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Let G be a finite group and suppose that P is a soluble {2, 3}′-subgroup of
G. The reader will lose only a little by assuming that P is a subgroup of
prime order p > 3. Define

ΣG(P ) = {A ≤ G | A is soluble and A = 〈P, P a〉 for some a ∈ A}.

This set is partially ordered by inclusion and we let

Σ*
G(P )

denote the set of maximal members of ΣG(P ).

This article grew out of the following discovery:

Theorem A. Let G be a finite group, let P be a soluble {2, 3}′-subgroup of

G and choose A ∈ Σ*
G(P ). Then

F (A)V

is nilpotent for every nilpotent subgroup V of G that is normalized by A.
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The article of Bender [1] indicates the usefulness of such results in the study
of finite groups. An immediate consequence is the following:

Corollary B. Assume the hypotheses of Theorem A and that G is soluble.
Then

π(F (A)) ⊆ π(F (G)).

Thus at least when G is soluble, the members of Σ*
G(P ) reflect the global

properties of G. This is a little surprising since, in some senses, the members

of Σ*
G(P ) can be small compared to G. Indeed if P is cyclic then every

member of Σ*
G(P ) has cyclic abelianization.

It is tempting to conjecture that the conclusion of Corollary B can be replaced
by the stronger assertion that

F (A) ≤ F (G).

This is false. However, by considering the notion of Fitting height, it is
possible to prove a result that is just as good.

The following consequence of Theorem A is the starting point.

Theorem C. Let G be a finite soluble group and let C be a conjugacy class of
{2, 3}′-subgroups of G. If G is generated by C then there exist two members
of C that generate a subgroup with the same Fitting height as G.

Moreover, the two members of C may be chosen to be conjugate in the sub-
group that they generate.

This leads us to define:
Σf

G(P )

to be the set consisting of those members of ΣG(P ) with maximal Fitting
height. Moreover, if G 6= 1 is soluble we let

ψ(G) =
⋂
{ K �G | f(G/K) < f(G) },

where f(G) denotes the Fitting height ofG. Then ψ(G) is the unique smallest
normal subgroup of G such that f(G/ψ(G)) < f(G) and it is also the case
that 1 6= ψ(G) ≤ F (G). If G = 1 then we let ψ(G) = 1. Using Theorem C
we obtain:
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Theorem D. Let P be a {2, 3}′-subgroup of the finite soluble group G and
choose A ∈ Σf

G(P ). Then
ψ(A) ≤ F (G).

Combining this with the Baer-Suzuki Theorem we obtain:

Corollary E. Let C be a conjugacy class of {2, 3}′-subgroups of the finite
group G. Then C generates a soluble subgroup if and only if every four
members of C generate a soluble subgroup.

Assume now the hypotheses of Theorem D. The conclusion of that theorem
says that we can write down a subnormal nilpotent subgroup of G just by
examining the subgroups that are generated by two conjugates of P . If
G = 〈PG〉 then we can go a little further:

Theorem F. Let P be a {2, 3}′-subgroup of the finite soluble group G and
suppose that G = 〈PG〉. Then

ψ(G) =
〈
ψ(A) | A ∈ Σf

G(P )
〉
.

In other words, we can write down a characteristic nilpotent subgroup of G
in terms of subgroups that are ‘localized’ at P .
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1 Preliminaries

Henceforth the word ‘group’ shall mean ‘finite group’.

Lemma 1.1. Let P be a soluble {2, 3}′-subgroup of the group G, let V be a
soluble normal subgroup of G, set G = G/V and suppose that A ∈ ΣG(P ).
Then A has an inverse image which is a member of ΣG(P ).

Proof. Choose a ∈ G with a ∈ 〈P , P a 〉 = A and 〈P, P a〉 minimal. Then
〈P, P a〉 ∈ ΣG(P ).

For a group G we let F (G) be the Fitting subgroup of G, that is, the largest
normal nilpotent subgroup of G. For a prime q we let Oq(G) be the largest
normal q-subgroup of G.

If G is soluble we let f(G) denote the Fitting height of G. This is the smallest
integer n such that G possesses a series

1 = F0 � F1 � · · ·� Fn = G

with Fi+1/Fi nilpotent for all i. If G 6= 1 then f(G/F (G)) = f(G)− 1.

The following two results are elementary.

Lemma 1.2. Let H ≤ G with G soluble and f(H) = f(G). Then

ψ(H) ≤ ψ(G) ≤ F (G).

