On the Fitting height of a soluble group that is generated by a conjugacy class

Paul Flavell

The School of Mathematics and Statistics The University of Birmingham Birmingham B15 2TT United Kingdom e-mail: p.j.flavell@bham.ac.uk

Let G be a finite group and suppose that P is a soluble $\{2,3\}'$ -subgroup of G. The reader will lose only a little by assuming that P is a subgroup of prime order p > 3. Define

 $\Sigma_G(P) = \{A \le G \mid A \text{ is soluble and } A = \langle P, P^a \rangle \text{ for some } a \in A\}.$

This set is partially ordered by inclusion and we let

 $\Sigma_G^*(P)$

denote the set of maximal members of $\Sigma_G(P)$.

This article grew out of the following discovery:

Theorem A. Let G be a finite group, let P be a soluble $\{2,3\}'$ -subgroup of G and choose $A \in \Sigma_G^*(P)$. Then

F(A)V

is nilpotent for every nilpotent subgroup V of G that is normalized by A.

The article of Bender [1] indicates the usefulness of such results in the study of finite groups. An immediate consequence is the following:

Corollary B. Assume the hypotheses of Theorem A and that G is soluble. Then

$$\pi(F(A)) \subseteq \pi(F(G)).$$

Thus at least when G is soluble, the members of $\Sigma_G^*(P)$ reflect the global properties of G. This is a little surprising since, in some senses, the members of $\Sigma_G^*(P)$ can be small compared to G. Indeed if P is cyclic then every member of $\Sigma_G^*(P)$ has cyclic abelianization.

It is tempting to conjecture that the conclusion of Corollary B can be replaced by the stronger assertion that

$$F(A) \leq F(G).$$

This is false. However, by considering the notion of Fitting height, it is possible to prove a result that is just as good.

The following consequence of Theorem A is the starting point.

Theorem C. Let G be a finite soluble group and let C be a conjugacy class of $\{2,3\}'$ -subgroups of G. If G is generated by C then there exist two members of C that generate a subgroup with the same Fitting height as G.

Moreover, the two members of C may be chosen to be conjugate in the subgroup that they generate.

This leads us to define:

 $\Sigma_G^f(P)$

to be the set consisting of those members of $\Sigma_G(P)$ with maximal Fitting height. Moreover, if $G \neq 1$ is soluble we let

$$\psi(G) \ = \ \bigcap\{ \ K \trianglelefteq G \ | \ f(G/K) < f(G) \ \},$$

where f(G) denotes the Fitting height of G. Then $\psi(G)$ is the unique smallest normal subgroup of G such that $f(G/\psi(G)) < f(G)$ and it is also the case that $1 \neq \psi(G) \leq F(G)$. If G = 1 then we let $\psi(G) = 1$. Using Theorem C we obtain: **Theorem D.** Let P be a $\{2,3\}'$ -subgroup of the finite soluble group G and choose $A \in \Sigma_G^f(P)$. Then

$$\psi(A) \leq F(G).$$

Combining this with the Baer-Suzuki Theorem we obtain:

Corollary E. Let C be a conjugacy class of $\{2,3\}'$ -subgroups of the finite group G. Then C generates a soluble subgroup if and only if every four members of C generate a soluble subgroup.

Assume now the hypotheses of Theorem D. The conclusion of that theorem says that we can write down a subnormal nilpotent subgroup of G just by examining the subgroups that are generated by two conjugates of P. If $G = \langle P^G \rangle$ then we can go a little further:

Theorem F. Let P be a $\{2,3\}'$ -subgroup of the finite soluble group G and suppose that $G = \langle P^G \rangle$. Then

$$\psi(G) = \left\langle \psi(A) \mid A \in \Sigma_G^f(P) \right\rangle.$$

In other words, we can write down a characteristic nilpotent subgroup of G in terms of subgroups that are 'localized' at P.

1 Preliminaries

Henceforth the word 'group' shall mean 'finite group'.

Lemma 1.1. Let P be a soluble $\{2,3\}'$ -subgroup of the group G, let V be a soluble normal subgroup of G, set $\overline{G} = G/V$ and suppose that $\overline{A} \in \Sigma_{\overline{G}}(\overline{P})$. Then \overline{A} has an inverse image which is a member of $\Sigma_G(P)$.

Proof. Choose $a \in G$ with $\overline{a} \in \langle \overline{P}, \overline{P}^{\overline{a}} \rangle = \overline{A}$ and $\langle P, P^a \rangle$ minimal. Then $\langle P, P^a \rangle \in \Sigma_G(P)$.

For a group G we let F(G) be the Fitting subgroup of G, that is, the largest normal nilpotent subgroup of G. For a prime q we let $\mathcal{O}_q(G)$ be the largest normal q-subgroup of G.

If G is soluble we let f(G) denote the Fitting height of G. This is the smallest integer n such that G possesses a series

$$1 = F_0 \trianglelefteq F_1 \trianglelefteq \cdots \trianglelefteq F_n = G$$

with F_{i+1}/F_i nilpotent for all *i*. If $G \neq 1$ then f(G/F(G)) = f(G) - 1.

The following two results are elementary.

Lemma 1.2. Let $H \leq G$ with G soluble and f(H) = f(G). Then

$$\psi(H) \le \psi(G) \le F(G).$$

Lemma 1.3. Let G be soluble, let $N \leq G$, set $\overline{G} = G/N$ and suppose that $\overline{G} \neq 1$. Then the following are equivalent:

- (i) $\overline{\psi(G)} \neq 1$.
- (ii) $f(\overline{G}) = f(G)$.
- (iii) $\psi(\overline{G}) = \overline{\psi(G)}.$

2 Modules for soluble groups

Lemma 2.1. Let G be a group, let $V \neq 1$ be an irreducible G-module over an algebraically closed field and let $K \leq G$ be such that G/K is cyclic. If V is homogeneous as a K-module then it is irreducible as a K-module.

