0 it follows thatp 6= r. Let
σ = π(|G : CG(R)|). Applying Lemma 3.2(a,b) toR-invariant Sylow
subgroups ofG we see thatσ ⊆ { 2, p } and thatσ ⊆ { p } if r is not a
Fermat prime.
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If σ = ∅ then[G,R] = 1, contrary to the fact thatG is a counterexample
to Theorem A. Suppose thatσ = { q } for someq. ChooseQ ∈ I∗G(R, q).
ThenG = CG(R)Q and then[G,R] = [Q,R] 6= 1. Recall that[G, R] E
G. Now Op(G) = 1 by the irreducibility ofRG, so q = 2 andp 6= 2.
Lemma 3.2(b) implies that[G,R] is a nonabelian special2-group, again
contrary to the fact thatG is a counterexample. We deduce thatσ = { 2, p },
thatp 6= 2 and thatr is a Fermat prime.

Lemma 6.2.Let Q be an R-invariant abelian 2-subgroup ofG. Then
[Q,R] = 1.

Proof. By Coprime Action(d) we may assumeQ = [Q,R]. Apply
Lemma 3.2(c).

Lemma 6.3.Suppose thatH is a properR-invariant subgroup ofG. Set
K = [H,R] E H. LetQ ∈ I∗K(R, 2). Then:

(a) K = QOp(K), in particular,K is a{ 2, p }-subgroup.
(b) Q = [Q,R]. If Q 6= 1 thenQ is a nonabelian special2-group and

Q′ = Z(Q) = Φ(Q) = CQ(R).

(c) H = NH(Q)Op(H) = (CH(R) ∩NH(Q))QOp(H).
(d) If P ∈ I∗H(R, p) then

P = NP (Q)Op(H) = (CP (R) ∩NP (Q))Op(H)

andPQ is a subgroup.

Proof. The minimality of G implies thatK induces a2-group on each
RK-composition factor ofV . Now Op(RK) is the largest subgroup of
RK that acts trivially on everyRK-composition factor ofV , so (a) fol-
lows. SinceK = [K,R] we haveQ = [Q,R]. Now p 6= 2 so (b) follows
from Lemma 3.2(b). AlsoOp(K) ≤ Op(H) soQOp(H) E H. A Frattini
argument and Coprime Action(d) prove (c) and the first part of (d). Now
Op(K) ≤ P soPQ = PK, which is a subgroup. The proof is complete.

Lemma 6.4.(a) G = [G,R] = O2(G).
(b) F (G) = Z(G), [Z(G), R] = 1 andZ(G) is a cyclicp′-group that acts

semiregularly onV #.
(c) If P ∈ I∗G(R, p) andS ∈ I∗G(R, 2) thenG = 〈 [P, R], [S,R] 〉.
Proof. The irreducibility of RG on V implies thatOp(G) = 1. Then
Op([G,R]) = 1. SupposeG 6= [G,R]. Then [G,R] is proper so apply-
ing Lemma 6.3 to[G,R] in the role ofH, and recalling[G,R] = [G,R, R]
by Coprime Action(d), we conclude from Lemma 6.3(a) that[G,R] is a2-
group. But now Lemmas 6.1(b) and 6.3(a,b) contradict the choice ofG as
a counterexample. ThusG = [G,R]. Lemma 3.2(c) yields[Z(G), R] = 1
and so the irreducibility ofRG implies thatZ(G) is a cyclicp′-group that
acts semiregularly onV #.
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Suppose, for a contradiction, that[F (G), R] 6= 1. Now Op(G) = 1 so
Lemma 6.1(c) implies[O2(G), R] 6= 1. ThenO2(G) 6≤ Z(G). Let H =
CG(O2(G)) < G andK = [H,R] E EG. ThenOp(K) ≤ Op(G) = 1 so
Lemma 6.3(a) implies thatK is a2-group. ThusK ≤ O2(G) ≤ CG(K)
so K is abelian. Lemma 6.2 implies[K, R] = 1. By Coprime Action(d),
K = [K, R] whence[H, R] = 1. Now H E G = [G, R] soH ≤ Z(G). In
particular,H is ap′-group.

ChooseP ∈ I∗G(R, p). Lemma 6.1(c) implies thatR is faithful onP .
As H is ap′-group,RP is faithful onO2(G). Then [1, (36.4), p.194] im-
plies thatCV (R) 6= 0, a contradiction. We deduce that[F (G), R] = 1.
SinceG = [G,R], this forcesF (G) ≤ Z(G), completing the proof of (b).

Suppose thatO2(G) < G. Now Op(O2(G)) = 1 so Lemma 6.3(a)
yields [O2(G), R] ≤ O2(O2(G)) ≤ O2(G). Consequently[O2(G), R] =
[O2(G), R, R] = 1 by (b). But thenπ(|G : CG(R)|) ⊆ { 2 }, contrary to
Lemma 6.1(c). ThusO2(G) = G, which completes the proof of (a).

Assume the hypothesis of (c) and setH = 〈 [P, R], [S, R] 〉. Lemmas 2.2
and 6.1(c) imply thatG = CG(R)H. ThenG = [G,R] = [H, R] ≤ H,
proving (c).

7. Notation and outline

We define the notation that will be used throughout the remainder of this
paper and give an outline of the proof of Theorem A. Let

MR = {M < G | M is maximal subject to beingR-invariant}.
For eachX < G let

MR(X) = {M ∈MR | X ≤ M }.
We once and for all fixS ∈ I∗G(R, 2) and set

T = [S, R] E S.

Lemma 6.1(c) implies thatT 6= 1. Lemma 3.2(b) implies thatT is a non-
abelian special2-group and that

1 6= T ′ = Z(T ) = Φ(T ) = CT (R).

Set
Φ = Φ(T ).

Note thatΦ is elementary abelian becauseT is special. Let

G = G/Z(G).

Lemma 6.4 implies thatF (G) = 1 and thatZ(G) is cyclic. Let

Z = Z(G) ∩ Φ.
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ThenZ = 1 or Z ∼= Z2. In the latter case,Z invertsV .
If H ∈MR(T ) thenH = CH(R)[H, R] and Lemma 6.3(a) implies

[H, R] = TOp([H, R]).