Lemma 1.3. Let G be soluble, let N � G, set G = G/N and suppose that
G 6= 1. Then the following are equivalent:

(i) ψ(G) 6= 1.

(ii) f(G) = f(G).

(iii) ψ(G) = ψ(G).
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2 Modules for soluble groups

Lemma 2.1. Let G be a group, let V 6= 1 be an irreducible G-module over
an algebraically closed field and let K �G be such that G/K is cyclic. If V
is homogeneous as a K-module then it is irreducible as a K-module.

Proof. This follows from [2, Theorems 11.20, p.278 and 11.46, p.303].

Lemma 2.2. Let Q be an extraspecial q-group of exponent q and order q1+2t.
Suppose that A is a noncyclic abelian normal subgroup of Q with order q1+k.
Then the following hold:

(a) Z(Q) ≤ A and A possesses exactly qk hyperplanes A1, . . . , Aqk that do
not contain Z(Q). These hyperplanes are permuted transitively by Q.

(b) Let V be a faithful homogeneous Q-module over a field of characteristic
prime to q. For each i set Vi = CV (Ai) and set Ω = {V1, . . . , Vqk}.
Then Ω is permuted transitively by Q,

V = V1 ⊕ · · · ⊕ Vqk

and CA(Vi) = Ai for all i.

(c) Let the q-group P act as a group of automorphisms of Q. Then Q
possesses a P -invariant abelian normal subgroup with order q1+t.

Proof. Let Q = Q/Z(Q). Since Q is extraspecial we have Z(Q) = Q′ =
Φ(Q) ∼= Zq so Q may be regarded as a GF (q)-vectorspace and the map
( , ) : Q×Q −→ Z(Q) defined by

(Z(Q)x, Z(Q)y) = [x, y]

is a nondegenerate symplectic form on Q.

(a). The first assertion is true since Z(Q) = Q′ ∼= Zq and 1 6= A � Q. The
second assertion follows from a counting argument and the fact that A is
elementary abelian. Let B = A1. The group Q acts by conjugation on the
set of hyperplanes of A. Since Z(Q) ∩B = 1 it follows that

NQ(B) = B
⊥
,
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so B has |Q : B
⊥| conjugates. Now codimB

⊥
= dimB so |Q : B

⊥| = |B|.
As Z(Q)∩B = 1 we have |B| = qk. Consequently, B has qk conjugates. This
proves (a).

(b). The first assertion follows from (a). We may suppose that Q acts irre-
ducibly on V . In particular, CV (Z(Q)) = 0. Let U ≤ V be an irreducible
A-module. Since A is elementary abelian it follows that CA(U) is a hyper-
plane of A. As CV (Z(Q)) = 0 we have CA(U) = Ai for some i. Then 〈Ω〉 6= 0
and then the irreducibility of Q on V forces V = 〈Ω〉.

If i 6= j then Vi ∩ Vj ≤ CV (A) = 0. Let i < qk be such that V1 + · · · + Vi =
V1⊕· · ·⊕Vi. Now A is abelian so it normalizes each Vj and as Vi+1 = CV (Ai+1)
we have

Vi+1 ∩ (V1 ⊕ · · · ⊕ Vi) = (Vi+1 ∩ V1)⊕ · · · ⊕ (Vi+1 ∩ Vi) = 0.

We deduce that V = V1 ⊕ · · · ⊕ Vqk . The final assertion in (b) follows from
CV (Z(Q)) = 0.

(c). Since Z(Q) ∼= Zq we have [Z(Q), P ] = 1 so P acts as a group of isometries
on Q. Let U be a maximal P -invariant isotropic subspace of Q. Suppose that
U < U⊥. Then P acts on the nontrivial GF (q)-vectorspace U⊥/U . Since P
is a q-group, it fixes a nonzero vector v + U ∈ U⊥/U . Then U ⊕ 〈v〉 is a
P -invariant isotropic subspace, contrary to the maximal choice of U . Thus
U = U⊥ and then dimU = t. The inverse image of U in Q has the desired
properties.

Lemma 2.3. Let G be a soluble nonnilpotent primitive linear group over an
algebraically closed field. Then there exists Q�G such that Q is an extraspe-
cial q-group and G acts nontrivially and irreducibly on Q/Φ(Q). Moreover,
if q 6= 2 then Q has exponent q.