Proof. This follows from [2, Theorems 11.20, p.278 and 11.46, p.303]. \Box

Lemma 2.2. Let Q be an extraspecial q-group of exponent q and order q^{1+2t} . Suppose that A is a noncyclic abelian normal subgroup of Q with order q^{1+k} . Then the following hold:

- (a) $Z(Q) \leq A$ and A possesses exactly q^k hyperplanes A_1, \ldots, A_{q^k} that do not contain Z(Q). These hyperplanes are permuted transitively by Q.
- (b) Let V be a faithful homogeneous Q-module over a field of characteristic prime to q. For each i set $V_i = C_V(A_i)$ and set $\Omega = \{V_1, \ldots, V_{q^k}\}$. Then Ω is permuted transitively by Q,

$$V = V_1 \oplus \cdots \oplus V_{q^k}$$

and $C_A(V_i) = A_i$ for all *i*.

(c) Let the q-group P act as a group of automorphisms of Q. Then Q possesses a P-invariant abelian normal subgroup with order q^{1+t} .

Proof. Let $\overline{Q} = Q/Z(Q)$. Since Q is extraspecial we have $Z(Q) = Q' = \Phi(Q) \cong \mathbb{Z}_q$ so \overline{Q} may be regarded as a GF(q)-vectorspace and the map $(,): \overline{Q} \times \overline{Q} \longrightarrow Z(Q)$ defined by

$$(Z(Q)x, Z(Q)y) = [x, y]$$

is a nondegenerate symplectic form on \overline{Q} .

(a). The first assertion is true since $Z(Q) = Q' \cong \mathbb{Z}_q$ and $1 \neq A \trianglelefteq Q$. The second assertion follows from a counting argument and the fact that A is elementary abelian. Let $B = A_1$. The group \overline{Q} acts by conjugation on the set of hyperplanes of A. Since $Z(Q) \cap B = 1$ it follows that

$$N_{\overline{Q}}(B) = \overline{B}^{\perp},$$

so B has $|\overline{Q}:\overline{B}^{\perp}|$ conjugates. Now codim $\overline{B}^{\perp} = \dim \overline{B}$ so $|\overline{Q}:\overline{B}^{\perp}| = |\overline{B}|$. As $Z(Q) \cap B = 1$ we have $|\overline{B}| = q^k$. Consequently, B has q^k conjugates. This proves (a).

(b). The first assertion follows from (a). We may suppose that Q acts irreducibly on V. In particular, $C_V(Z(Q)) = 0$. Let $U \leq V$ be an irreducible A-module. Since A is elementary abelian it follows that $C_A(U)$ is a hyperplane of A. As $C_V(Z(Q)) = 0$ we have $C_A(U) = A_i$ for some i. Then $\langle \Omega \rangle \neq 0$ and then the irreducibility of Q on V forces $V = \langle \Omega \rangle$.

If $i \neq j$ then $V_i \cap V_j \leq C_V(A) = 0$. Let $i < q^k$ be such that $V_1 + \cdots + V_i = V_1 \oplus \cdots \oplus V_i$. Now A is abelian so it normalizes each V_j and as $V_{i+1} = C_V(A_{i+1})$ we have

$$V_{i+1} \cap (V_1 \oplus \cdots \oplus V_i) = (V_{i+1} \cap V_1) \oplus \cdots \oplus (V_{i+1} \cap V_i) = 0.$$

We deduce that $V = V_1 \oplus \cdots \oplus V_{q^k}$. The final assertion in (b) follows from $C_V(Z(Q)) = 0$.

(c). Since $Z(Q) \cong \mathbb{Z}_q$ we have [Z(Q), P] = 1 so P acts as a group of isometries on \overline{Q} . Let U be a maximal P-invariant isotropic subspace of \overline{Q} . Suppose that $U < U^{\perp}$. Then P acts on the nontrivial GF(q)-vectorspace U^{\perp}/U . Since Pis a q-group, it fixes a nonzero vector $v + U \in U^{\perp}/U$. Then $U \oplus \langle v \rangle$ is a P-invariant isotropic subspace, contrary to the maximal choice of U. Thus $U = U^{\perp}$ and then dim U = t. The inverse image of U in Q has the desired properties.

Lemma 2.3. Let G be a soluble nonnilpotent primitive linear group over an algebraically closed field. Then there exists $Q \trianglelefteq G$ such that Q is an extraspecial q-group and G acts nontrivially and irreducibly on $Q/\Phi(Q)$. Moreover, if $q \neq 2$ then Q has exponent q.

Proof. Let $\overline{G} = G/F(G)$ and choose a prime r such that $\mathcal{O}_r(\overline{G}) \neq 1$, let K be the inverse image of $\mathcal{O}_r(\overline{G})$ in G and choose $R \in \operatorname{Syl}_r(K)$. Then $K = R\mathcal{O}_{r'}(F(G))$ and since $R \not\leq \mathcal{O}_r(G)$ we have $[\mathcal{O}_{r'}(F(G)), R] \neq 1$. Choose a prime $q \neq r$ such that $[\mathcal{O}_q(G), R] \neq 1$ and set $S = [\mathcal{O}_q(G), R]$. Note that S = [S, R]. The Frattini Argument implies that

$$G = N_G(R)\mathcal{O}_{r'}(F(G))$$

and it follows that $S \trianglelefteq G$.