We distinguish two cases:

The even caseOp([H,R]) = 1 for all H ∈MR(T ).
The odd case Op([H,R]) 6= 1 for someH ∈MR(T ).

The fact thatG = O2(G) implies that considerableG-fusion must take
place inS. On the other hand, Lemma 3.2(e) indicates thatR causes so
much fusion that there is room for no more. Thus we often derive a contra-
diction by arguing thatG 6= O2(G) or thatr divides|G|. A good example
is Lemma 7.2 below. There follows a more detailed outline of the proof of
Theorem A.

The first aim is to establish

– MR(T ) = {NG(Φ) }.
– Φ is aTI-subgroup ofG.
– Φ is weakly closed inNG(Φ) with respect toG.

The odd case is relatively straightforward. Proving weak closure in the even
case is more subtle. Assuming the contrary, we show thatG has a section
isomorphic toSL2(q), whereq = |Φ|. A numerical argument shows that
r dividesq2 − 1, contrary to the fact thatG is anr′-group. A significant
difficulty arises ifZ 6= 1 since there may be elements ofG that centralize
Φ but notΦ.

Next we set

Ω = ΦG,M = NG(Φ), G0 = CG(R), Ω0 = ΦG0 andM0 = CM (R).

We regardG andG0 as permutation groups onΩ andΩ0 respectively. In-
voking Theorems 4.1 and 5.1 it follows thatG is 2-transitive onΩ. Letting
D be a2-point stabilizer, we obtain

|G : M | = 1 + |M : D|. (1)

If |Ω0| = 1 thenCG(R) ≤ M and so|G : M | ≡ 1 mod r. But then(1) im-
pliesr divides|G|, a contradiction. Thus|Ω0| > 1 and another application
of Theorem 5.1 implies thatG0 is 2-transitive onΩ0. We obtain

|G0 : M0| = 1 + |M0 : D0|. (2)

Manipulations involving(1) and(2) forceq2 − 1 to divide|G| andr to di-
videq2−1. In fact, using a result of Burnside, we could pursue the analysis
further to show thatG0

∼= SL2(q). In any event, we have contradicted the
fact thatG is anr′-group and completed the proof of Theorem A.

Lemma 7.1.(a) T is weakly closed inNG(T ) with respect toG.
(b) NG(T ) = NG(T ) andT is weakly closed inNG(T ) with respect toG.
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Proof. Suppose thatT ≤ Q ≤ S. Then[Q,R] ≤ [S,R] = T ≤ Q soQ is
R-invariant. SetH = NG(Q). ThenT ∈ Syl2([H, R]) by Lemma 6.3(a) so
T = Q∩[H, R]EH whenceH ≤ NG(T ). Then (a) follows from Alperin’s
Fusion Theorem and (b) follows readily.

Lemma 7.2.Φ 6= 1.

Proof. Assume false. ThenΦ = Z ∼= Z2. Let H = NG(T ), so thatH =
CH(R)[H, R]. NowΦ ≤ Z(G) so Corollary 3.3 implies that[CH(R), T ] =
1. In particular, asS = CS(R)T andT ′ = Z we haveT ≤ Z(S). Then
Lemma 7.1 implies thatH controlsG-fusion in S. Now G = O2(G) by
Lemma 6.4 so the Focal Subgroup Theorem yields

H = O2(H).

However,H = CH(R)[H, R], [H,R] = TOp([H, R]), [CH(R), T ] = 1
andCH(R)∩T = Z. Thus1 6= T is a homomorphic image ofH, contrary
to the above.

8. The even case

The following will be proved:

Theorem 8.1.Assume the even case. SetM = NG(Φ). ThenM = NG(T )
and

(a)MR(T ) = {M }.
(b) Φ is weakly closed inM with respect toG.
(c) Φ is an elementary abelianTI-subgroup ofG.

Throughout this section, we assume the even case and set

M = NG(Φ).

Note thatM < G by Lemmas 6.4(b) and 7.2.

Lemma 8.2.(a) M = NG(T ) = CM (R)T and[M, R] = T .
(b)MR(T ) = {M }.
(c) Φ is an elementary abelianTI-subgroup ofG.

Proof. Let H ∈ MR(T ). Since we are in the even case,Op([H, R]) = 1.
Lemma 6.3 implies[H, R] = T E H. ThenH ≤ M so H = M . This
proves (a) and (b). To prove (c), letg ∈ G and suppose thatΦ ∩ Φg 6≤ Z.
Recall that[RT, Φ] = 1 so using (b) we have

T g ≤ CG(Φ ∩ Φg) ≤ M = NG(T ).

Lemma 7.1 forcesT g = T soΦg = Φ. The proof is complete.
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Recall thatG = G/Z(G). Elements ofG that centralizeΦ but notΦ
require special handling. To this end, we define

N = CG(Φ) and Q = [T,N ].

Now T ≤ N so Lemma 8.2(a) impliesN ≤ M . ThenN E M and so
Φ = T ′ ≤ Q E M . HenceM = NG(Q).

Also recall thatZ = Φ ∩ Z(G) and that ifZ 6= 1 thenZ ∼= Z2 andZ
invertsV .

Lemma 8.3.Suppose that[Φ, N ] 6= 1. Then:

(a) If X is a2-subgroup ofM or if X ≤ N thenX stabilizes the chain

Φ ≤ Q ≤ T.

(b) If X ≤ N and[Φ,X] 6= 1 then[Φ,X] = Z andQ = [T, X]Φ.
(c) [CG(Q), R] ≤ Q.

Proof. SinceN ≤ NG(Φ) we obtain[Φ,N ] = Z ∼= Z2. This proves the
first assertion of (b). Let̃T = T/Φ. Consider the action ofRM on T̃ .
Note thatT acts trivially becauseΦ = T ′. Moreover,M = CM (R)T so it
follows that[T̃ , X] is R-invariant for anyX ≤ M .

Now N = CN (R)T hence[Φ,CN (R)] = Z. Also Q̃ = [T̃ , N ] =
[T̃ , CN (R)]. Lemma 3.5 implies that

1 < Q̃ < T̃ , (∗)
[Q̃,N ] = 1, Q̃ = C

T̃
(N) and thatR acts irreducibly on both factors of(∗).

