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Let G be a finite group and suppose that P is a soluble {2, 3}'-subgroup of
G. The reader will lose only a little by assuming that P is a subgroup of
prime order p > 3. Define

Ye(P) = {A< G| Aissoluble and A = (P, P*) for some a € A}.
This set is partially ordered by inclusion and we let
*
Ya(P)

denote the set of maximal members of ¥ (P).

This article grew out of the following discovery:

Theorem A. Let G be a finite group, let P be a soluble {2,3} -subgroup of
G and choose A € E;(P). Then

F(A)V

is nilpotent for every nilpotent subgroup V' of G that is normalized by A.
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The article of Bender [1] indicates the usefulness of such results in the study
of finite groups. An immediate consequence is the following:

Corollary B. Assume the hypotheses of Theorem A and that G is soluble.
Then
m(F(A)) € ©(F(G)).

Thus at least when G is soluble, the members of ZZ(P) reflect the global
properties of GG. This is a little surprising since, in some senses, the members

of EZ(P) can be small compared to GG. Indeed if P is cyclic then every
member of EZ(P) has cyclic abelianization.

It is tempting to conjecture that the conclusion of Corollary B can be replaced
by the stronger assertion that

F(A) < F(G).
This is false. However, by considering the notion of Fitting height, it is

possible to prove a result that is just as good.

The following consequence of Theorem A is the starting point.

Theorem C. Let G be a finite soluble group and let C be a conjugacy class of
{2, 3} -subgroups of G. If G is generated by C then there exist two members
of C that generate a subgroup with the same Fitting height as G.

Moreover, the two members of C may be chosen to be conjugate in the sub-
group that they generate.

This leads us to define:
SL(P)

to be the set consisting of those members of ¥ (P) with maximal Fitting
height. Moreover, if G # 1 is soluble we let

(@) = (K <QG | f(G/K) < f(G) },

where f(G) denotes the Fitting height of G. Then ¢(G) is the unique smallest
normal subgroup of G such that f(G/¥(G)) < f(G) and it is also the case
that 1 # ¢¥(G) < F(G). If G =1 then we let ¥(G) = 1. Using Theorem C

we obtain:



Theorem D. Let P be a {2,3} -subgroup of the finite soluble group G and
choose A € Zé(P). Then
v(4) < F(G).

Combining this with the Baer-Suzuki Theorem we obtain:

Corollary E. Let C be a conjugacy class of {2,3} -subgroups of the finite
group G. Then C generates a soluble subgroup if and only if every four
members of C generate a soluble subgroup.

Assume now the hypotheses of Theorem D. The conclusion of that theorem
says that we can write down a subnormal nilpotent subgroup of G just by
examining the subgroups that are generated by two conjugates of P. If
G = (PY) then we can go a little further:

Theorem F. Let P be a {2,3} -subgroup of the finite soluble group G and
suppose that G = (PY). Then

(@) = (w(4) | AeTL(P)).

In other words, we can write down a characteristic nilpotent subgroup of GG
in terms of subgroups that are ‘localized’ at P.



1 Preliminaries

Henceforth the word ‘group’ shall mean ‘finite group’.

Lemma 1.1. Let P be a soluble {2, 3} -subgroup of the group G, let V' be a
soluble normal subgroup of G, set G = G/V and suppose that A € ¥g(P).
Then A has an inverse image which is a member of ¥(P).

Proof. Choose a € G with @ € (P, 157> = A and (P, P*) minimal. Then
(P, P*) € ¥¢(P). O

For a group G we let F'(G) be the Fitting subgroup of G, that is, the largest
normal nilpotent subgroup of G. For a prime g we let O,(G) be the largest
normal g-subgroup of G.

If G is soluble we let f(G) denote the Fitting height of G. This is the smallest
integer n such that GG possesses a series

l=FAn4.-.-JF, =G
with Fi,/F; nilpotent for all i. If G # 1 then f(G/F(G)) = f(G) — 1.
The following two results are elementary.
Lemma 1.2. Let H < G with G soluble and f(H) = f(G). Then
(H) <9(G) < F(G).

Lemma 1.3. Let G be soluble, let N G, set G = G/N and suppose that
G # 1. Then the following are equivalent:

(i) ¥(G) #1
(i) f(G) = (&)
(iii) ¥(G) = ¥(G)



2 Modules for soluble groups

Lemma 2.1. Let G be a group, let V # 1 be an irreducible G-module over
an algebraically closed field and let K <G be such that G/ K is cyclic. If V
1s homogeneous as a K-module then it is irreducible as a K-module.