Let Q be a subgroup of S that is minimal subject to $Q \leq G$ and $[Q, R] \neq 1$. The hypotheses imply that every abelian normal subgroup of G is cyclic and contained in Z(G). In particular, Q is nonabelian. Suppose that T < Qwith $T \leq G$. The minimality of Q implies that R acts trivially on T and as S = [S, R] it follows that S acts trivially on T, whence $T \leq Z(S)$. We deduce that

$$1 \neq Q' \le \Phi(Q) \le Z(Q) \le Z(S) \le Z(G). \tag{1}$$

Since S is nilpotent we have [Q, S] < Q whence

$$[Q, S] \le Z(S) \le Z(G)$$

also.

We claim that $Q' = [Q, S] \cong \mathbb{Z}_q$. Let $x \in Q$ and $y \in S$. Since $[Q, S] \leq Z(S)$ we have $[x, y]^q = [x^q, y]$. But $x^q \in \Phi(Q) \leq Z(S)$ whence $[x, y]^q = 1$. Since Z(S) is cyclic and since $Q' \neq 1$ the claim follows.

Now $[C_Q(R), S] \leq [Q, S] \leq C_Q(R)$ so $C_Q(R) \leq S$. As S = [S, R] it follows that $C_Q(R) \leq Z(S)$. Since $Q = C_Q(R)[Q, R]$ we have Q = Z(Q)[Q, R] and then Q' = [Q, R]'. By the previous paragraph we have Q' = [Q, S] whence $[Q, S] \leq [Q, R]$ and in particular $[Q, R] \leq S$. Recall that $G = N_G(R)\mathcal{O}_{r'}(F(G))$ and that $Q \leq S = [\mathcal{O}_q(G), R]$. It follows that $[Q, R] \leq G$ and as $1 \neq [Q, R] = [Q, R, R]$, the minimal choice of Q yields

$$Q = [Q, R].$$

Let $Q^* = Q/Q'$ and consider the action of G on Q^* . Now $Q^* = [Q^*, R]$ and since Q^* is abelian we have $C_{Q^*}(R) = 1$ by [3, Theorem 5.2.3, p.177]. Suppose that T^* is a proper G-invariant subgroup of Q^* . Let T be the inverse image of T^* in G. The minimal choice of Q implies that [T, R] = 1 whence $T^* \leq C_{Q^*}(R) = 1$. This implies that Q^* is elementary abelian and then that the action of G on Q^* is irreducible. This action is nontrivial since $Q^* = [Q^*, R]$. From (1) we have $1 \neq Q' \leq \Phi(Q) \leq Z(Q) < Q$ whence $Q' = \Phi(Q) = Z(Q)$. We have seen that $Q' \cong \mathbb{Z}_q$ so Q is extraspecial. If $q \neq 2$ then by [3, Theorem 5.3.10, p.184] and the minimal choice of Q we have $Q = \Omega_1(Q)$ and then the fact that $Q' \leq Z(Q)$ implies that Q has exponent q. **Theorem 2.4.** Let G be a soluble group, suppose that P is a $\{2,3\}'$ -subgroup of G such that $G = \langle P^G \rangle$, suppose that $V \neq 0$ is a G-module that does not involve the trivial G-module and let $p = \min \pi(P)$. Then

$$\dim C_V(P) \leq \frac{2}{p} \dim V.$$

Proof. Assume false and consider a counterexample in which |G| + |P| is minimized and then dim V is minimized. We may suppose that F, the underlying field for V, is algebraically closed and that G acts irreducibly on V. We have

$$\dim C_V(P) > \frac{2}{p} \dim V.$$

Step 1 Let $\Omega = \{V_1, \ldots, V_n\}$ be a *P*-invariant collection of subspaces of *V*, all of the same dimension, such that

$$V = V_1 \oplus \cdots \oplus V_n.$$

Let $m = |Fix_{\Omega}(P)|$. Then

Proof. Let $\Omega_1, \ldots, \Omega_k$ be the orbits of P on Ω . Then

$$\dim C_V(P) = \sum_{i=1}^k \dim C_{\langle \Omega_i \rangle}(P) \leq \sum_{i=1}^k \frac{1}{|\Omega_i|} \dim \langle \Omega_i \rangle.$$

We may suppose that $\Omega_1, \ldots, \Omega_m$ are the orbits of size 1, so the other orbits all have size at least p. Then

$$\dim C_V(P) \leq m \dim V_1 + \frac{1}{p} \sum_{i=m+1}^k \dim \langle \Omega_i \rangle$$
$$\leq m \dim V_1 + \frac{1}{p} (\dim V - m \dim V_1)$$

Now dim $C_V(P) > \frac{2}{p} \dim V$ whence

$$\frac{1}{p}\dim V \leq m\left(1-\frac{1}{p}\right)\dim V_1.$$

Since dim $V = n \dim V_1$, the result follows.

Step 2 G is primitive on V. In particular, every normal subgroup of G is homogeneous on V and Z(G) is the unique maximal abelian normal subgroup of G.

Proof. Assume false. Then there exists a collection $\Omega = \{V_1, \ldots, V_n\}$ of subspaces of V that are permuted transitively by G such that

 $V = V_1 \oplus \cdots \oplus V_n$ and $n \ge 2$.