(a). SinceQ is the full inverse image of̃Q it suffices to show thatX
stabilizes(∗). If X ≤ N , this is clear. Suppose thatX is a2-subgroup of
M . As M = TCM (R) by Lemma 8.2, and asR is irreducible on both
factors in(∗), X is trivial on these factors and[T̃ , X] = 1 or Q̃.

(b). As just observed, either[T̃ , X] = 1 or [T̃ ,X] = Q̃. Suppose that
[T̃ , X] = 1. Then [T, X] ≤ Φ = Z(T ) so T stabilizes1 ≤ Φ ≤ ΦX.
This forces[ΦX, T ′] = 1. But T ′ = Φ and [Φ,X] 6= 1. We deduce that
[T̃ , X] = Q̃. Then (b) follows by taking inverse images.

(c). Let L = [CG(Q), R]. SinceT ≤ NG(Q), Lemma 8.2 implies
CG(Q) ≤ M . ThusL ≤ [M, R] = T . NowR is irreducible onQ̃ = [T̃ , N ]
so either[L̃,N ] = 1 or [L̃,N ] = Q̃. If [L̃,N ] = 1 then asQ̃ = C

T̃
(N) we

haveL̃ ≤ Q̃, which proves (c) in this case.
Suppose, for a contradiction, that[L̃, N ] = Q̃. Observe that[Q,L, N ] ≤

[Z(G), N ] = 1. Using (a) andL ≤ T we have[N, Q, L] ≤ [Φ,L] = 1.
The Three Subgroups Lemma forces[L,N, Q] = 1. Since[L̃, N ] = Q̃ we
have[L,N ]Φ = Q. Then[Q,Q] = 1. Lemma 6.2 implies that[Q,R] = 1.
ThenQ ≤ CT (R) = Φ soQ̃ = 1. This contradicts(∗) and completes the
proof of (c).
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Lemma 8.4.Suppose[Φ,N ] 6= 1. ThenQ is weakly closed inM with re-
spect toG.

Proof. Assume false. By Lemma 2.5, there existsx ∈ G such thatQ
andQx normalize one another butQ 6= Qx. ThenQx ≤ NG(Q) = M .
Lemma 8.3(a) implies that[T, Qx] ≤ Q, soT ≤ NG(QQx), and also that
[Q,Qx] ≤ Φ. By symmetry,

〈T, T x 〉 ≤ NG(QQx) and [Q, Qx] ≤ Φ ∩ Φx.

Now x 6∈ M soΦ ∩ Φx ≤ Z(G), by Lemma 8.2(c). In particular,Qx ≤
CG(Q), so Lemma 8.3(c) yields

[Qx, R] ≤ Q.

Also,Q isR-invariant so we deduce thatQQx isR-invariant. ButMR(T ) =
{M } so we obtain

T x ≤ NG(QQx) ≤ M = NG(T ).

This contradicts the weak closure ofT , Lemma 7.1. The proof is complete.

Lemma 8.5.Letx ∈ G and suppose that

[Φ,Φ
x] = 1.

Then[Φ,Φx] = 1.

Proof. Assume false. NowΦx ≤ N so [Φ, N ] 6= 1. Also, M = NG(Φ)
sox 6∈ M . Lemma 8.3(b) and the fact thatΦ is TI in G imply thatZ =
[Φ,Φx] ≤ Φ ∩ Φx ≤ Φ ∩ Z(G) = Z. ThenZ2

∼= Z = Φ ∩ Φx andΦΦx is
a subgroup.

Consider the chain
Φ < ΦΦx. (∗)

By Lemma 8.3(a),[Q,Φx] ≤ Φ soQ stabilizes(∗). Also Φx stabilizes(∗)
because[Φ,Φx] = Z ≤ Φ. Lemma 8.3(b) implies thatQ = [T, Φx]Φ so
〈ΦxT 〉 stabilizes(∗). Moreover,

Q ≤ 〈ΦxT 〉Φ. (∗∗)
We claim that〈ΦxT 〉 is abelian. Indeed, lett ∈ T and consider the

action ofΦxt on (∗). Now ΦΦx is nonabelian so it possesses a nonidentity
element that does not have order two. However,Φ is elementary, whence

Φ ∪
⋃

g∈Φxt

Φxg $ ΦΦx.

Now Φ is TI in G so the intersection of distinct conjugates ofΦ is equal to
Z. Thus the left hand side has cardinality|Φ|+ |Φxt : NΦxt(Φx)|(|Φx| − 2)
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and the right hand side has cardinality1
2 |Φ|2. Thus|NΦxt(Φx)| > 2 and we

may chooseh ∈ NΦxt(Φx) with h 6∈ Z(G).
SinceΦxt stabilizes(∗) we have[h, Φx] ≤ Φ ∩ Φx = Z so asΦ

xt
is TI

in G we obtainΦx ≤ NG(Φxt). Then[Φx, Φxt] ≤ Φ ∩ Φxt = Z. As t was
arbitrary, the claim is established.

The claim implies that〈ΦxT 〉Φ is abelian. In particular,〈ΦxT 〉Φ ≤
Nx. From(∗∗) we haveQ ≤ Nx ≤ Mx. As x 6∈ M = NG(Q), we have
contradicted the weak closure ofQ, Lemma 8.4. The proof is complete.

Corollary 8.6. Letx ∈ G and suppose that

〈ΦxR 〉

is abelian. Then[Φx, R] = 1.

Proof. EveryRG-conjugate ofΦ is in fact aG-conjugate because[Φ, R] =
1. Lemma 8.5 implies that〈ΦxR 〉 is anR-invariant abelian2-group. Apply
Lemma 6.2.

Lemma 8.7.Φ is weakly closed inM with respect toG.

Proof. Assume false. Then there existsx ∈ G such thatΦ andΦx normal-
ize one another butΦ 6= Φx. ThenT 6= T x. Moreover, if[Φ,N ] 6= 1 then
Q 6= Qx becauseNG(Q) = M .