Proof. This follows from [2, Theorems 11.20, p.278 and 11.46, p.303]. ]

Lemma 2.2. Let Q be an extraspecial g-group of exponent q and order ¢*+2t.

Suppose that A is a noncyclic abelian normal subgroup of Q with order ¢**+*.
Then the following hold:

(a) Z(Q) < A and A possesses exactly ¢ hyperplanes Ay, ..., Ax that do
not contain Z(Q). These hyperplanes are permuted transitively by Q.

(b) Let 'V be a faithful homogeneous Q-module over a field of characteristic
prime to q. For each i set V; = Cy(A;) and set Q@ = {Vi,...,Vu}.
Then ) is permuted transitively by Q,

V:%@...@qu
and Cy(V;) = A; for all i.

(c) Let the q-group P act as a group of automorphisms of Q. Then Q
possesses a P-invariant abelian normal subgroup with order ¢***.

Proof. Let Q = Q/Z(Q). Since Q is extraspecial we have Z(Q) = Q" =
P(Q) = Z, so @ may be regarded as a GF(q)-vectorspace and the map
(,):Q xQ — Z(Q) defined by

(Z(Q)x, Z(Q)y) = [x,y]

is a nondegenerate symplectic form on Q.

(a). The first assertion is true since Z(Q)) = Q' = Z, and 1 # A I Q. The
second assertion follows from a counting argument and the fact that A is
elementary abelian. Let B = A;. The group @ acts by conjugation on the
set of hyperplanes of A. Since Z(Q) N B = 1 it follows that

Ng(B) = B,



so B has |Q : FL] conjugates. Now codim B = dim B so 1Q : §L| = |B|.
As Z(Q)NB = 1 we have |B| = ¢*. Consequently, B has ¢* conjugates. This
proves (a).

(b). The first assertion follows from (a). We may suppose that @ acts irre-
ducibly on V. In particular, Cy(Z(Q)) = 0. Let U < V be an irreducible
A-module. Since A is elementary abelian it follows that C4(U) is a hyper-
plane of A. As Cy(Z(Q)) = 0 we have Cy(U) = A; for some i. Then (Q2) # 0
and then the irreducibility of  on V forces V = (Q).

If i # j then V;NV; < Cy(A) = 0. Let i < ¢" be such that V; + -+ V; =
Vi@- - -@V;. Now A is abelian so it normalizes each V; and as Vi1 = Cy (Ai41)
we have

Vipn (Vi@ aVi)=VipnVi) @ & (ViunVi) =0.

We deduce that V = Vi @ --- @ V. The final assertion in (b) follows from
Cv(Z(Q)) = 0.

(c). Since Z(Q) = Z, we have [Z(Q), P] = 1 so P acts as a group of isometries
on Q. Let U be a maxnnal P-invariant isotropic subspace of ). Suppose that
U < U*t. Then P acts on the nontrivial GF(g)-vectorspace U+ /U. Since P
is a g-group, it fixes a nonzero vector v + U € U+/U. Then U & (v) is a
P-invariant isotropic subspace, contrary to the maximal choice of U. Thus
U = U* and then dimU = t. The inverse image of U in @ has the desired
properties. O

Lemma 2.3. Let G be a soluble nonnilpotent primitive linear group over an
algebraically closed field. Then there exists (Q ]G such that Q) is an extraspe-
cial g-group and G acts nontrivially and irreducibly on Q/®(Q). Moreover,
if ¢ # 2 then @ has exponent q.

Proof. Let G = G/F(G) and choose a prime 7 such that O, (_) # 1, let

K be the inverse image of O.(G) in G and choose R € Syl (K). Then

K = RO,/(F(G)) and since R £ O,(G) we have [O,.(F(QG)), R] # 1. Choose
J

]
a prime g # r such that [O,(G), R] # 1 and set S = [O,(G), R
S =[S, R|. The Frattini Argument implies that

Note that

G = No(R)O.(F(G))

and it follows that S < G.