Choose such a collection with n minimal. Let

$$K = \ker (G \longrightarrow S_{\Omega}) \text{ and } \overline{G} = G/K.$$

Then \overline{G} is a faithful primitive permutation group on Ω . Let \overline{L} be a minimal normal subgroup of \overline{G} . Since \overline{G} is soluble and primitive on Ω it follows that \overline{L} is an elementary abelian *l*-group for some prime *l*, that \overline{L} is regular on Ω and that

$$\overline{G} = \operatorname{Stab}_{\overline{G}}(U)\overline{L}$$
 and $\operatorname{Stab}_{\overline{G}}(U) \cap \overline{L} = 1$ for all $U \in \Omega$.

Step 1 implies that $\operatorname{Fix}_{\Omega}(\overline{P}) \neq \emptyset$. We claim that $C_{\overline{L}}(\overline{P})$ acts regularly on $\operatorname{Fix}_{\Omega}(\overline{P})$. Let $U, W \in \operatorname{Fix}_{\Omega}(\overline{P})$. There exists $\overline{g} \in \overline{L}$ such that $W\overline{g} = U$. Then $\overline{P}, \overline{P}^{\overline{g}} \leq \operatorname{Stab}_{\overline{G}}(U)$ so

$$[\overline{g}, \overline{P}] \leq \operatorname{Stab}_{\overline{G}}(U) \cap \overline{L} = 1$$

and hence $\overline{g} \in C_{\overline{L}}(\overline{P})$. Since \overline{L} is regular on Ω we have proved the claim. Now $|\Omega| = |\overline{L}|$ and $|\operatorname{Fix}_{\Omega}(\overline{P})| = |C_{\overline{L}}(\overline{P})|$ so Step 1 implies that

$$|\overline{L}: C_{\overline{L}}(\overline{P})| < p$$

Using the fact that every nonidentity element of \overline{P} has order at least p, it follows that $\overline{L} = C_{\overline{L}}(\overline{P})$ and then that \overline{P} acts trivially on Ω . Since $\overline{G} = \langle \overline{P}^{\overline{G}} \rangle$ and since \overline{G} acts transitively on Ω , we have obtained a contradiction. Thus every normal subgroup of G acts homogeneously on V.

The final two assertions follow from the first.

Now G is irreducible on V so $C_V(G) = 0$ whence P < G. Since $G = \langle P^G \rangle$, it follows that G is not nilpotent. Step 2 and Lemma 2.3 imply that there exists a prime q and $Q \leq G$ such that Q is an extraspecial q-group and that G acts irreducibly and nontrivially on $Q/\Phi(Q)$. Also, $C_V(Q) = 0$ so $q \neq \operatorname{char}(F)$.

Step 3 $P/C_P(Q)$ is a q-group.

Proof. Assume false. Then there exists a prime $p_0 \neq q$ and a cyclic p_0 -group $P_0 \leq P$ such that $[Q, P_0] \neq 1$. Set $G_0 = P_0[Q, P_0]$. Since $p_0 \neq q$ we have $[Q, P_0] = [Q, P_0, P_0]$ whence $G_0 = \langle P_0^{G_0} \rangle$. Now Q acts homogeneously and faithfully on V and as $[Q, P_0] \leq Q$ it follows from Maschke's Theorem that V does not involve the trivial $[Q, P_0]$ -module. In particular, V does not involve the trivial G_0 -module and then the minimality of |G| + |P| forces $G = G_0, P = P_0, p = p_0$ and Q = [Q, P]. Then G = PQ and $C_P(Q) \leq G$. Since $C_V(P) \neq 0$ and since G is irreducible on V we have $C_P(Q) = 1$. Also, Lemma 2.1 implies that Q acts irreducibly on V.

By [3, Theorem 5.5.5, p.208] there exists an integer t such that

$$|Q| = q^{1+2t}$$
 and dim $V = q^t$.

We have $|P| = p^n$ for some integer $n \ge 1$. Since P is a $\{2,3\}'$ -group we have p > 3 so the first paragraph of the proof of [3, Lemma 11.2.5, p.368] implies that

$$p^n$$
 divides $q^t + 1$.

The argument now splits into two cases depending on whether F has characteristic p or not.

Case $p = \operatorname{char}(F)$. The Hall-Higman Theorem [3, Theorem 11.2.1, p.364] implies that the Jordan canonical form for a generator of P consists of $(q^t + 1)/p^n$ Jordan blocks. Recalling that dim $V = q^t$ we have

$$\dim C_V(P) = \frac{\dim V + 1}{p^n}$$
$$\leq \frac{2}{p} \dim V,$$

a contradiction.

Case $p \neq \operatorname{char}(F)$. Let χ be the character of G afforded by V. Using the Coprime Hall-Higman Theorem [4, Satz V.17.13, p.574] together with the fact that $p^n|q^t + 1$ we have

$$\chi_P = \frac{q^t + 1}{p^n} \rho - \mu$$

where ρ is the regular character of P and μ is a linear character of P. Then

$$\dim C_V(P) \leq \frac{\dim V + 1}{p^n}$$
$$\leq \frac{2}{p} \dim V.$$

This contradiction completes the proof of Step 3.

Recall that G acts nontrivially and irreducibly on $Q/\Phi(Q)$ and that $p = \min \pi(P)$. Since $G = \langle P^G \rangle$ and P is a $\{2,3\}'$ -group it follows from the previous step that

q > 3 and that $p \le q$.

Then Lemma 2.3 implies that Q has exponent q.

Step 4 Let A be an abelian normal subgroup of Q that is normalized by P. Then A is centralized by P.