SinceΦ is TI in G we have[Φ,Φx] = 1. Lemma 8.5 implies that
[Φ,Φx] = 1. Now CG(Φ) = (CG(R) ∩ CG(Φ))T . Corollary 3.3 implies
[CG(R) ∩ CG(Φ), T ] = 1, whence

CG(Φ) = (CG(R) ∩ CG(T )) ∗ T. (∗)

In particular,[T, Φx] ≤ T ′ = Φ.
Let X = ΦΦx, so then

X = Φ× Φx,

andT normalizesX. In fact,T stabilizes the chain1 < Φ < X. By sym-
metry,T x ≤ NG(X) andT x stabilizes1 < Φx < X. Set

L = 〈T, T x 〉 ≤ NG(X) and L̃ = L/CL(X).

SinceMR(T ) = {M }, the weak closure ofT implies thatL is not con-
tained in any properR-invariant subgroup ofG.

Claim 1. CL(X) is an abelian2-group.
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Proof. Suppose thatCL(X) > CL(X). InterchangingΦ andΦx if neces-
sary, we may assume[Φ,CL(X)] 6= 1. ThenCL(X) ≤ N and[Φ,N ] 6= 1.
Lemma 8.3(b) yields

Q = [T, CL(X)]Φ ≤ CL(X) ≤ CG(Φx) ≤ Mx.

The weak closure ofQ, Lemma 8.4, forcesQ = Qx. This is not the case so
we deduce thatCL(X) = CL(X).

Let I = 〈 c2 | c ∈ CL(X) 〉. Since[Φ(T ), R] = 1 it follows from (∗)
thatI ≤ CG(R) ∩ CG(T ). Similarly, I ≤ CG(T x). ThusI is R-invariant
andL ≤ CG(I). SinceL is not contained in any properR-invariant sub-
group, we haveI ≤ Z(G). The claim follows.

Set
q = |Φ|,

soq > 1 by Lemma 7.2.

Claim 2. |T̃ | ≥ q.

Proof. If 〈ΦxR 〉 is abelian then Corollary 8.6 forces[Φx, R] = 1 whence
L is contained in theR-invariant subgroupNG(X). This is not the case.
We deduce that〈ΦxR 〉 is nonabelian.

Chooseρ ∈ R such that[Φx, Φxρ] 6= 1. Now Φx ≤ M and[M, R] = T

soTΦx is R-invariant. AsΦx ≤ CL(X) we obtainΦ̃xρ ≤ T̃Φx = T̃ . Thus
it suffices to show that|Φ̃xρ| ≥ q. Note thatΦxρ stabilizes

1 < Φ < X

becauseT does.
Leth ∈ Φxρ∩CL(X) and suppose thath 6∈ Z(G). ThenX ≤ CG(h) ≤

NG(Φxρ) and so[X,Φxρ] ≤ Φ ∩ Φxρ ≤ Z(G). But Φx ≤ X so we have
contradicted[Φx, Φxρ] 6= 1. ThusΦxρ ∩ CL(X) ≤ Z(G) and asq = |Φ| =
|Φ/Φ ∩ Z(G)|, the claim follows.

We also have|T̃ x| ≥ q. Theorem 2.8 implies thatq2−1 divides|L̃|, that
|T̃ | = q and thatN

L̃
(T̃ ) acts transitively oñT#. (In fact, L̃ ∼= SL2(q).)

Let
D = NL(T ) and A = CT (X).

The weak closure ofT implies thatD̃ = N
L̃
(T̃ ). ThenD normalizesA

and acts transitively on(T/A)#. Note thatT ≤ D ≤ M and[M, R] = T
so D is R-invariant. If A is R-invariant thenR acts on(T/A)# so asD
is transitive on(T/A)#, Lemma 2.12 implies thatR has a fixed point on
(T/A)#. This is absurd becauseCT (R) = Φ ≤ A. We deduce thatA is not
R-invariant.
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Let ρ be a generator forR and setB = Aρ 6= A. Now B is D-invariant
becauseD isR-invariant. The transitivity ofD on(T/A)# forcesT = AB.
Recall thatG = G/Z(G) and that[Z(G), R] = 1. ThenT ∩ Z(G) =
T ∩Z(G) ∩CG(R) = Φ ∩Z(G) = Z. Now Φ 6= 1 so Lemma 3.6 implies
Z(T ) = Φ. Also,A andB are abelian by Claim 1 so asT = AB we have
A ∩B ≤ Φ. SinceΦ ≤ A ∩B we deduce that

A ∩B = Φ.

Now q = |T̃ | = |T/A| = |AB/A| = |A : Φ|. Similarly, q = |B : Φ|.
Then

|T : Φ| = |A : Φ||B : Φ| = q2.

SinceR ∼= Zr andCT (R) = Φ it follows thatr dividesq2 − 1. But q2 − 1
divides|L̃| so we have contradicted the fact thatG is anr′-group. The proof
of the weak closure ofΦ is complete.

Theorem 8.1 now follows form Lemmas 8.2 and 8.7.

9. The odd case

The following will be proved:

Theorem 9.1.Assume the odd case. SetM = NG(Φ). Then:

(a)MR(T ) = {M }.
(b) Φ is weakly closed inM with respect toG.
(c) Φ is an elementary abelianTI-subgroup ofG.

Throughout this section, we assume the odd case.

Lemma 9.2.One of the following holds:

(a) m(Φ) ≥ 3.
(b) m(Φ) = 2, p = 3 and if P ∈ IG(R, p) is chosen maximal subject to

TP = PT 6= G thenCG(R) ∩NP (T ) acts transitively onΦ
#

.

Proof. ChooseP ∈ IG(R, p) maximal subject toTP = PT 6= G. Then
P 6= 1 because we are in the odd case. SetH = PT andP1 = CP (R) ∩
NP (T ). Lemma 6.3(d) yields

P = P1Op(H).

