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INTRODUCTION

This paper grew out of the following question: Suppose M is a maximal
subgroup of a finite simple group G and H is a maximal subgroup of M. Is
it possible to find g € G such that G = (H, g)?

The answer is yes and it is proved as follows: In a counterexample we
have

(H,g>)N"M=H forallge G — M.

The first stage is to prove that H, = 1 and then to prove that H is a
Frobenius complement in G. An application of Frobenius’ Theorem con-
tradicts the simplicity of G.

Much of the argument can be made to work without such stringent
conditions on G, M, and H. Thus we make the following definition:

DEFINITION. A y-triple is a triple of groups (G, M, H) with the prop-
erties

i) H<M<G;
(i) (HgdNnM=Hforallge G- M.

Note that we no longer require M to be maximal in G or H to be
maximal in M.

Our original question now generalizes to the problem: Find some sort of
structure theorem for y-triples. The first result we prove is:
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THEOREM A. Let (G, M, H) be a y-triple. Then
Hy 144G.

Then we shall prove:

THEOREM B. Let (G, M, H) be a +y-triple. Then
H/H,, is cyclic.

Before we can proceed any further we need a suitable notion of
irreducibility. First we make_the following observation: if (G, M, H) is a
y-triple, N is a group and G is an extension of N by G (so that N < G
and G/N = G), let M (resp H) denote the inverse image of M (resp. H)
in G. Then (G, M, H) is also a y-triple. Conversely, if (G, M, H) is a
y-triple, N 4G, and N < H then (G/N,M/N, H/N) is also a y-triple.
We are led to the following definition:

DEFINITION. A y-triple (G, M, H) is irreducible if H; = 1, that is, if
the only normal subgroup of G contained in H is 1.

The preceding discussion shows that every y-triple is made out of an
irreducible y-triple and a group.

We shall need a generalization of Frobenius’ Theorem due to Wielandt.
Thus we make the following definition:

DEFINITION. A W-triple is a triple of groups (G, H, N) with the prop-
erties
() N«<4H<G;
(i) HNH¢<Nforall ge G- H.
The fundamental theorem about W-triples is:
WIELANDT'S THEOREM. Let (G, H, N) be a W-triple. Then G contains a
normal subgroup K such that

G = HK and HnNnK=N.

For a proof of Wielandt’s Theorem see [3, Exercise 1, p. 347]. This result
is a generalization of Frobenius’ Theorem as can be seen by putting
N=1

Now we can state our next theorem on +y-triples.

THEOREM C. Let (G, M, H) be an irreducible vy-triple with H > H,,.
Then there exists a prime p such that

(i) (G, H, H,,)is a W-triple;

(i) G =HO/G) and H N O,(G) = Hy;
Giii) H/H,, is a cyclic p'-group;

(iv} G is soluble.
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Note that if Hy, = 1 then G is a Frobenius group with complement H.
If H = H,, then Theorem C is not applicable; however, in this case we
have H < M and Theorem A implies H < < G.

Then we answer our original question:

COROLLARY D.  Suppose M is a maximal subgroup of a simple group G
and H is a maximal subgroup of M. Then there exists g € G such that
G=<{(H,g>.

Finally, we shall construct a number of examples of y-triples.

1. NOTATION AND QUOTED RESULTS

Throughout this paper, group means finite group, H < G means H is a
subgroup of G, H < G means H is a proper subgroup of G, H <G
means H is a normal subgroup of G, and H<4<4G means H is a
subnormal subgroup of G. If H < G then Hj; = the core of H in
G=n{H!*:ge GL.IfH<Gand x € Gthen[x,H]l =[x, h]:h € H).

THEOREM 1.1 (Wielandt). Let H be a subgroup of a group G. Then
H<A<aGifand only if H <A A{H, H?) for all g € G [1, Theorem 14.10].

LEMMA 1.2. Suppose a p'-group ( acts on a p-group P. Then:

(i) P=Cp(QIP,Q)and [P,Q]=I[P,Q, 0
(i) If T is a Q-invariant normal subgroup of P then

Cr,r(Q) = Co(QT/T

[2, Theorems 5.3.5, 5.3.6, and 6.2.2(iv)].