Proof. Let $|A| = q^{1+k}$ and note that A is elementary abelian. Since $Z(Q) \leq Z(G)$ we have [Z(Q), P] = 1. If k = 0 then A = Z(Q), hence we may suppose that $k \geq 1$. We assume the notation of Lemma 2.2. Now P normalizes A so it permutes Ω . Let $m = |\operatorname{Fix}_{\Omega}(P)|$. Step 1 together with $p \leq q$ implies that

$$q^k < qm$$

Hence m > 1. Lemma 2.2(b) implies that if $V_i \in Fix_{\Omega}(P)$ then P normalizes A_i . Note that $|A_i| = q^k$ for all i.

Since m > 1 we may suppose that $V_1, V_2 \in \operatorname{Fix}_{\Omega}(P)$. If k = 1 then $|A_1| = |A_2| = q$ and then Step 3 implies that P centralizes A_1 and A_2 . But $A = \langle A_1, A_2 \rangle$ so P centralizes A. Hence we may assume that $k \geq 2$. Now $q^k < qm$ so q < m.

Now $|A : A_1 \cap A_2| = q^2$ and $Z(Q) \cap A_1 \cap A_2 = 1$ so it follows that A contains exactly q hyperplanes which contain $A_1 \cap A_2$ but not Z(Q). Since q < m we may suppose that $V_3 \in \operatorname{Fix}_{\Omega}(P)$ and that $A_1 \cap A_2 \not\leq A_3$. Then $A_1 \cap A_2$ and $A_1 \cap A_3$ are distinct hyperplanes of A_1 whence $A = Z(Q)(A_1 \cap A_2)(A_1 \cap A_3)$.

Recall that P normalizes A_1 and A_2 so P normalizes $Z(Q)(A_1 \cap A_2)$. This subgroup has index q in A and it is normal in Q since Q' = Z(Q). By induction, P centralizes $Z(Q)(A_1 \cap A_2)$. Similarly P centralizes $Z(Q)(A_1 \cap A_3)$ and we deduce that P centralizes A.

We are now in a position to obtain a final contradiction. Let $\overline{Q} = Q/Z(Q)$ and regard \overline{Q} as a GF(q)G-module. Since G acts irreducibly and nontrivially on \overline{Q} we have that \overline{Q} does not involve the trivial G-module. Since Z(Q) is in the kernel of the action of G on \overline{Q} , we may invoke the minimality of G to obtain

$$\dim C_{\overline{Q}}(P) \leq \frac{2}{p} \dim \overline{Q}.$$

Choose t such that $|Q| = q^{1+2t}$, so that dim $\overline{Q} = 2t$. Using Step 3, Lemma 2.2(c) and Step 4 we see that

$$\dim C_{\overline{Q}}(P) \geq \frac{1}{2} \dim \overline{Q}.$$

But $p \ge 5$ so this contradicts the previous inequality and completes the proof of this theorem.

Remark By modifying the conclusion, it ought to be possible to remove the hypothesis that P is a $\{2,3\}'$ -group.

Corollary 2.5. Assume the hypotheses of Theorem 2.3. Then

$$\dim C_V(P) < \frac{1}{2} \dim V.$$

Remark It is in fact Corollary 2.5 that we shall use rather than the stronger Theorem 2.4. If it is desired to prove only Corollary 2.5 then a simpler proof is possible. In particular, the appeal to Hall-Higman theory in Step 3 may be replaced by a more elementary argument.

Indeed, in Step 3 we have

$$G = PQ$$

where Q is an extraspecial q-group, P is a cyclic p-group that acts faithfully and irreducibly on $Q/\Phi(Q)$ and V is a faithful G-module on which Q acts irreducibly.

Let E be the enveloping algebra of Q on V. By Weddurburn's Theorem [3, Theorem 3.6.3, p.86] we have E = End(V), so then dim $E = (\dim V)^2$. Choose $x \in P$ with prime order p.

The linear transformations $y: V \longrightarrow V$ with $[V, x] \leq \ker y$ and $\operatorname{Im} y \leq C_V(x)$ constitute a subspace of $C_E(x)$ with dimension $(\dim C_V(x))^2$. Considering the scalar transformations, it follows that

$$\dim C_E(x) \ge (\dim C_V(x))^2 + 1.$$

Either by considering the action of $\langle x \rangle Q / \Phi(Q)$ on E or by the argument of [3, Lemma 11.2.4, p.367] we have

$$\dim C_E(x) = \frac{\dim E - 1}{p} + 1.$$

But dim $E = (\dim V)^2$ and $p \ge 5$ so these inequalities yield

$$\dim C_V(x) < \frac{1}{2} \dim V.$$

Also, another proof of Corollary 2.5 is possible by using a result of Robinson [5, Corollary 1.2].

3 The proofs of Theorems A–E

The proof of Theorem A. Assume false and consider a counterexample with |G| + |V| minimal. Then G = AV and there exist distinct primes r and q such that V is an r-group and $\mathcal{O}_q(A)$ does not centralize V. Since $[V, \mathcal{O}_q(A)]$ is normalized by A, the minimality of V forces $V = [V, \mathcal{O}_q(A)]$. Note that $G \notin \Sigma_G(P)$.

Let $\overline{G} = G/\Phi(V)$. Then $\overline{G} = \overline{A} \overline{V}$, \overline{V} is elementary abelian, $\overline{V} = [\overline{V}, \overline{\mathcal{O}_q(A)}] \neq 1$ and then $C_{\overline{V}}(\overline{\mathcal{O}_q(A)}) = 1$. Let $\overline{U} \leq \overline{V}$ be a minimal normal subgroup of \overline{G} and suppose that $\overline{U} < \overline{V}$. Let U be the inverse image of \overline{U} in G. The minimality of |V| implies that $[\mathcal{O}_q(A), U] = 1$ whence $\overline{U} \leq C_{\overline{V}}(\overline{\mathcal{O}_q(A)}) = 1$, a contradiction. Thus \overline{V} is a minimal normal subgroup of \overline{G} . Since \overline{V} is abelian, this implies that \overline{A} is a maximal subgroup of \overline{G} and that $\overline{A} \cap \overline{V} = 1$.