Recall thatp 6= 2. Consider the action ofP1 onΦ and suppose that (a) and
(b) fail. Then[Φ,P1] = 1 whence[Φ,P1] = 1. Corollary 3.3 implies that
[T, P1] = 1. We deduce thatT ≤ NG(P ). As Op(G) = 1, G 6= NG(P ).
Lemma 6.3(d) and the maximal choice ofP imply thatP ∈ Sylp(NG(P )).
ThenP ∈ Sylp(G). But now Lemma 6.4(c) implies thatG = 〈P, T 〉,
contradictingOp(G) = 1. Thus one of (a) or (b) holds.
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Let
L = {P ∈ IG(R, p) | TCG(T ) ≤ NG(P ) }

and let
L∗

be the set of maximal members ofL under inclusion.

Lemma 9.3.Let H ∈ MR(TCG(T )). Then every member ofL that is
contained inH is contained inOp(H). Moreover, ifOp(H) 6= 1 then
Op(H) ∈ L∗.
Proof. Let K = [H, R] soK = TOp(K) E H by Lemma 6.3(a). By the
Frattini Argument,H = NH(T )Op(K) whence

Op(CG(T ))Op(K) ≤ Op(H).

ChooseP ∈ L with P ≤ H. Now P = CP (T )[P, T ]. We haveCP (T ) ≤
Op(CG(T )) becauseP is TCG(T )-invariant. Also[P, T ] ≤ P ∩ K ≤
Op(K). HenceP ≤ Op(H). Now supposeOp(H) 6= 1. ChooseP with
Op(H) ≤ P ∈ L∗. ThenNP (Op(H)) is a member ofL contained inH.
HenceNP (Op(H)) ≤ Op(H) soP = Op(H) and the proof is complete.

Corollary 9.4. If P, Q ∈ L∗ andP ∩Q 6= 1 thenP = Q.

Proof. Assume false and consider a counterexample withI = P ∩ Q
maximal. ThenI < NP (I) ∈ L andI < NQ(I) ∈ L. ChooseH with
NG(I) ≤ H ∈MR(TCG(T )). Lemma 9.3 implies that

I < NP (I) ≤ P ∩Op(H) and Op(H) ∈ L∗.
The maximality ofI forcesP = Op(H). Similarly, Q = Op(H), soP =
Q, a contradiction.

Lemma 9.5.L contains nontrivial members.

Proof. Since we are in the odd case,Op([H, R]) 6= 1 for someH ∈
MR(T ). Set K = [H, R]. Now K = TOp(K) and K = [K, R] so
[Op(K), R] 6= 1. By Lemma 9.2,m(Φ) ≥ 2 so

Op(K) = 〈Op(K) ∩ CG(a) | a ∈ Φ− Z(G) 〉.
Thus there existsa ∈ Φ− Z(G) with

1 6= [Op(K) ∩ CG(a), R].

Since[CG(a), R] = TOp([CG(a), R]) we have1 6= Op([CG(a), R]) ≤
Op(CG(a)) ∈ L.

Lemma 9.6.L possesses a unique maximal member.
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Proof. ChooseP,Q ∈ L∗. We must show thatP = Q. Let Φ0 be a
complement toZ in Φ. Note thatCG(a) is contained in a member of
MR(TCG(T )) for all a ∈ Φ#

0 . By Lemma 9.2,m(Φ0) ≥ 2.
Suppose thatm(Φ0) ≥ 3. By Coprime Action there is a hyperplane

Φ1 of Φ0 with CP (Φ1) 6= 1. Now m(Φ1) ≥ 2 so CQ(a) 6= 1 for some
a ∈ Φ#

1 . ChooseH with CG(a) ≤ H ∈ MR(TCG(T )). Now CP (a) and
CQ(a) are nontrivial members ofL that are contained inH. Lemma 9.3
and Corollary 9.4 implyP = Q. Hence we may suppose thatm(Φ0) = 2.

ChooseP̃ maximal subject toP ≤ P̃ ∈ IG(R, p) andP̃ T = T P̃ 6= G.
SetP̃0 = CG(R) ∩N

P̃
(T ). By Maschke’s Theorem we may chooseΦ0 so

that it isP̃0-invariant. Lemma 9.2 implies that̃P0 is transitive onΦ#
0 .

Now P̃0 normalizes bothTCG(T ) andR hence〈P P̃0 〉 is RTCG(T )-
invariant. Since〈P P̃0 〉 is ap-group it follows that〈P P̃0 〉 ∈ L. Now P ∈
L∗ so we deduce thatP is P̃0-invariant. Recall thatm(Φ0) = 2. Hence
CP (a) 6= 1 for somea ∈ Φ#

0 . As P is P̃0-invariant andP̃0 is transitive
on Φ#

0 , we haveCP (a) 6= 1 for all a ∈ Φ#
0 . Now choosea ∈ Φ#

0 with
CQ(a) 6= 1. As in the casem(Φ0) ≥ 3, it follows thatP = Q. The proof is
complete.

For the remainder of this section we fixP such that

L∗ = {P }.
Lemma 9.5 impliesP 6= 1. Set

M = NG(P ).

Lemma 9.3 impliesP = Op(M).

Theorem 9.7.M = NG(T )P andMR(T ) = {M }.
Proof. Let N = NG(T ). By Lemma 6.3(c),N = CN (R)TOp(N). Now
TOp(N) ≤ M becauseTCG(T ) ≤ M . Also, CN (R) normalizes both
R and TCG(T ) so CN (R) permutesL∗ = {P }. Thus N ≤ M . By
Lemma 6.3(c),M = NP .

Now suppose thatH ∈MR(T ). By Lemma 6.3(c),H = NH(T )Op(H).
If CG(T ) ≤ H thenOp(H) ∈ L whenceOp(H) ≤ P andH ≤ M .
In particular,CG(a) ≤ M for all a ∈ Φ − Z(G). Returning to arbitrary
H ∈MR(T ) we have

Op(H) = 〈COp(H)(a) | a ∈ Φ− Z(G) 〉 ≤ M

becausem(Φ) ≥ 2. HenceH ≤ M . We deduce thatMR(T ) = {M }.