Proof. Let G = G/F (G) and choose a prime r such that Or(G) 6= 1, let
K be the inverse image of Or(G) in G and choose R ∈ Sylr(K). Then
K = ROr′(F (G)) and since R 6≤ Or(G) we have [Or′(F (G)), R] 6= 1. Choose
a prime q 6= r such that [Oq(G), R] 6= 1 and set S = [Oq(G), R]. Note that
S = [S,R]. The Frattini Argument implies that

G = NG(R)Or′(F (G))

and it follows that S �G.
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Let Q be a subgroup of S that is minimal subject to Q�G and [Q,R] 6= 1.
The hypotheses imply that every abelian normal subgroup of G is cyclic and
contained in Z(G). In particular, Q is nonabelian. Suppose that T < Q
with T � G. The minimality of Q implies that R acts trivially on T and
as S = [S,R] it follows that S acts trivially on T , whence T ≤ Z(S). We
deduce that

1 6= Q′ ≤ Φ(Q) ≤ Z(Q) ≤ Z(S) ≤ Z(G). (1)

Since S is nilpotent we have [Q,S] < Q whence

[Q,S] ≤ Z(S) ≤ Z(G)

also.

We claim that Q′ = [Q,S] ∼= Zq. Let x ∈ Q and y ∈ S. Since [Q,S] ≤ Z(S)
we have [x, y]q = [xq, y]. But xq ∈ Φ(Q) ≤ Z(S) whence [x, y]q = 1. Since
Z(S) is cyclic and since Q′ 6= 1 the claim follows.

Now [CQ(R), S] ≤ [Q,S] ≤ CQ(R) so CQ(R)�S. As S = [S,R] it follows that
CQ(R) ≤ Z(S). Since Q = CQ(R)[Q,R] we have Q = Z(Q)[Q,R] and then
Q′ = [Q,R]′. By the previous paragraph we have Q′ = [Q,S] whence [Q,S] ≤
[Q,R] and in particular [Q,R] � S. Recall that G = NG(R)Or′(F (G)) and
that Q ≤ S = [Oq(G), R]. It follows that [Q,R] � G and as 1 6= [Q,R] =
[Q,R,R], the minimal choice of Q yields

Q = [Q,R].

Let Q∗ = Q/Q′ and consider the action of G on Q∗. Now Q∗ = [Q∗, R]
and since Q∗ is abelian we have CQ∗(R) = 1 by [3, Theorem 5.2.3, p.177].
Suppose that T ∗ is a proper G-invariant subgroup of Q∗. Let T be the inverse
image of T ∗ in G. The minimal choice of Q implies that [T,R] = 1 whence
T ∗ ≤ CQ∗(R) = 1. This implies that Q∗ is elementary abelian and then
that the action of G on Q∗ is irreducible. This action is nontrivial since
Q∗ = [Q∗, R]. From (1) we have 1 6= Q′ ≤ Φ(Q) ≤ Z(Q) < Q whence
Q′ = Φ(Q) = Z(Q). We have seen that Q′ ∼= Zq so Q is extraspecial. If
q 6= 2 then by [3, Theorem 5.3.10, p.184] and the minimal choice of Q we
have Q = Ω1(Q) and then the fact that Q′ ≤ Z(Q) implies that Q has
exponent q.
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Theorem 2.4. Let G be a soluble group, suppose that P is a {2, 3}′-subgroup
of G such that G = 〈PG〉, suppose that V 6= 0 is a G-module that does not
involve the trivial G-module and let p = min π(P ). Then

dimCV (P ) ≤ 2

p
dimV.

Proof. Assume false and consider a counterexample in which |G| + |P | is
minimized and then dimV is minimized. We may suppose that F , the un-
derlying field for V , is algebraically closed and that G acts irreducibly on V .
We have

dimCV (P ) >
2

p
dimV.

Step 1 Let Ω = {V1, . . . , Vn} be a P -invariant collection of subspaces of V ,
all of the same dimension, such that

V = V1 ⊕ · · · ⊕ Vn.

Let m = |FixΩ(P )|. Then
n < pm.

Proof. Let Ω1, . . . ,Ωk be the orbits of P on Ω. Then

dimCV (P ) =
k∑

i=1

dimC〈Ωi〉(P ) ≤
k∑

i=1

1

|Ωi|
dim〈Ωi〉.

We may suppose that Ω1, . . . ,Ωm are the orbits of size 1, so the other orbits
all have size at least p. Then

dimCV (P ) ≤ m dimV1 +
1

p

k∑
i=m+1

dim〈Ωi〉

≤ m dimV1 +
1

p
(dimV −m dimV1) .