Clearly $\overline{A} \in \Sigma_{\overline{G}}(\overline{P})$. Suppose that $\overline{A} \notin \Sigma_{\overline{G}}^*(\overline{P})$. Then since \overline{A} is a maximal subgroup of \overline{G} we have $\overline{G} = \langle \overline{P}, \overline{P}^{\overline{g}} \rangle$ for some $g \in G$. Then $G = \Phi(V) \langle P, P^g \rangle$ whence $V = \Phi(V)(V \cap \langle P, P^g \rangle)$ so $V \leq \langle P, P^g \rangle$ and then $G = \langle P, P^g \rangle \in \Sigma_G(P)$, a contradiction. We deduce that $\overline{A} \in \Sigma_{\overline{G}}^*(\overline{P})$ and then the minimality of |G| forces $\Phi(V) = 1$. In particular, A is a complement to V.

Set $N = \mathcal{O}_q(A)V \leq G$ and note that $\mathcal{O}_q(A) \in \operatorname{Syl}_q(N)$. Since $C_V(\mathcal{O}_q(A)) = 1$ we have $V \cap N_G(\mathcal{O}_q(A)) = 1$ and it follows that the complements to V in G are the normalizers of the Sylow q-subgroups of N. In particular, V acts transitively by conjugation on its set of complements.

Choose $a \in A$ such that $A = \langle P, P^a \rangle$. Let $v \in V$ and set $B = \langle P, P^{av} \rangle$. Since G = AV we have G = BV. Now $G \notin \Sigma_G(P)$ and V is a minimal normal subgroup of G so it follows that B is a complement to V. By the previous paragraph there exists $u \in V$ such that $B^u = A$. Then

$$\langle P^u, P^{avu} \rangle = A = \langle P, P^a \rangle.$$

In particular,

$$[u,P] \leq \langle P,P^u\rangle \cap V \leq A \cap V = 1,$$

and

$$[vu,P^a] \ \leq \ \langle P^a,P^{avu}\rangle \cap V \ \leq A \cap V \ = \ 1.$$

Thus $u \in C_V(P)$ and $vu \in C_V(P^a)$. Since v was arbitrary, we deduce that

$$V = C_V(P)C_V(P^a).$$

Regarding V as a GF(r)A-module, this implies that

$$\dim C_V(P) \geq \frac{1}{2} \dim V.$$

But A acts irreducibly and nontrivially on V and $A = \langle P^A \rangle$, so Corollary 2.5 supplies a contradiction.

The proof of Corollary B. This follows from Theorem A and the fact that $C_G(F(G)) \leq F(G)$.

The proof of Theorem C. Choose $P \in \mathcal{C}$. It suffices to show that there exists $A \in \Sigma_G(P)$ with f(A) = f(G). Assume this to be false and let G be a minimal counterexample. Choose $q \in \pi(F(G))$ and set

$$\overline{G} = G/\mathcal{O}_q(G).$$

Using Lemma 1.1 we see that $f(\overline{G}) = f(G) - 1$. Then $F(G) = \mathcal{O}_q(G)$ since otherwise G would embed into a direct product of two groups, both with Fitting height f(G) - 1.

The minimality of G implies that there exists $\overline{A} \in \Sigma_{\overline{G}}(\overline{P})$ such that $f(\overline{A}) = f(\overline{G})$. By Lemma 1.1 there exists $A \in \Sigma_G(P)$ such that A maps onto \overline{A} . Choose A^* such that

$$A \leq A^* \in \Sigma_G^r(P).$$

Now $f(G) - 1 = f(\overline{A}) \leq f(A) \leq f(A^*)$ so as G is a counterexample, we deduce that $f(\overline{A}) = f(A) = f(A^*)$. By Lemma 1.2 we have $\psi(A) \leq F(A^*)$ so Theorem A implies that $\psi(A)\mathcal{O}_q(G)$ is nilpotent. Now $F(G) = \mathcal{O}_q(G)$ and G is soluble so $C_G(\mathcal{O}_q(G)) \leq \mathcal{O}_q(G)$. We deduce that $\psi(A)$ is a q-group. Since $f(\overline{A}) = f(A)$ it follows from Lemma 1.3 that $\psi(\overline{A})$ is a q-group.

Recall that $f(\overline{A}) = f(\overline{G})$ so Lemma 1.2 implies that $\psi(\overline{A}) \leq F(\overline{G})$. However, $\overline{G} = G/\mathcal{O}_q(G)$ so $F(\overline{G})$ is a q'-group and then $\psi(\overline{A}) = 1$. This implies that $\overline{G} = 1$ and then that $G = \mathcal{O}_q(G)$. Since $G = \langle P^G \rangle$, this forces G = P and then P is a member of $\Sigma_G(P)$ with Fitting height f(G). This contradiction completes the proof. The proof of Theorem D. Set $H = \langle P^G \rangle$ and note that $A \leq H$. Then $A \in \Sigma^f_H(P)$. If H < G then by induction we have $\psi(A) \leq F(H)$. But $H \leq G$ so $F(H) \leq F(G)$. Hence we may suppose that H = G. Then by Theorem C we have f(A) = f(G) and then Lemma 1.2 forces $\psi(A) \leq F(G)$. \Box

The proof of Corollary E. Choose $P \in \mathcal{C}$ and $A \in \Sigma_G^f(P)$. Let $g \in G$ and set $H = \langle A, A^g \rangle$. Then H is soluble since it is generated by four members of \mathcal{C} . By Theorem D we have $\langle \psi(A), \psi(A)^g \rangle \leq F(H)$. In particular, $\langle \psi(A), \psi(A)^g \rangle$ is nilpotent for all $g \in G$ so the Baer-Suzuki Theorem forces $\psi(A) \leq F(G)$. Now apply induction to G/F(G).