Lemma 9.8.Letg ∈ G and suppose thatm(Φg ∩M) ≥ 2. Theng ∈ M .
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Proof. Now PT E M so PΦ E M and we may conjugateΦg by a suit-
able member ofP to suppose thatΦg ∩ M normalizesΦ. Consider the
action ofΦg ∩M on Φ and recall thatm(Φ) ≥ 2. If m(Φ) = 2 then as

m(Φg ∩M) ≥ 2, there existsa ∈ Φg ∩M
#

with [a, Φ] = 1. Theorem 9.7

implies thatCG(a) ≤ M
g
. ThenΦ ≤ M

g
. In particular,m(Φ ∩Mg) ≥ 2.

Suppose thatm(Φ) ≥ 3. Choosea ∈ Φg ∩M
#

. Sincea induces an involu-
tion on the elementary abelian2-groupΦ we havem(CΦ(a)) ≥ 1

2m(Φ) ≥
3
2 . Thusm(CΦ(a)) ≥ 2. As before,CG(a) ≤ M

g
som(Φ ∩Mg) ≥ 2 in

this case also. Thus we have the symmetrical configuration

m(Φg ∩M) ≥ 2 and m(Φ ∩Mg) ≥ 2.

Using Coprime Action and Theorem 9.7 we have

P g = 〈CP g(a) | a ∈ Φ ∩Mg − Z(G) 〉 ≤ M.

Let
D = (Φg ∩M)P gTP.

Note thatD is a soluble{ 2, p }-subgroup ofM becauseΦg∩M normalizes
P g andTP E M . Let a ∈ Φg ∩M − Z(G). Now CG(a) ≤ Mg so using
Lemma 2.6 we obtain

CP g(a) ≤ O2′(CG(a)) ∩D ≤ O2′(CD(a)) ≤ O2′(D) = Op(D).

Sincem(Φg ∩M) ≥ 2 we have

P g = 〈CP g(a) | a ∈ Φg ∩M − Z(G) 〉 ≤ Op(D).

Note thatP E D becauseD ≤ M , whence

Op(D) = PP g

andT ≤ NG(PP g).
Now [D, R] ≤ [M, R] ≤ TOp(M) = TP ≤ D so D and hence

Op(D), areR-invariant. Theorem 9.7 forcesNG(PP g) ≤ M . By symme-
try, T g ≤ NG(PP g) soT g ≤ M . Using the weak closure ofT , Lemma 7.1,
there existsm ∈ M with T gm = T . Thengm ∈ NG(T ) ≤ M sog ∈ M ,
completing the proof.

Corollary 9.9. Assumem(Φ) ≥ 3. Letg ∈ G and suppose thatΦg ∩M 6=
1. Theng ∈ M .

Proof. As in the proof of Lemma 9.8 we may suppose thatΦg ∩ M nor-

malizesΦ. Choosea ∈ Φg ∩M
#

. As in Lemma 9.8,m(CΦ(a)) ≥ 2,

CG(a) ≤ M
g

and som(Φ ∩Mg) ≥ 2. Lemma 9.8 impliesg ∈ M .

Lemma 9.10.NM (Φ) is transitive onΦ
#

.
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Proof. By Lemma 9.2 we may suppose thatm(Φ) ≥ 3. Now TP E M
so ΦP E M . Corollary 9.9 implies that Hypothesis 5.2 is satisfied with
ΦP in the role ofΦ. Lemma 5.3(b) implies thatM acts transitively on the
involutions ofΦP . SinceM = NM (Φ)P , the conclusion follows.

Lemma 9.11.Φ E M , so thatM = NG(Φ).

Proof. Assume false. We will argue thatM contains a Sylowp-subgroup
of G, contrary to Lemma 6.4(c). Note thatΦP EM . By Lemma 9.10, either
CΦ(P ) = Z or CΦ(P ) = Φ. In the latter case,Φ = O2(ΦP ) E M . Hence
we haveCΦ(P ) = Z. ChooseP ∗ ∈ I∗M (R, p) and set

H = TP ∗ and L = ΦP ∗.

Both H andL are subgroups becauseP = Op(M) ≤ P ∗, TP E M and
ΦP E M .

We claim thatOp(H) = Op(L). ClearlyOp(H) ≤ Op(L). Let Y =
TOp(L) ⊆ H. ThenY is a subgroup becauseOp(L) normalizesTP and
P ≤ Op(L). By Lemma 6.3(d), withY in the role ofH,

Op(L) = (CG(R) ∩NOp(L)(T ))Op(Y ).

Now [NOp(L)(T ), Φ] ≤ Φ ∩ Op(L) = 1 so Corollary 3.3 implies that
[CG(R)∩NOp(L)(T ), T ] = 1. ThenT ≤ NG(Op(L)) soOp(L) ≤ Op(H)
and the claim is established.

We apply Theorem 2.7, toL. NowP ≤ Op(L) andCΦ(P ) = Z whence
CL(Op(L)) ≤ Op(L)Z. Note thatL has abelian Sylow2-subgroups. Theo-
rem 2.7 yields1 6= K(P ∗) = K(Op(L)). Actually, we must considerL/Z,
but this causes no difficulty becauseZ ≤ Z(G).

SinceOp(L) = Op(H) we haveK(P ∗) = K(Op(H)) E H, whence
T ≤ NG(K(P ∗)). Theorem 9.7 impliesNG(K(P ∗)) ≤ M . In particular,
NG(P ∗) ≤ M . But P ∗ ∈ I∗M (R, p) so this forcesP ∗ ∈ Sylp(G) and then
Lemma 6.4(c) supplies a contradiction. The proof is complete.

Proof of Theorem 9.1.(a) follows from Lemma 9.11 and Theorem 9.7.
Now m(Φ) ≥ 2 by Lemma 9.2 so (b) follows from Lemma 9.8. To prove
(c), letg ∈ G and suppose thatΦ∩Φg 6≤ Z(G). Now [Φ,RT ] = 1 so using
(a) we haveΦg ≤ CG(Φ ∩ Φg) ≤ M . ThenΦg = Φ by (b).

10. The final contradiction

Henceforth we adopt the following notation:

Ω = ΦG,M = NG(Φ), G0 = CG(R), Ω0 = ΦG0 andM0 = CM (R).