Now dimCV (P ) > 2
p
dimV whence

1

p
dimV ≤ m

(
1− 1

p

)
dimV1.

Since dimV = n dimV1, the result follows.
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Step 2 G is primitive on V . In particular, every normal subgroup of G is
homogeneous on V and Z(G) is the unique maximal abelian normal subgroup
of G.

Proof. Assume false. Then there exists a collection Ω = {V1, . . . , Vn} of
subspaces of V that are permuted transitively by G such that

V = V1 ⊕ · · · ⊕ Vn and n ≥ 2.

Choose such a collection with n minimal. Let

K = ker (G −→ SΩ) and G = G/K.

Then G is a faithful primitive permutation group on Ω. Let L be a minimal
normal subgroup of G. Since G is soluble and primitive on Ω it follows that
L is an elementary abelian l-group for some prime l, that L is regular on Ω
and that

G = StabG(U)L and StabG(U) ∩ L = 1 for all U ∈ Ω.

Step 1 implies that FixΩ(P ) 6= ∅. We claim that CL(P ) acts regularly on
FixΩ(P ). Let U,W ∈ FixΩ(P ). There exists g ∈ L such that Wg = U . Then

P , P
g ≤ StabG(U) so

[g, P ] ≤ StabG(U) ∩ L = 1

and hence g ∈ CL(P ). Since L is regular on Ω we have proved the claim.

Now |Ω| = |L| and |FixΩ(P )| = |CL(P )| so Step 1 implies that

|L : CL(P )| < p.

Using the fact that every nonidentity element of P has order at least p, it

follows that L = CL(P ) and then that P acts trivially on Ω. Since G = 〈PG〉
and since G acts transitively on Ω, we have obtained a contradiction. Thus
every normal subgroup of G acts homogeneously on V .

The final two assertions follow from the first.

Now G is irreducible on V so CV (G) = 0 whence P < G. Since G = 〈PG〉, it
follows that G is not nilpotent. Step 2 and Lemma 2.3 imply that there exists
a prime q and Q�G such that Q is an extraspecial q-group and that G acts
irreducibly and nontrivially on Q/Φ(Q). Also, CV (Q) = 0 so q 6= char(F ).
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Step 3 P/CP (Q) is a q-group.

Proof. Assume false. Then there exists a prime p0 6= q and a cyclic p0-group
P0 ≤ P such that [Q,P0] 6= 1. Set G0 = P0[Q,P0]. Since p0 6= q we have
[Q,P0] = [Q,P0, P0] whence G0 = 〈PG0

0 〉. Now Q acts homogeneously and
faithfully on V and as [Q,P0] � Q it follows from Maschke’s Theorem that
V does not involve the trivial [Q,P0]-module. In particular, V does not
involve the trivial G0-module and then the minimality of |G| + |P | forces
G = G0, P = P0, p = p0 and Q = [Q,P ]. Then G = PQ and CP (Q) � G.
Since CV (P ) 6= 0 and since G is irreducible on V we have CP (Q) = 1. Also,
Lemma 2.1 implies that Q acts irreducibly on V .

By [3, Theorem 5.5.5, p.208] there exists an integer t such that

|Q| = q1+2t and dimV = qt.

We have |P | = pn for some integer n ≥ 1. Since P is a {2, 3}′-group we have
p > 3 so the first paragraph of the proof of [3, Lemma 11.2.5, p.368] implies
that

pn divides qt + 1.

The argument now splits into two cases depending on whether F has char-
acteristic p or not.

Case p = char(F ). The Hall-Higman Theorem [3, Theorem 11.2.1, p.364]
implies that the Jordan canonical form for a generator of P consists of
(qt + 1)/pn Jordan blocks. Recalling that dimV = qt we have

dimCV (P ) =
dimV + 1

pn

≤ 2

p
dimV,

a contradiction.

Case p 6= char(F ). Let χ be the character of G afforded by V . Using the
Coprime Hall-Higman Theorem [4, Satz V.17.13, p.574] together with the
fact that pn|qt + 1 we have

χP =
qt + 1

pn
ρ− µ
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where ρ is the regular character of P and µ is a linear character of P . Then

dimCV (P ) ≤ dimV + 1

pn

≤ 2

p
dimV.

This contradiction completes the proof of Step 3.

Recall that G acts nontrivially and irreducibly on Q/Φ(Q) and that p =
min π(P ). Since G = 〈PG〉 and P is a {2, 3}′-group it follows from the
previous step that

q > 3 and that p ≤ q.