LEMMA 1.3. Let p, q, and r be distinct primes. Let Z = Z, act faithfully
and irreducibly on an elementary abelian q-group Q and let V' be a faithful
GF( p)ZQ-module. Then

C,(Z) +0.

This is a restatement of [2, Theorem 3.4.4}.

LEMMA 1.4. Let an r-group R act on an r’-group G and let q be a prime
divisor of |G|. Then there exists an R-invariant Sylow g-subgroup of G |2,
Theorem 6.2.2(1)].
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2. PRELIMINARY LEMMAS
LEMMA 2.1. Let (G, M, H) be a y-triple.

(i) If (G, M, L) is also a y-triple then so is (G, M, H N L).
(i) If m € M then (G, M, H™) is a y-triple.
(iii) (G, M, H,,) is a y-triple.

Proof. let g € G — M. Then

(HNL,gyNnMc < (H,gynMn<{L,g)=HnL.

This proves (i). As for (ii), if g€ G — M then g™ € G — M so
(H™, gy "M = ((H,g" ' )NnM) =H"

Part (iii) is a consequence of (i) and (ii).
LEMMA 2.2, Let H be a subgroup of a group G. Then:
(i) [x, H] is normalized by H.
(i) (H,H*)=[x,H]H =H[x, H].
Proof. Let h,k € H. Then

[x,hk] =[x, k][x,h]"

SO
[x,h]k e{[x,gl:g€H)=[x,H].

This proves (i) and (ii) follow immediately.
Presumably the following few lemmas on W-triples are known but we
cannot find a reference.

LEMMA 23. Let G be a group and N QH < G. Then (G,H,N) is a
W-triple if and only if

Ng(D) <H  forall D < H with D £ N.

Proof. The only if part is obvious; as for the if part, let g € G and
D = H N H? and suppose that D ¢ N. Choose a prime p such that a
Sylow p-subgroup P of D is not contained in N. Then, by hypothesis,
N, (P) < H and thus N,.(P)<H N H#=D. This implies that P&
Syl (H?®) and as P < H we see that P € Syl (H). Now P and Pll"fl are

Sylow p-subgroups of H so there exists # € H such that P" = P¢ ' Then
hg € N;(P) < H so g € H and we deduce that (G, H, N) is a W-triple.
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LEMMA 2.4, Let (G, H, N) be a W-triple, let D < Hwith D ¢ N, and let
g€ G — H. Then

g € (H,Dt).

Proof. Since D is not contained in N there exists a prime p and a
Sylow p-subgroup P of D such that P £ N. Let O be a Sylow p-subgroup
of H that contains P, then Q ¢ N and thus N,(Q) < H. This implies that
Q is a Sylow p-subgroup of G and hence of { H, D#}. By Sylow’s Theorem
there exists x € (H, D¢) such that P¢ < Q. Thus P < H N H®" ' and
since P & N this forces gx € H. Hence g € (H, D¥).

LEMMA 2.5. Let (G, H, N) be a W-triple and let M be a normal subgroup
of G such that

G =HM and HnoM=N.
Then:

(1) |H:N|and |M: N| are coprime.

(i) If L is another normal subgroup of G such that G = HL and
HNL =NthenM = L.

Proof. Note that the existence of M is guaranteed by Wielandt’s
Theorem. Suppose p is a prime divisor of |H: N|. Let P be a Sylow
p-subgroup of H. Then P £ N so Ni(P) < H and thus P € Syl (G).
Since M 4G it followsthat PN M & Syll,(M). NowP"M<HNMNMS<N
so N contains a Sylow p-subgroup of M. We deduce that p cannot divide
|M : N|. This proves (i).

To prove (ii), let p be a prime divisor of |M| and let P € Syl (M). If p
does not divide |H : N|then, as G = HL and H n L = N, it follows that
L contains a Sylow p-subgroup of G. Since L < G this implies P < L. If p
does divide |H : N| then as [M : N|is prime to p we see that P < N and
thus P < L. We deduce that L contains every Sylow subgroup of M and
similarly that M contains every Sylow subgroup of L. Thus M = L.

LEMMA 2.6. Suppose that H < QG but that H is not normal in G. Then
N, (H)(H®Y <G.