4 Generators for $\psi(G)$

Lemma 4.1. Let G be a soluble group. Suppose that $f(G) \ge 2$ and that $\psi(G)$ is a q-group. Set $\overline{G} = G/\psi(G)$ and let K be the inverse image of $\mathcal{O}_{q'}(\psi(\overline{G}))$ in G. Then

$$\psi(G) = [\psi(G), K].$$

Proof. Let L be the inverse image of $\psi(\overline{G})$ in G and choose $Q \in \text{Syl}_q(L)$. Since $\psi(G)$ is a q-group and since $\psi(\overline{G})$ is nilpotent we have

$$L = KQ, K \leq L \text{ and } Q \leq L.$$
 (2)

Set

$$G^* = G/[\psi(G), K].$$

Now $K^*/\psi(G)^* \cong K/\psi(G)$, which is nilpotent. Since $\psi(G)^* \leq Z(K^*)$ we deduce that K^* is nilpotent. Then using (2) we see that L^* is nilpotent. We have

$$G^*/L^* \cong G/L \cong \overline{G}/\psi(\overline{G}).$$

Since $f(G) \geq 2$ we have $f(\overline{G}/\psi(\overline{G})) = f(G) - 2$. Now L^* is nilpotent so $f(G^*/L^*) \geq f(G^*) - 1$ whence $f(G) - 2 \geq f(G^*) - 1$ so $f(G) > f(G^*)$. But then $\psi(G) \leq [\psi(G), K]$.

The proof of Theorem F. Assume false and let G be a minimal counterexample. Set

$$T = \left\langle \psi(A) \mid A \in \Sigma_G^f(P) \right\rangle.$$

Using Theorem D we have

$$T \le \psi(G)$$
 but $T \ne \psi(G)$.

Step 1 Suppose that $V \neq 1$ is a normal subgroup of G such that f(G/V) = f(G). Then

$$\psi(G) = T(\psi(G) \cap V)$$
 and $\psi(G) \cap V \not\leq T$.

Proof. Set $\overline{G} = G/V$. Since $f(\overline{G}) = f(G)$ we have $\psi(\overline{G}) = \overline{\psi(G)}$ by Lemma 1.3. The minimality of G implies that $\psi(\overline{G}) = \langle \psi(\overline{A}) \mid \overline{A} \in \Sigma_{\overline{G}}^{f}(\overline{P}) \rangle$. Let $\overline{A} \in \Sigma_{\overline{G}}^{f}(\overline{P})$. Theorem C implies that $f(\overline{A}) = f(\overline{G})$ and Lemma 1.1 implies that \overline{A} has an inverse image $A \in \Sigma_{G}(P)$. Since $f(G) = f(\overline{G})$ it follows that $A \in \Sigma_{G}^{f}(P)$ and then Lemma 1.3 yields $\psi(\overline{A}) = \overline{\psi(A)}$. Consequently $\psi(G) \leq \langle \psi(A) \mid A \in \Sigma_{G}^{f}(P) \rangle V = TV$. Since $T \leq \psi(G)$ we have $\psi(G) = T(\psi(G) \cap V)$ and since $T \neq \psi(G)$ we have $\psi(G) \cap V \not\leq T$. \Box

Step 2 $\psi(G)$ is an elementary abelian q-group for some prime q.

Proof. Suppose that q and r are distinct prime divisors of $|\psi(G)|$. Then $\psi(G) \not\leq \mathcal{O}_q(\psi(G))$ so $f(G/\mathcal{O}_q(\psi(G))) = f(G)$ and then Step 1 implies that $|\psi(G) : T|$ is a power of q. Similarly, $|\psi(G) : T|$ is a power of r whence $\psi(G) = T$, a contradiction. Thus $\psi(G)$ is a q-group for some prime q. Suppose that $\Phi(\psi(G)) \neq 1$. Since $\Phi(\psi(G)) \neq \psi(G)$ we may apply Step 1 to conclude that $\psi(G) = T\Phi(\psi(G))$. But then $\psi(G) = T$, a contradiction. We deduce that $\Phi(\psi(G)) = 1$ and then that $\psi(G)$ is elementary abelian. \Box Let

$$\overline{G} = G/\psi(G)$$
 and $\overline{K} = \mathcal{O}_{q'}(\psi(\overline{G})).$

Let K be the inverse image of \overline{K} in G. The minimality of G implies that

$$\overline{K} = \langle \mathcal{O}_{q'}(\psi(\overline{A})) \mid \overline{A} \in \Sigma^f_{\overline{G}}(\overline{P}) \rangle.$$