Then Lemma 2.3 implies that Q has exponent q.

Step 4 Let A be an abelian normal subgroup of Q that is normalized by P .
Then A is centralized by P .

Proof. Let |A| = q1+k and note that A is elementary abelian. Since Z(Q) ≤
Z(G) we have [Z(Q), P ] = 1. If k = 0 then A = Z(Q), hence we may suppose
that k ≥ 1. We assume the notation of Lemma 2.2. Now P normalizes A so
it permutes Ω. Let m = |FixΩ(P )|. Step 1 together with p ≤ q implies that

qk < qm.

Hence m > 1. Lemma 2.2(b) implies that if Vi ∈ FixΩ(P ) then P normalizes
Ai. Note that |Ai| = qk for all i.

Since m > 1 we may suppose that V1, V2 ∈ FixΩ(P ). If k = 1 then |A1| =
|A2| = q and then Step 3 implies that P centralizes A1 and A2. But A =
〈A1, A2〉 so P centralizes A. Hence we may assume that k ≥ 2. Now qk < qm
so q < m.

Now |A : A1 ∩A2| = q2 and Z(Q)∩A1 ∩A2 = 1 so it follows that A contains
exactly q hyperplanes which contain A1 ∩A2 but not Z(Q). Since q < m we
may suppose that V3 ∈ FixΩ(P ) and that A1 ∩ A2 6≤ A3. Then A1 ∩ A2 and
A1∩A3 are distinct hyperplanes of A1 whence A = Z(Q)(A1∩A2)(A1∩A3).

Recall that P normalizes A1 and A2 so P normalizes Z(Q)(A1 ∩ A2). This
subgroup has index q in A and it is normal in Q since Q′ = Z(Q). By
induction, P centralizes Z(Q)(A1∩A2). Similarly P centralizes Z(Q)(A1∩A3)
and we deduce that P centralizes A.
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We are now in a position to obtain a final contradiction. Let Q = Q/Z(Q)
and regard Q as a GF (q)G-module. Since G acts irreducibly and nontrivially
on Q we have that Q does not involve the trivial G-module. Since Z(Q) is
in the kernel of the action of G on Q, we may invoke the minimality of G to
obtain

dimCQ(P ) ≤ 2

p
dimQ.

Choose t such that |Q| = q1+2t, so that dimQ = 2t. Using Step 3, Lemma 2.2(c)
and Step 4 we see that

dimCQ(P ) ≥ 1

2
dimQ.

But p ≥ 5 so this contradicts the previous inequality and completes the proof
of this theorem.

Remark By modifying the conclusion, it ought to be possible to remove
the hypothesis that P is a {2, 3}′-group.

Corollary 2.5. Assume the hypotheses of Theorem 2.3. Then

dimCV (P ) <
1

2
dimV.

Remark It is in fact Corollary 2.5 that we shall use rather than the stronger
Theorem 2.4. If it is desired to prove only Corollary 2.5 then a simpler proof
is possible. In particular, the appeal to Hall-Higman theory in Step 3 may
be replaced by a more elementary argument.

Indeed, in Step 3 we have
G = PQ

where Q is an extraspecial q-group, P is a cyclic p-group that acts faithfully
and irreducibly on Q/Φ(Q) and V is a faithful G-module on which Q acts
irreducibly.

Let E be the enveloping algebra of Q on V . By Weddurburn’s Theorem
[3, Theorem 3.6.3, p.86] we have E = End(V ), so then dimE = (dimV )2.
Choose x ∈ P with prime order p.
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The linear transformations y : V −→ V with [V, x] ≤ ker y and Im y ≤ CV (x)
constitute a subspace of CE(x) with dimension (dimCV (x))2. Considering
the scalar transformations, it follows that

dimCE(x) ≥ (dimCV (x))2 + 1.

Either by considering the action of 〈x〉Q/Φ(Q) on E or by the argument of
[3, Lemma 11.2.4, p.367] we have

dimCE(x) =
dimE − 1

p
+ 1.

But dimE = (dimV )2 and p ≥ 5 so these inequalities yield

dimCV (x) <
1

2
dimV.