Proof. 1If H<(HY) then N;(H)XH"“) = N,(H) < G. Now suppose
that H is not normal in {HY). Then, since H is subnormal in {(HY),
there exists N <{H%) such that H < N < (H“). Choose g € G such
that H* ¢« N. Then g & N, (H)(HY).

LEMMA 2.7. Let p, q, and r be distinct primes. Let Z = Z, act faithfully
and irreducibly on an elementary abelian q-subgroup Q and let ZQ act on a



GENERATING FINITE GROUPS 377

p-group P. Then
[P.Q] < (Cp(2)®.

Proof. Assume false and consider a counterexample with |P| minimal.
Lemma 1.2(i) implies P = [P, Q). Suppose T is a proper nontrivial ZQ-
invariant normal subgroup of P. Minimality of |P| implies

[P/T,Q] <(Cp,(Z)®)
and, using Lemma 1.2(ii), it follows that

P=[P,0Q] < T{C,(Z)?).
Let D = {Cp(Z)?). Then

P=[1D,0] = {T,Q1”)[D.Q].

Minimality of |P| forces [7,Q] < D, and as D is Q-invariant we see that
P < D, a contradiction.

What we have just done implies ®(P) = 1. Thus P may be regarded as
a GF(p)ZQ-module, and another application of the previous paragraph
implies that ZQ acts irreducibly on P. The only proper normal subgroups
of ZQ are Q and 1, so as [P, Q] # 1 we deduce that ZQ is faithful on P.
Lemma 1.3 implies that Cp(Z) # 0. Now (Cp(Z)?2) = (Cp(Z)?), so as
ZQ is irreducible on P we deduce that

P = <CP(Z)Q>’

a contradiction.

3. PROOF OF THEOREMS

Proof of Theorem A. Assume the theorem is false. Using Lemma
2.1Giii) we may suppose that H 4 M. By Theorem 1.1, there exists x € G
such that H is not subnormal in {H, H*). Choose such an x with [x, H]
minimal. A second application of Theorem 1.1 implies there exists y €
{H, H*) such that H is not subnormal in {(H, H").

By Lemma 2.2(ii), there exists # € H and z € [x, H] such that y = hz.
Thus H is not subnormal in {H, H?). Lemma 2.2(i) implies [z, H] <
[x, H], so choice of x forces [z, H] = [x, H]. In particular,

ze|z,H].
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Since M > H we may choose m € M — H. Since H AM we have
z & M and also mz & M. Observe that

zelz,H]<(H,H*) ={H,H") < {H,mz)

and then that
me{H mz)NM.

Since mz & M the definition of a y-triple yields m € H contrary to the
choice of m. This completes the proof of Theorem A.

LEmMA 3.1.  Let (G, M, H) be a y-triple. Then (G, H, H,,) is a W-triple.

Proof.  First we prove
MNH® <H, forall ge G — M. (*)
Indeed, let g€ G — M and m € M. Then gm € G — M so
(MNH)" =MnH" <Mn (H,gm) =H.

Thus M N H® < H™ ' for all m € M and (%) follows.

Now let x € G — M and set X = (H, x). Suppose D is any subgroup of
H not contained in H,,. Then (+) forces Ny(D) < H. Lemma 2.3 now
implies that (X, H, H,,) is a W-triple. Next, let E be any subgroup of H
not contained in H,,. Fix y € G — M. Then ((H, y), H, H,,) is a W-triple
so Lemma 2.4 implies that y € {(H, E*). Let n € N,(E). By (*) we have
n € M and thus ny € G — M. Then

ny € (H,E") = (H,EY),

but as y € (H, EY) we obtain n € (H,E¥). Thus n e (H,y>) "M =H
and we deduce that N,(E) < H. Another application of Lemma 2.3
completes the proof.

LEMMA 3.2. Let (G, M, H) be a y-triple with H > H,, = 1. Then:

(i) G is a Frobenius group with complement H and kernel O,(G) for
some prime p.
Gi) H is cyclic.