By Lemma 1.1, each member of $\Sigma_{\overline{G}}^{f}(\overline{P})$ has an inverse image in $\Sigma_{G}(P)$ so we let

$$\Sigma = \{ A \in \Sigma_G(P) \mid \overline{A} \in \Sigma_{\overline{G}}^f(\overline{P}) \}$$

and for each $A \in \Sigma$ we let

 $\Pi(A)$

denote the inverse image of $\mathcal{O}_{q'}(\psi(\overline{A}))$ in A. Then

$$K = \psi(G) \langle \Pi(A) \mid A \in \Sigma \rangle.$$

Step 3 $\psi(G) = \langle [\psi(G), \Pi(A)] | A \in \Sigma \rangle.$

Proof. We will apply Lemma 4.1. If f(G) < 2 then G is nilpotent so as $G = \langle P^G \rangle$ we have G = P and then $G \in \Sigma^f_G(P)$, a contradiction. Thus $f(G) \geq 2$ and Lemma 4.1 implies that

$$\psi(G) = [\psi(G), K].$$

Now $K = \psi(G) \langle \Pi(A) \mid A \in \Sigma \rangle$ and $\psi(G)$ is abelian. Then

$$\psi(G) = \langle [\psi(G), \Pi(A)] \mid A \in \Sigma \rangle$$

because K centralizes the quotient of the left hand side by the right hand side. $\hfill \Box$

In what follows, we fix $A \in \Sigma$ such that

$$[\psi(G), \Pi(A)] \not\leq T.$$

Such an A exists by Step 3 and the fact that $\psi(G) \not\leq T$. Set

$$H = A[\psi(G), \Pi(A)].$$

Choose B such that

$$A \le B \in \Sigma_H^*(P).$$

Step 4 $[\psi(G), \Pi(A)] = [\psi(G), \Pi(A), \Pi(A)].$

Proof. This is because $\Pi(A)/\psi(G) \cap \Pi(A)$ is a q'-group and $\psi(G)$ is abelian.

Step 5 $f(\overline{A}) = f(G) - 1$, $B \in \Sigma_G^f(P)$ and f(H) = f(G).

Proof. Since $\overline{A} \in \Sigma_{\overline{G}}^{f}(\overline{P})$ and $\overline{G} = G/\psi(G) = \langle \overline{P}^{\overline{G}} \rangle$, Theorem C implies that $f(\overline{A}) = f(G) - 1$. We claim that f(B) = f(G). Assume false. Then

$$f(G) - 1 \ge f(B) \ge f(A) \ge f(\overline{A}) = f(G) - 1$$

whence

$$f(B) = f(A) = f(\overline{A})$$

Lemma 1.3 implies that $\Pi(A) \leq \psi(A)(A \cap \psi(G))$ and then using Lemma 1.2 we have $\Pi(A) \leq F(B)$. Now $B \in \Sigma_{H}^{*}(P)$ so Theorem A implies that $\Pi(A)F(H)$ is nilpotent. But $[\psi(G), \Pi(A)] \leq F(H)$ so it follows from Step 4 that $[\psi(G), \Pi(A)] = 1$, contrary to the choice of A. We deduce that f(B) =f(G) so $B \in \Sigma_{G}^{f}(P)$ and then also f(H) = f(G). \Box Step 6 $[\psi(G), \Pi(A)] \leq \psi(H).$

Proof. Set $H^* = H/\psi(H)$. By Step 5 we have f(H) = f(G) so $\psi(H) \le \psi(G)$. In particular, \overline{A} is a homomorphic image of A^* . Then

$$f(G) - 1 = f(H^*) \ge f(A^*) \ge f(\overline{A}) = f(G) - 1$$

so $f(A^*) = f(\overline{A}) = f(H^*)$. Lemma 1.3 yields $\Pi(A)^* \leq \psi(A^*)(A \cap \psi(G))^*$ and then Lemma 1.2 forces $\Pi(A)^* \leq F(H^*)$. From Step 4 we have

$$[\psi(G), \Pi(A)]^* = [[\psi(G), \Pi(A)]^*, \Pi(A)^*].$$

Now $[\psi(G), \Pi(A)]^* \leq F(H^*)$ so as $\Pi(A)^* \leq F(H^*)$ and $F(H^*)$ is nilpotent it follows that $[\psi(G), \Pi(A)]^* = 1$. Hence $[\psi(G), \Pi(A)] \leq \psi(H)$.

We are now in a position to obtain a final contradiction. Since $A = \langle P^A \rangle$ and $H = A[\psi(G), \Pi(A)]$, it follows from Step 4 that $H = \langle P^H \rangle$. Also, $\Sigma_H^f(P) \subseteq \Sigma_G^f(P)$ since f(H) = f(G). Now $[\psi(G), \Pi(A)] \not\leq T$ so Step 6 and the minimality of G force G = H. Since f(B) = f(G) we have $\psi(B) \leq \psi(G)$. Moreover, $A \leq B$, $\psi(G)$ is elementary abelian and $G = A[\psi(G), \Pi(A)]$ so $1 \neq \psi(B) \leq G$. By Step 5 and the definition of T we have $\psi(B) \leq T$ so applying Step 1 with $V = \psi(B)$ it follows that $\psi(G) = \psi(B)$. This is a contradiction since $B \in \Sigma_G^f(P)$.

References

- [1] H. Bender, Nilpotent π -subgroups behaving like *p*-subgroups, "Proceedings of the Rutgers Group Theory Year, 1984", p.119-125.
- [2] C.W Curtis and I. Reiner, "Methods of representation theory, I", Pure and applied mathematics, Wiley-Interscience, 1981.
- [3] D. Gorenstein, "Finite Groups", second edn., 1980, Chelsea.
- [4] B. Huppert, "Endliche Gruppen I", Springer-Verlag, Berlin, 1967.
- [5] G.R. Robinson, Further Reductions for the k(GV)-Problem, J. Algebra, 195, 141-150 (1997).