Also, another proof of Corollary 2.5 is possible by using a result of Robinson
[5, Corollary 1.2].
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3 The proofs of Theorems A–E

The proof of Theorem A. Assume false and consider a counterexample with
|G| + |V | minimal. Then G = AV and there exist distinct primes r and q
such that V is an r-group and Oq(A) does not centralize V . Since [V,Oq(A)]
is normalized by A, the minimality of V forces V = [V,Oq(A)]. Note that
G 6∈ ΣG(P ).

LetG = G/Φ(V ). ThenG = AV , V is elementary abelian, V = [V ,Oq(A)] 6=
1 and then CV (Oq(A)) = 1. Let U ≤ V be a minimal normal subgroup of
G and suppose that U < V . Let U be the inverse image of U in G. The
minimality of |V | implies that [Oq(A), U ] = 1 whence U ≤ CV (Oq(A)) = 1,
a contradiction. Thus V is a minimal normal subgroup of G. Since V is
abelian, this implies that A is a maximal subgroup of G and that A∩V = 1.

Clearly A ∈ ΣG(P ). Suppose that A 6∈ Σ*
G
(P ). Then since A is a maximal

subgroup of G we have G = 〈P , P g 〉 for some g ∈ G. Then G = Φ(V )〈P, P g〉
whence V = Φ(V )(V ∩ 〈P, P g〉) so V ≤ 〈P, P g〉 and then G = 〈P, P g〉 ∈
ΣG(P ), a contradiction. We deduce that A ∈ Σ*

G
(P ) and then the minimality

of |G| forces Φ(V ) = 1. In particular, A is a complement to V .

Set N = Oq(A)V �G and note that Oq(A) ∈ Sylq(N). Since CV (Oq(A)) = 1
we have V ∩ NG(Oq(A)) = 1 and it follows that the complements to V in
G are the normalizers of the Sylow q-subgroups of N . In particular, V acts
transitively by conjugation on its set of complements.

Choose a ∈ A such that A = 〈P, P a〉. Let v ∈ V and set B = 〈P, P av〉. Since
G = AV we have G = BV . Now G 6∈ ΣG(P ) and V is a minimal normal
subgroup of G so it follows that B is a complement to V . By the previous
paragraph there exists u ∈ V such that Bu = A. Then

〈P u, P avu〉 = A = 〈P, P a〉.

In particular,
[u, P ] ≤ 〈P, P u〉 ∩ V ≤ A ∩ V = 1,

and
[vu, P a] ≤ 〈P a, P avu〉 ∩ V ≤ A ∩ V = 1.

Thus u ∈ CV (P ) and vu ∈ CV (P a). Since v was arbitrary, we deduce that

V = CV (P )CV (P a).

14



Regarding V as a GF (r)A-module, this implies that

dimCV (P ) ≥ 1

2
dimV.

But A acts irreducibly and nontrivially on V and A = 〈PA〉, so Corollary 2.5
supplies a contradiction.

The proof of Corollary B. This follows from Theorem A and the fact that
CG(F (G)) ≤ F (G).

The proof of Theorem C. Choose P ∈ C. It suffices to show that there exists
A ∈ ΣG(P ) with f(A) = f(G). Assume this to be false and let G be a
minimal counterexample. Choose q ∈ π(F (G)) and set

G = G/Oq(G).

Using Lemma 1.1 we see that f(G) = f(G)− 1. Then F (G) = Oq(G) since
otherwise G would embed into a direct product of two groups, both with
Fitting height f(G)− 1.

The minimality of G implies that there exists A ∈ ΣG(P ) such that f(A) =
f(G). By Lemma 1.1 there exists A ∈ ΣG(P ) such that A maps onto A.
Choose A∗ such that

A ≤ A∗ ∈ Σ*
G(P ).

Now f(G) − 1 = f(A) ≤ f(A) ≤ f(A∗) so as G is a counterexample, we
deduce that f(A) = f(A) = f(A∗). By Lemma 1.2 we have ψ(A) ≤ F (A∗)
so Theorem A implies that ψ(A)Oq(G) is nilpotent. Now F (G) = Oq(G)
and G is soluble so CG(Oq(G)) ≤ Oq(G). We deduce that ψ(A) is a q-group.
Since f(A) = f(A) it follows from Lemma 1.3 that ψ(A) is a q-group.