Proof. The previous lemma implies that (G, H, H,,) is a W-triple and
since H,, = 1 we see that G is a Frobenius group with complement H. Let
K be the Frobenius kernel of G,sothat G = HK, K <G,and HN K = 1.
Thompson’s Theorem implies that K is nilpotent. Now M = H(M N K),
and as M > H we have that M N K # 1.
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Let p be a prime divisor of |[M N K| and let m € M N K have order p.
If x is any member of O,(K) then, as K is nilpotent, [m, x] = 1. Thus
meMn {mx) <Mn {H, mx). However, m & H so this implies nx €
M. We deduce that 0,(K) < M.

If K is not a p-group, then since K is nilpotent there is a prime g # p
such that O,(K) # 1. Then by the previous paragraph O,(K) < M, and
another application of the previous paragraph, with ¢ in place of p, yields
0,(K) < M. Since K is nilpotent we have K = O,(K)O,(K) and thus
K < M. Then M = G contrary to (G, M, H) being a y-triple. We deduce
that K is a p-group. Thus (i) is proved.

Next we prove (ii). Since K is a p-group and K £« M we have that
Ne(M N K)>MnN K and thus (N;(M N K), M, H) is also a y-triple. So,
without loss of generality, we may suppose that G = N;(M N K). We also
note that for any kK € K — M we have

k" YNOM<(Hk)NKNM<HNK=1. (*)

Since M N K < G and since K is a p-group it follows that Z(K) N M #
1. Let U be a minimal H-invariant subgroup of Z(K) N M. Choose
g€ K — M and let W be a minimal H-invariant subgroup of (g ). The
choice of U and W implies that they are elementary abelian. Since
U < Z(K) it follows that {U, W) is elementary abelian also. Using (*) we
see that U N W = 1. Thus

U,W)=UXxW.

Since U X W is normalized by H, we may regard it as an H-module over
GF(p). We see that U and W are irreducible H-submodules of U x W.

let u e U*¥ and we W*. Set v =uw and V = (v7). From (*) we
have WN M = 1,s0 as u € M it follows that ¢ & M. Another application
of (x) implies that V' N U = 1. Since V¥ < U X W and since W is an
irreducible H-module, it follows that 17 is irreducible also. Next we
consider the projection maps

Ty V= U and Ty V- W.

These maps are H-homomorphisms and they are nontrivial as V ¢ U and
V' ¢ W.Since U, W, and V are all irreducible, we deduce that 7, and 7,
are H-isomorphisms. Thus 7}'7,, is a H-isomorphism U — W that maps
u to w and 7},/m, is a H-isomorphism W — U that maps w to u.

Let £ = End;,(W). The preceding paragraph implies that E is transi-
tive on W#. Thus E is irreducible on W and hence End (W) is a field.
Since H < End (W) we see that H is cyclic.

Proof of Theorem B. Let N = N.(H,). First we will show that
(N, M, H) is a y-triple. 1t suffices to prove that N > M. If H,, <G this is
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clear. If H,, is not normal in G then, since it is subnormal by Theorem A,
there exists g € G such that H,, # H{ < NNNowH, <Msoge G - M.
Lemma 2.1(iii) implies that (G, M, H,,) is a vy-triple and thus H§ " M <
(Hy,g> "M = H,,. Hence H} is a subgroup of N not contained in M
and so N > M.

Set N* = N/Hy, M* = M/H,,and H* = H/H,,. Then (N*, M* H*)
is a y-triple and H*,,. = 1. If H* =1 then H/H,, is cyclic. If H* # 1
then Lemma 3.2 implies H* is cyclic and thus H/H,, is cyclic as claimed.

Proof of Theorem C. Assume the theorem false and let G be a minimal
counterexample. Lemma 3.1 proves (i). Note that (iv) follows from (ii) and
(iii). Thus (ii) or (iii) is false. Lemma 3.2 implies that H,, # 1. Wielandt’s
Theorem and (i) imply the existence of a subgroup K of G with the
properties

G-HK, HnNK=H,, and K<G.

Let L = (H);) and set X = ML. Since X < N;(Hy, ) HYS) and as H,,
is not normal in G, Theorem A and Lemma 2.6 imply X < G. Next we
claim that (X, M, H) is a +y-triple. This will be immediate once we have
shown X > M. Since H,, is subnormal but not normal in G, there exists
g € G such that H,, # Hf. Lemma 2.1 implies that (G, M, H,,) is a
v-triple and as g € M we obtain H§, N M < H,,. Thus H§, is a subgroup
of X not contained in M.