Let @ be a subgroup of S that is minimal subject to @ < G and [@, R] # 1.
The hypotheses imply that every abelian normal subgroup of G is cyclic and
contained in Z(G). In particular, () is nonabelian. Suppose that T" < @
with T G. The minimality of @ implies that R acts trivially on T" and
as S =[S, R] it follows that S acts trivially on 7', whence T' < Z(S). We
deduce that

1£Q < 9(Q) < 2(Q) < () < Z(G). (1)
<

Since S is nilpotent we have [Q, S] < @ whence

@, 5] < Z(5) < Z(G)

also.

We claim that Q' = [Q, S] =2 Z,. Let z € Q and y € S. Since [@, S] < Z(S)
we have [z,y]? = [29,y]. But 27 € &(Q) < Z(S) whence [z,y]? = 1. Since
Z(S) is cyclic and since Q' # 1 the claim follows.

Now [Co(R), S] < [@,S] < Cg(R) so Co(R)<LS. As S =[S, R] it follows that
Co(R) < Z(95). Since QQ = Cy(R)[Q, R] we have Q = Z(Q)[Q, R] and then
Q' = [Q, R]'. By the previous paragraph we have Q" = [@, S| whence [Q, 5] <
[Q, R] and in particular [Q, R] < 5. Recall that G = Ng(R)O,.(F(G)) and
that Q < S = [0,(G), R]. It follows that [Q,R] <G and as 1 # [Q, R] =
(@, R, R], the minimal choice of @ yields

Q=1Q,R].

Let Q" = Q/Q’ and consider the action of G on Q*. Now Q* = [Q*, R]
and since )* is abelian we have Cg«(R) = 1 by [3, Theorem 5.2.3, p.177].
Suppose that T™ is a proper G-invariant subgroup of Q*. Let T be the inverse
image of 7% in G. The minimal choice of @) implies that [T, R] = 1 whence
T* < Cg«(R) = 1. This implies that Q* is elementary abelian and then
that the action of G on Q* is irreducible. This action is nontrivial since
Q* = [Q*, R]. From (1) we have 1 # Q' < ®(Q) < Z(Q) < @ whence
Q' = o(Q) = Z(Q). We have seen that Q' = Z, so () is extraspecial. If
q # 2 then by [3, Theorem 5.3.10, p.184] and the minimal choice of @) we
have @ = 91(Q) and then the fact that Q' < Z(Q) implies that @) has
exponent gq. ]



Theorem 2.4. Let G be a soluble group, suppose that P is a {2,3} -subgroup
of G such that G = (P%), suppose that V # 0 is a G-module that does not
involve the trivial G-module and let p = min7(P). Then

2
dimCy(P) < Z—)dimV.

Proof. Assume false and consider a counterexample in which |G| + |P| is
minimized and then dim V' is minimized. We may suppose that F', the un-
derlying field for V, is algebraically closed and that G acts irreducibly on V.
We have

2
dimCy(P) > —dimV.
p

Step 1 Let Q = {Vi,...,V,,} be a P-invariant collection of subspaces of V,
all of the same dimension, such that

Let m = |Fixq(P)|. Then

n < pm.

Proof. Let Qq,...,€ be the orbits of P on ). Then

dim Cy (P ZdlmC’ Z |Q | dim(Q2

We may suppose that €y, ..., €, are the orbits of size 1, so the other orbits
all have size at least p. Then

k
1
dimCy(P) < mdimVy + = > dim(Q;)

i=m+1

1
< mdimV; + = (dimV —mdimVj).
b
Now dim Cy (P) > ]%dim V' whence

1 1
—dimV < m (1 — —) dim V.
p p

Since dim V' = ndim Vi, the result follows. O
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Step 2 G is primitive on V. In particular, every normal subgroup of G is
homogeneous on V' and Z(G) is the unique maximal abelian normal subgroup

of G.
Proof. Assume false. Then there exists a collection Q = {V3,...,V,} of
subspaces of V' that are permuted transitively by G such that
V=Va&é&---&V, and n > 2.
Choose such a collection with n minimal. Let
K =ker (G — Sq) and G =G/K.

Then G is a faithful primitive permutation group on 2. Let L be a minimal
normal subgroup of G. Since G is soluble and primitive on it follows that
L is an elementary abelian [-group for some prime [, that L is regular on {2
and that

G = Stabg(U)L and Stabg(U)NL =1 forall U € Q.