Recall that f(A) = f(G) so Lemma 1.2 implies that ψ(A) ≤ F (G). However,
G = G/Oq(G) so F (G) is a q′-group and then ψ(A) = 1. This implies that
G = 1 and then that G = Oq(G). Since G = 〈PG〉, this forces G = P and
then P is a member of ΣG(P ) with Fitting height f(G). This contradiction
completes the proof.
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The proof of Theorem D. Set H = 〈PG〉 and note that A ≤ H. Then A ∈
Σf

H(P ). If H < G then by induction we have ψ(A) ≤ F (H). But H �G so
F (H) ≤ F (G). Hence we may suppose that H = G. Then by Theorem C
we have f(A) = f(G) and then Lemma 1.2 forces ψ(A) ≤ F (G).

The proof of Corollary E. Choose P ∈ C and A ∈ Σf
G(P ). Let g ∈ G and set

H = 〈A,Ag〉. Then H is soluble since it is generated by four members of C.
By Theorem D we have 〈ψ(A), ψ(A)g〉 ≤ F (H). In particular, 〈ψ(A), ψ(A)g〉
is nilpotent for all g ∈ G so the Baer-Suzuki Theorem forces ψ(A) ≤ F (G).
Now apply induction to G/F (G).
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4 Generators for ψ(G)

Lemma 4.1. Let G be a soluble group. Suppose that f(G) ≥ 2 and that ψ(G)
is a q-group. Set G = G/ψ(G) and let K be the inverse image of Oq′(ψ(G))
in G. Then

ψ(G) = [ψ(G), K].

Proof. Let L be the inverse image of ψ(G) in G and choose Q ∈ Sylq(L).

Since ψ(G) is a q-group and since ψ(G) is nilpotent we have

L = KQ, K � L and Q� L. (2)

Set
G∗ = G/[ψ(G), K].

Now K∗/ψ(G)∗ ∼= K/ψ(G), which is nilpotent. Since ψ(G)∗ ≤ Z(K∗) we
deduce that K∗ is nilpotent. Then using (2) we see that L∗ is nilpotent. We
have

G∗/L∗ ∼= G/L ∼= G/ψ(G).

Since f(G) ≥ 2 we have f(G/ψ(G)) = f(G) − 2. Now L∗ is nilpotent so
f(G∗/L∗) ≥ f(G∗)− 1 whence f(G)− 2 ≥ f(G∗)− 1 so f(G) > f(G∗). But
then ψ(G) ≤ [ψ(G), K].
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The proof of Theorem F. Assume false and let G be a minimal counterex-
ample. Set

T =
〈
ψ(A) | A ∈ Σf

G(P )
〉
.

Using Theorem D we have

T ≤ ψ(G) but T 6= ψ(G).

Step 1 Suppose that V 6= 1 is a normal subgroup of G such that f(G/V ) =
f(G). Then

ψ(G) = T (ψ(G) ∩ V ) and ψ(G) ∩ V 6≤ T.

Proof. Set G = G/V . Since f(G) = f(G) we have ψ(G) = ψ(G) by
Lemma 1.3. The minimality of G implies that ψ(G) = 〈 ψ(A) | A ∈ Σf

G
(P ) 〉.

Let A ∈ Σf

G
(P ). Theorem C implies that f(A) = f(G) and Lemma 1.1

implies that A has an inverse image A ∈ ΣG(P ). Since f(G) = f(G) it
follows that A ∈ Σf

G(P ) and then Lemma 1.3 yields ψ(A) = ψ(A). Conse-
quently ψ(G) ≤ 〈 ψ(A) | A ∈ Σf

G(P ) 〉V = TV . Since T ≤ ψ(G) we have
ψ(G) = T (ψ(G) ∩ V ) and since T 6= ψ(G) we have ψ(G) ∩ V 6≤ T .

Step 2 ψ(G) is an elementary abelian q-group for some prime q.

Proof. Suppose that q and r are distinct prime divisors of |ψ(G)|. Then
ψ(G) 6≤ Oq(ψ(G)) so f(G/Oq(ψ(G))) = f(G) and then Step 1 implies that
|ψ(G) : T | is a power of q. Similarly, |ψ(G) : T | is a power of r whence
ψ(G) = T , a contradiction. Thus ψ(G) is a q-group for some prime q.
Suppose that Φ(ψ(G)) 6= 1. Since Φ(ψ(G)) 6= ψ(G) we may apply Step 1 to
conclude that ψ(G) = TΦ(ψ(G)). But then ψ(G) = T , a contradiction. We
deduce that Φ(ψ(G)) = 1 and then that ψ(G) is elementary abelian.
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Let
G = G/ψ(G) and K = Oq′(ψ(G)).

Let K be the inverse image of K in G. The minimality of G implies that

K = 〈 Oq′(ψ(A)) | A ∈ Σf

G
(P ) 〉.