Let X* =X/H,, M* = M/Hy,and H* = H/H,. Then (X* M* H*)
is an irreducible +y-triple and since H > H,, > H, we see that H* > H;..
Minimality of G implies there is a prime p such that X* = H*0,(X*),
H* N O(X*) = Hyj., and H*/H}. is a cyclic p'-group. Since H/H,, =
H*/H};. and as (ii) or (iii) is false, we see that K is not a p-group.

Let N be the inverse image of O(X*) in X. Then X = HN and
HnN=H,. Also, X=H(KnX) and HNnKn X = H,. Since
(X,H,H,) is a W-triple, Lemma 2.5(ii) implies that KN X =N. In
particular, (K N X)/Hy is a p-group. Let h be a p'-element of H,. Then
for each g € G we see that 4% must have a trivial image in (K N X)/H,
and hence h € (H,); = 1. We deduce that KN X is a p-group, as are
H,, and L.

Since H/H,, is a cyclic p'-group and H,, is a p-group, the Schur-
Zassenhaus Theorem implies that there exists R < H such that R is a
cyclic p'-group, H = RH,,, and RN H,, = 1. Let x € R* and ¢ € C,(x).
Then x € HN H — Hy, and as (G, H, H,,) is a W-triple it follows that
c€ HN K =H,. Thus Cy(x) < H,, for all x € R*. Since H, is a
p-group and R is a p’-group, we may use Sylow’s Theorem to see that K
and R have coprime orders.
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Let Z be a subgroup of R with prime order r. Let g be a prime divisor
of |K| not equal to p. Since K is an r’-group, Lemma 1.4 implies that Z
normalizes a nontrivial g-subgroup of K. Let Q be a minimal such
g-subgroup. Then Q is elementary abelian and Z acts irreducibly on Q.
Since Cx(Z) < H,, we see that Z is faithful on Q. Moreover, C(Z) <
L 4G so Lemma 1.2(ii) implies C ,,(Z) = 1, hence K/L is nilpotent by
Thompson’s Theorem. Then [K N X, Q] <L < KN X so Q normalizes
KN X. Since Z < X we sce that QOZ normalizes K N X also. Lemma 2.7
yields

[KNX,0]< <CKnX(Z)Q> =(HS).
and using Lemma 1.2(i) we obtain
KNnX=(HSC,x(Q). (*)

NowM=HMNKNX)>Hsowemayselect meMNKnNX—-H.
By (#) there exists d € (HY) and ¢ € Cx  ,(Q) such that m = dc.
Choose e € Q* and set g = ce. Since ¢ and e are commuting elements of
coprime orders we have e € (g). Now M < X = H(K N X) so M has
order divisible by only the prime p and the primes dividing {R|. Thus
QN M =1 and hence g & M. We deduce that

(H,g>) "M =H.

Now e € (g) N Q and choice of Q implies that Q = {(e?) < (H, g).
Thus (HZ) < (H,g), in particular, d € (H, g). Then as c € (g) we
obtain m € (H,g)> N M = H, contradicting m & H and completing the
proof of Theorem C.

Proof of Corollary D. Assume the corollary false. Then G is noncyclic
and hence insoluble. Since M is a maximal subgroup of G and G is
noncyclic we see that M # 1. Burnside’s transfer lemma implies that M is
not cyclic and it follows that H # 1. We have shown that G > M > H > 1.

Let g€ G — M. Then (H,g) # G so as M is maximal in G we see
that M ¢ (H, g», and as H is maximal in M this forces M N (H, g) = H.
Thus (G, M, H) is a y-triple.

Theorem A and the simplicity of G imply that H,, = 1. Thus H > H,,
and Theorem C implies that G is soluble, a contradiction.

4. EXAMPLES

First we have the trivial y-triples.

ExaMpLE 1. Let p be a prime, G be an elementary abelian p-group,
and let H <M < G. Using elementary linear algebra it follows that
(G, M, H) is a y-triple.
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Next we construct some more complex examples.