Step 1 implies that FiXQ(F_) # 0. We claim that C7(P) acts regularly on
Fixq(P). Let U, W € Fixq(P). There exists g € L such that Wg = U. Then

P, P’ < Stabg(U) so
[9,P] < Stabg(U)NL =1

and hence g € Cz(P). Since L is regular on Q we have proved the claim.

Now Q| = |L| and |Fixq(P)| = |Cz(P)| so Step 1 implies that
TP < p

Using the fact that every nonidentity element of P has order at least p, it

follows that L = Cz(P) and then that P acts trivially on . Since G = (?G)
and since GG acts transitively on (), we have obtained a contradiction. Thus
every normal subgroup of G acts homogeneously on V.

The final two assertions follow from the first. O

Now G is irreducible on V so Cy(G) = 0 whence P < G. Since G = (PY), it
follows that G is not nilpotent. Step 2 and Lemma 2.3 imply that there exists
a prime ¢ and ) I G such that @) is an extraspecial g-group and that G acts
irreducibly and nontrivially on Q/®(Q). Also, Cy(Q) = 0 so ¢ # char(F).



Step 3 P/Cp(Q) is a qg-group.

Proof. Assume false. Then there exists a prime pg # ¢ and a cyclic pg-group
Py < P such that [Q, Py] # 1. Set Gy = Ry[Q, By]. Since py # q we have
[Q, Py] = [Q, Py, Py] whence Gy = (PS°). Now @ acts homogeneously and
faithfully on V' and as [@, Pp] < @ it follows from Maschke’s Theorem that
V' does not involve the trivial [@Q, Py]-module. In particular, V' does not
involve the trivial Go-module and then the minimality of |G| + |P| forces
G = Gy, P = Py,p = po and @Q = [@, P]. Then G = PQ and Cp(Q) < G.
Since Cy(P) # 0 and since G is irreducible on V' we have Cp(Q) = 1. Also,
Lemma 2.1 implies that @) acts irreducibly on V.

By [3, Theorem 5.5.5, p.208] there exists an integer ¢ such that
Q] = ¢ and dimV = ¢

We have |P| = p™ for some integer n > 1. Since P is a {2, 3}'-group we have
p > 3 so the first paragraph of the proof of [3, Lemma 11.2.5, p.368] implies
that

p" divides ¢’ + 1.
The argument now splits into two cases depending on whether F' has char-
acteristic p or not.

Case p = char(F'). The Hall-Higman Theorem [3, Theorem 11.2.1, p.364]
implies that the Jordan canonical form for a generator of P consists of
(¢" +1)/p™ Jordan blocks. Recalling that dim V' = ¢* we have

dimV +1
pTL

2
—dimV,
p

IN

a contradiction.

Case p # char(F). Let x be the character of G afforded by V. Using the
Coprime Hall-Higman Theorem [4, Satz V.17.13, p.574] together with the
fact that p"|¢* + 1 we have




where p is the regular character of P and p is a linear character of P. Then

dimV +1
dim Cy (P) dimy +1
pn
< 2 dim V.
p
This contradiction completes the proof of Step 3. O

Recall that G acts nontrivially and irreducibly on @/®(Q) and that p =
min7(P). Since G = (PY) and P is a {2,3}-group it follows from the
previous step that

q >3 and that p <gq.

Then Lemma 2.3 implies that () has exponent q.

Step 4 Let A be an abelian normal subgroup of Q) that is normalized by P.
Then A is centralized by P.

Proof. Let |A| = ¢*** and note that A is elementary abelian. Since Z(Q) <
Z(G) we have [Z(Q), P] = 1. If k = 0 then A = Z(Q), hence we may suppose
that £ > 1. We assume the notation of Lemma 2.2. Now P normalizes A so
it permutes 2. Let m = |Fixq(P)|. Step 1 together with p < ¢ implies that

¢ < gm.

Hence m > 1. Lemma 2.2(b) implies that if V; € Fixq(P) then P normalizes
A;. Note that |A;] = ¢* for all 4.

Since m > 1 we may suppose that Vi, V, € Fixq(P). If K = 1 then |A;| =
|As| = ¢ and then Step 3 implies that P centralizes A; and A,. But A =
(A1, Ay) so P centralizes A. Hence we may assume that k > 2. Now ¢* < qm
S0 g < m.