We regardG and G0 as permutation groups onΩ and Ω0 respectively.
Recall that

G = G/Z(G)

thatΦ 6= 1 by Lemma 7.2, and thatΦ ≤ G0.
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Lemma 10.1.(a)MR(T ) = {M }.
(b) Φ is aTI-subgroup.
(c) Φ is weakly closed inM with respect toG.
(d) For all g ∈ G, Φ

g ∩M 6= 1 impliesg ∈ M .
(e) If H is anR-invariant subgroup ofG andΦ ∩H 6= 1 thenM contains

a member ofI∗H(R, 2).
(f) M controlsG-fusion inS andM = O2(M).
(g) Φ is noncyclic.

Proof. (a), (b) and (c) follow from Theorems 8.1 and 9.1. (d) follows from
Theorem 4.1 withRG,Φ,RM,S andRT in the roles ofG, Φ,M, S and
U respectively. To prove (e), we may suppose thatH is a2-group. Recall
thatS ∈ I∗G(R, 2) andT = [T,R] E S. By Coprime Action,Hg ≤ S for
someg ∈ CG(R). Theng ∈ M by (d), henceH ≤ M and we are done.
Theorem 4.1 implies thatM controlsG-fusion inS. Now G = O2(G) by
Lemma 6.4 so (f) follows from the Focal Subgroup Theorem.

To prove (g) suppose thatΦ is cyclic. Then[Φ, M ] = 1 so M in-
duces a2-group onΦ. As M = O2(M) we have[Φ,M ] = 1. Now
M = M0[M,R] and [M, R] = TOp([M, R]) by Lemma 6.3. Corol-
lary 3.3 implies[M0, T ] = 1. But thenT is an image ofM , contradicting
M = O2(M). This completes the proof.

Lemma 10.2.(a) G is 2-transitive onΩ.
(b) T = [M, R] E M andM = M0T .

Proof. (a). This follows from Theorem 5.1(a) and Lemma 10.1(d,g) with
G,M andΦ in the roles ofG,M andΦ.

(b). By Lemma 6.4,Op(G) = 1 andM does not contain a Sylowp-
subgroup ofG. Using Lemma 2.10 we haveOp([M,R]) ≤ Op(M) ≤
Op(G) = 1. Since[M, R] = TOp([M,R]), we are done.

Lemma 10.3.|Ω0| > 1 andG0 is 2-transitive onΩ0.

Proof. Chooseg ∈ G−M and setD = M ∩Mg. SinceG is 2-transitive
onΩ we have

|G : M | = 1 + |M : D|. (∗)
Recall thatG0 = CG(R). If G0 ≤ M thenNGR(R) = RG0 ≤ RM
andR ∈ Sylr(RG), soRM is the unique point ofRG/RM fixed byR.
Thus|G : M | ≡ 1 mod r. Then(∗) impliesr divides|M : D|, which is
absurd becauseG is anr′-group. ThusG0 6≤ M and another application of
Theorem 5.1 completes the proof.

Lemma 10.4.LetZ2
∼= X ≤ M0. ThenCG(X) ≤ M .

Proof. Assume false. LetH be the inverse image ofCG(X) in G. Then
H 6≤ M . Recall thatZ(G) ≤ G0 by Lemma 6.4(b). The full inverse image
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of X is a nilpotent subgroup ofG0 so there is a2-subgroupX ≤ G0 that
maps ontoX and satisfiesXEH. Also,RH stabilizes the chain1EZ(G)∩
X E X so Lemma 2.4 implies thatRH induces an abelian2-group onX.

Now 1 6= CΦ(X) ≤ Φ ∩H. Lemma 10.1(e) implies thatM contains a
member ofI∗H(R, 2). ConjugatingX by a suitable element ofM0, we may
suppose that

S ∩H ∈ I∗H(R, 2).
Set

K = [H, R] and Q = S ∩K ∈ I∗K(R, 2).
SinceRH induces an abelian2-group onX we have[X, K] = 1. By
Lemma 6.3(b),Q = [Q,R], so asT = [S, R] we haveQ ≤ CT (X).
Moreover,[CT (X), R] ≤ Q, whence

Q = [CT (X), R].

Claim 1. m(Φ(Q)) ≤ 1.

Proof. Assume false. By Lemma 6.3(b),H = NH(Φ(Q))Op(K). Also
Φ(Q) ≤ Φ(T ) = Φ andMR(T ) = {M }. SinceΦ(Q) is noncyclic it
follows from Coprime Action(h) and Lemma 10.1(d) thatOp(K) ≤ M .
As Φ is TI we haveNG(Φ(Q)) ≤ M , soH ≤ M , a contradiction.

Claim 2. M ∩H induces a2-group onΦ.

Proof. Lemma 10.2(b) implies thatT = [M,R] E M whenceM ∩ H =
(M0 ∩ H)[M ∩ H, R] ≤ (M0 ∩ H)T . As Φ = Z(T ) it suffices to prove
thatM0 ∩ H induces a2-group onΦ. Let Y ≤ M0 ∩ H have odd order.
Then [X, Y ] = 1 sinceH induces a2-group onX. Now Q = T ∩ K
so Y normalizesQ. By Claim 1, [Φ(Q), Y ] = 1 so Corollary 3.3 forces
[Q,Y ] = 1. Applying Lemma 2.9 to the action ofR × X × Y on T we
obtain[T, Y ] = 1. Then[Φ, Y ] = 1 and the claim is established.

Let
Φ1 = Φ ∩H.

Note thatΦ1 E M ∩H becauseΦ E M . By Lemma 10.1(d), for allg ∈ H,
Φ1

g ∩ (M ∩H) 6= 1 impliesg ∈ M ∩H. Moreover,M ∩H < H because

H 6≤ M . Lemma 5.3(b) implies thatM ∩H acts transitively onΦ1
#

. Then
Claim 2 forcesm(Φ1) ≤ 1.

Now Φ1 = CΦ(X) so asZ2
∼= X ≤ M = NG(Φ) we have

m(Φ1) ≥ 1
2m(Φ).

Also m(Φ) ≥ 2 by Lemma 10.1(g). It follows thatm(Φ) = 2 and thatX
acts nontrivially onΦ. Now Aut(Φ) ∼= Sym(3) whenceZ2 is an image of
M . But M = O2(M) by Lemma 10.1(f). This contradiction completes the
proof of Lemma 10.4.
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Corollary 10.5. M0 is strongly embedded inG0, so thatM0∩M0
g

has odd
order for all g ∈ G0 −M0.