ExaMPLE 2. Let p be a prime, H a cyclic p’-group, and X a faithful
irreducible GF( p)H-module. Let U and W be nontrivial GF( p) H-modules
all of whose composition factors are isomorphicto X. Let V= U & W and
G = HV, the semidirect product of V' considered as an abelian group and
H considered as a group of automorphisms of V. Finally, let M = HU.
Then (G, M, H) is a y-triple.

Proof. Let g€ G — M. Since G = HV, there exist h € H and v €
V — U such that g = Av. Then

(H,g)N"M={(H,v)N"M=Hu")nM=H")nU).

Thus all we must do is prove that {v) N U = 0. Choose u € U and
w € W such that v = u + w.

Let x € X*. Since H is cyclic, we see that End,( X) is transitive on X *
and then that there are H-homomorphisms 6: X — U and ¢: X - W
such that x6 =u and xy =w. Then (¢¥) ={y8 + y¢ : y € X}. Since
v & U we have w # 0 and hence ¢ is a monomorphism. Hence

Yy NnU={y0+yp:yeX,ypy=0} =0
as required.

The next example is similar to the previous one except that O,(G) is not
abelian.

ExampPLE 3. Let p be an odd prime such that 3 does not divide p — 1.
Let

P=Lx,y,%,¥,21,2:xf =yl =2z} = [xi, 5] = [xi’zj] =1,
[zl =1z,2,] = 1, [x,x,] = 2y,

vyl =z, [yl =27 27 [ X0, 0] = 2,200,

Then P is a p-group of exponent p, class two, order p®, and [P, P] =
&(P) = Z(P) =z, 2,).
It is possible to define an automorphism a of P by

_ SR B — = 1,1
xX; =y Yo =Xy, zy = 2z, and =z 27 .

Set H={a),G=HP, M =H{x,,y,>. Then (G, M, H) is a y-triple and
H, = 1.

Proof. First observe that {x,,y,7, {x,,y,), and {z,,z,) are isomor-
phic two-dimensional GF(p)H-modules, and as 3 does not divide p — 1,
they are irreducible. Let v € P and suppose that {x,,y,> < {v). Let
P* =P/(z,,2,7. Then P* is a H-module that is the direct sum of two
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isomorphic irreducible two-dimensional H-submodules. Since {x, y,» N
(z,,2z,> = 1 we have ¢* # 0, and a similar argument to that used in the
previous example reveals that dim{v*#) = 2. Thus {(v¥) <
(zy,2,){x;,y,). Repeating the above argument forces [(¢")| =p? and
thus (¢} = (x,, y,). We deduce that if v € P and {x,,y,> < (¢!} then
v € {x;,y;7. It now follows readily that (G, M, H) is a y-triple. Clearly
H, = 1.

Note that the above construction can be carried out even if 3 divides
p — 1; however, in this case (G, M, H) is not a y-triple.

The following example shows that the conclusion of Theorem A, that
H,, is subnormal in G, cannot be strengthened to H,, is normal in G.
None of the previous examples does this.

EXAMPLE 4. Let p, P, x,, y;, z;, and « be the same as in the previous
example. Let P’ be an isomorphic copy of P and let x}, y;, z; denote the
images of x,, y,, z; respectively. Let ) = P X P' and extend the action of
a to Q by letting it act on P’ the same as it acts on P. Let G = {(a)(,
A=Lx,y), 2" ={2},z5), H=(a)A,and M = {a)AZ'.

A similar argument to the one used in the previous example proves that
(G, M, H) is a y-triple. Also, H,;, = A # 1 but A; = 1. Hence (G, M, H)
is irreducible, H > H,, > 1, and H,, is not normal in G.

Next we give an example of an irreducible y-triple in which H > H,, but
in which G is not a Frobenius group. This shows that the conclusion (i) of
Theorem C cannot be strengthened to G is a Frobenius group. None of
the previous examples do this.

EXAMPLE 5. Let p be an odd prime and let

Q=Ax,y,z:x?=yr =z =[x,z] = [y,z] = 1, [x,y] = 2>
= the extraspecial group of order p” and exponent p;

V=~{v:vl=1);

P=QxV,

define an automorphism « of P with order two by

set G=(a)P, H={a,x),and M = (a, x,U).

It is left as an exercise to show that (G, M, H) is an irreducible y-triple.
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