By Lemma 1.1, each member of Σf

G
(P ) has an inverse image in ΣG(P ) so we

let
Σ = { A ∈ ΣG(P ) | A ∈ Σf

G
(P ) }

and for each A ∈ Σ we let
Π(A)

denote the inverse image of Oq′(ψ(A)) in A. Then

K = ψ(G)〈 Π(A) | A ∈ Σ 〉.

Step 3 ψ(G) = 〈 [ψ(G),Π(A)] | A ∈ Σ 〉.

Proof. We will apply Lemma 4.1. If f(G) < 2 then G is nilpotent so as
G = 〈PG〉 we have G = P and then G ∈ Σf

G(P ), a contradiction. Thus
f(G) ≥ 2 and Lemma 4.1 implies that

ψ(G) = [ψ(G), K].

Now K = ψ(G)〈 Π(A) | A ∈ Σ 〉 and ψ(G) is abelian. Then

ψ(G) = 〈 [ψ(G),Π(A)] | A ∈ Σ 〉

because K centralizes the quotient of the left hand side by the right hand
side.
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In what follows, we fix A ∈ Σ such that

[ψ(G),Π(A)] 6≤ T.

Such an A exists by Step 3 and the fact that ψ(G) 6≤ T . Set

H = A[ψ(G),Π(A)].

Choose B such that
A ≤ B ∈ Σ*

H(P ).

Step 4 [ψ(G),Π(A)] = [ψ(G),Π(A),Π(A)].

Proof. This is because Π(A)/ψ(G)∩Π(A) is a q′-group and ψ(G) is abelian.

Step 5 f(A) = f(G)− 1, B ∈ Σf
G(P ) and f(H) = f(G).

Proof. Since A ∈ Σf

G
(P ) and G = G/ψ(G) = 〈PG〉, Theorem C implies that

f(A) = f(G)− 1. We claim that f(B) = f(G). Assume false. Then

f(G)− 1 ≥ f(B) ≥ f(A) ≥ f(A) = f(G)− 1

whence
f(B) = f(A) = f(A).

Lemma 1.3 implies that Π(A) ≤ ψ(A)(A∩ψ(G)) and then using Lemma 1.2

we have Π(A) ≤ F (B). Now B ∈ Σ*
H(P ) so Theorem A implies that

Π(A)F (H) is nilpotent. But [ψ(G),Π(A)] ≤ F (H) so it follows from Step 4
that [ψ(G),Π(A)] = 1, contrary to the choice of A. We deduce that f(B) =
f(G) so B ∈ Σf

G(P ) and then also f(H) = f(G).
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Step 6 [ψ(G),Π(A)] ≤ ψ(H).

Proof. SetH∗ = H/ψ(H). By Step 5 we have f(H) = f(G) so ψ(H) ≤ ψ(G).
In particular, A is a homomorphic image of A∗. Then

f(G)− 1 = f(H∗) ≥ f(A∗) ≥ f(A) = f(G)− 1

so f(A∗) = f(A) = f(H∗). Lemma 1.3 yields Π(A)∗ ≤ ψ(A∗)(A ∩ ψ(G))∗

and then Lemma 1.2 forces Π(A)∗ ≤ F (H∗). From Step 4 we have

[ψ(G),Π(A)]∗ = [[ψ(G),Π(A)]∗,Π(A)∗].

Now [ψ(G),Π(A)]∗ ≤ F (H∗) so as Π(A)∗ ≤ F (H∗) and F (H∗) is nilpotent
it follows that [ψ(G),Π(A)]∗ = 1. Hence [ψ(G),Π(A)] ≤ ψ(H).

We are now in a position to obtain a final contradiction. Since A = 〈PA〉
and H = A[ψ(G),Π(A)], it follows from Step 4 that H = 〈PH〉. Also,
Σf

H(P ) ⊆ Σf
G(P ) since f(H) = f(G). Now [ψ(G),Π(A)] 6≤ T so Step 6 and

the minimality of G force G = H. Since f(B) = f(G) we have ψ(B) ≤ ψ(G).
Moreover, A ≤ B, ψ(G) is elementary abelian and G = A[ψ(G),Π(A)] so
1 6= ψ(B) � G. By Step 5 and the definition of T we have ψ(B) ≤ T so
applying Step 1 with V = ψ(B) it follows that ψ(G) = ψ(B). This is a
contradiction since B ∈ Σf

G(P ).
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