Proof. By Coprime Action,CS(R) ∈ Syl2(G0). MoreoverΦ ≤ G0 so
Lemma 10.1(d) impliesNG0

(CS(R)) ≤ M0. Apply Lemma 10.4.

Chooseu ∈ G0 −M0 with u conjugate to an element ofΦ. Set

D = M ∩Mu, D0 = CD(R) and Q = [D, R] E D.

Note thatD is R-invariant becauseu ∈ G0. Recall that

Z = Z(G) ∩ Φ = Z(G) ∩ T

and that eitherZ = 1 or Z ∼= Z2 andZ invertsV .

Lemma 10.6.D0 has odd order,[D0, Q] = 1 andD = D0 ×Q. If Q 6= 1
thenQ ≤ T , Q is extraspecial withΦ(Q) = Z ∼= Z2 andR acts irreducibly
onQ/Φ(Q).

Proof. Corollary 10.5 impliesD0 has odd order. Suppose thatQ 6= 1. Now
Q = [D,R] ≤ [M,R] = T soΦ(Q) ≤ Φ(T ) = Φ. Sinceu is an involution,
D is u-invariant. Thenu ∈ NG(Φ(Q)). As Φ is TI in G and u 6∈ M
it follows that Φ(Q) ≤ Z(G) ∩ Φ = Z. Now Q = [Q,R] 6= 1 so Q
is a nonabelian special2-group by Lemma 3.2(b). ThenΦ(Q) = Z and
Q is extraspecial. Lemma 3.2(e) implies that[D0, Q] = 1 and thatR is
irreducible onQ/Φ(Q).

Set

q = |Φ| and α =
|T : Φ|

|Q : Φ(Q)| − 1.

Now Φ ∩D0 = 1 becauseD0 has odd order, so

|M0 : D0| = βq

for someβ ∈ N.

Lemma 10.7.(a) α ∈ N andr dividesα.
(b) (1 + βq)(q − 1) divides both|G| andα.

Proof. (a). By Lemma 3.2(b),Φ(Q) = CQ(R) = Q ∩ CT (R) = Q ∩ Φ.
Thusα = |T/Φ : QΦ/Φ| − 1 ∈ Z. If α = 0 thenT = QΦ soT = Q and
thenΦ = Φ(T ) = Φ(Q) ≤ Z, contradicting Lemma 10.1(g). Thusα ∈ N.
As CT (R) = Φ andCQ(R) = Φ(Q) we have|T : Φ| ≡ |Q : Φ(Q)| ≡
1 mod r. Henceα ≡ 0 mod r.

(b). By 2-transitivity,

|G : M | = 1 + |M : D| and |G0 : M0| = 1 + |M0 : D0|.
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The quotient|G : M |/|G0 : M0| is an integer by Lemma 2.3, so dividing
and subtracting1 yields

|M0 : D0|
1 + |M0 : D0|

( |M : D|
|M0 : D0| − 1

)
∈ Z. (∗)

Now M = M0T, M0 ∩ T = Φ,D = D0Q andD0 ∩Q = Φ(Q) = Q ∩ Φ.
Thus

α =
|M : M0|
|D : D0| − 1 =

|M : D|
|M0 : D0| − 1 =

|Ω| − 1
|Ω0| − 1

− 1. (∗∗)

It follows from (∗) and(∗∗) that1+βq dividesα. Also,1+βq = |G0 : M0|
so1 + βq divides|G|.

Putm = q − 1. By Lemma 10.6,D = O2′(D)× O2(D) so two appli-
cations of Theorem 5.1(c) yield

|Ω| ≡ |Ω0| ≡ 2 mod m.

This and(∗∗) imply α ≡ 0 mod m. By Lemma 5.3(b),M is transitive on

Φ
#

som divides |G|. Also, 1 + βq = |Ω0| ≡ 2 mod m so asm is odd,
1 + βq andm are coprime. This proves (b).

Lemma 10.8.α ≤ q2 − 1.

Proof. Theorem 5.1(b) implies that all involutions ofG are conjugate into
DΦ, and hence intoQΦ by Lemma 10.6. SinceM controlsG-fusion inS
it follows that all involutions inT areM -conjugate intoQΦ.

Suppose thatQ = 1. Then all involutions ofT are contained inΦ so
Lemma 2.11 implies|T | ≤ |Φ|3, whenceα ≤ q2 − 1. Hence we may
assume thatQ 6= 1.

Let U be a homogeneous component for the action ofT on V and set
T1 = CT (U). Lemma 3.2(d) implies thatU andT1 areR-invariant. Using
Lemma 10.6,

(QΦ ∩ T1)′ ≤ Φ(Q) ∩ T1 = Z ∩ T1 = 1.

becauseZ invertsV . ThenQΦ∩T1 isR-invariant and abelian so Lemma 6.2
forcesQΦ ∩ T1 ≤ CT (R) = Φ. In fact, (QΦ)g ∩ T1 ≤ Φ for all g ∈ M
sinceT E M and soUg−1 is also a homogeneous component forT . We
deduce that all involutions ofT1 are contained inΦ. Lemma 2.11 implies
|T1| ≤ |Φ|3.

From the previous paragraph,Q ∩ T1 ≤ Φ ∩ Q ∩ T1 = Z ∩ T1 = 1
andR is irreducible on the Frattini quotient ofT/T1 by Lemma 3.2(d).
ThusT = QT1. Note that|T1| = |T1| becauseT1 ∩ Z = 1 and recall that
Φ(Q) = Z ∼= Z2. Then

α =
|T : Φ|

|Q : Φ(Q)| − 1 =
|T1|
|Φ| − 1 ≤ |Φ|2 − 1.

The proof is complete.



36 Paul Flavell

Lemmas 10.7 and 10.8 imply

(1 + βq)(q − 1) ≤ α ≤ q2 − 1.

We must have equality, and thenα divides|G|. But r dividesα andG is an
r′-group. This final contradiction completes the proof of Theorem A.
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