Now |A: AN Ay| = ¢* and Z(Q) N AN Ay =1 s0 it follows that A contains
exactly ¢ hyperplanes which contain A; N A but not Z(Q). Since ¢ < m we
may suppose that V3 € Fixq(P) and that A; N Ay £ As. Then A; N Ay and
A; N Ay are distinct hyperplanes of A; whence A = Z(Q)(A;1 N A2)(A1NA3).

Recall that P normalizes A; and A so P normalizes Z(Q)(A; N Ag). This
subgroup has index ¢ in A and it is normal in @ since Q' = Z(Q). By
induction, P centralizes Z(Q)(A1NAsy). Similarly P centralizes Z(Q)(A1NA3)
and we deduce that P centralizes A. ]
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We are now in a position to obtain a final contradiction. Let Q = Q/Z(Q)
and regard Q as a GF(¢)G-module. Since G acts irreducibly and nontrivially
on @ we have that Q) does not involve the trivial G-module. Since Z(Q) is
in the kernel of the action of G on @, we may invoke the minimality of G to
obtain

2 —
dim C5(P) < 5dimQ.

Choose t such that |Q| = ¢'*?, so that dim @ = 2¢. Using Step 3, Lemma 2.2(c)
and Step 4 we see that

dim C5(P) > %dim@.

But p > 5 so this contradicts the previous inequality and completes the proof
of this theorem. O

Remark By modifying the conclusion, it ought to be possible to remove
the hypothesis that P is a {2, 3}-group.

Corollary 2.5. Assume the hypotheses of Theorem 2.3. Then

1
dim Cy(P) < §dimV.

Remark It is in fact Corollary 2.5 that we shall use rather than the stronger
Theorem 2.4. If it is desired to prove only Corollary 2.5 then a simpler proof
is possible. In particular, the appeal to Hall-Higman theory in Step 3 may
be replaced by a more elementary argument.

Indeed, in Step 3 we have
G = PQ

where () is an extraspecial g-group, P is a cyclic p-group that acts faithfully
and irreducibly on Q/®(Q) and V is a faithful G-module on which @ acts
irreducibly.

Let E be the enveloping algebra of @) on V. By Weddurburn’s Theorem
[3, Theorem 3.6.3, p.86] we have E = End(V), so then dim £ = (dim V).
Choose x € P with prime order p.
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The linear transformations y : V' — V with [V, z] < kery and Imy < Cy (z)
constitute a subspace of Cp(z) with dimension (dim Cy (z))*. Considering
the scalar transformations, it follows that

dim Cp(z) > (dim Cy(x))” + 1.
Either by considering the action of (z)Q/®(Q) on E or by the argument of
(3, Lemma 11.2.4, p.367] we have

dimFE —1

But dim F = (dim V)? and p > 5 so these inequalities yield

1
dim Cy(z) < 3 dim V.

Also, another proof of Corollary 2.5 is possible by using a result of Robinson
[5, Corollary 1.2].
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3 The proofs of Theorems A—E

The proof of Theorem A. Assume false and consider a counterexample with
|G| + |V| minimal. Then G = AV and there exist distinct primes r and ¢
such that V' is an r-group and O,4(A) does not centralize V. Since [V, O,(A)]
is normalized by A, the minimality of V' forces V = [V, O,(A)]. Note that
G ¢ X (P).

Let G = G/®(V). Then G = AV, V is elementary abelian, V = [V, 0,(A)] #
1 and then C(O,(A)) = 1. Let U < V be a minimal normal subgroup of
G and suppose that U < V. Let U be the inverse image of U in G. The
minimality of |V| implies that [O,(A), U] = 1 whence U < C(O,(A)) = 1,
a contradiction. Thus V is a minimal normal subgroup of G. Since V is
abelian, this implies that A is a maximal subgroup of G and that ANV = 1.

Clearly A € %5(P). Suppose that A ¢ Eg(?). Then since A is a maximal
subgroup of G we have G = (P, P”) for some g € G. Then G = ®&(V)(P, P9)
whence V' = &(V)(V N (P, PY)) so V < (P,P% and then G = (P, PY) €
Y¢(P), a contradiction. We deduce that A € Zg(ﬁ) and then the minimality
of |G| forces ®(V) = 1. In particular, A is a complement to V.

Set N = O,(A)V QG and note that Oy(A) € Syl (N). Since Cy (0O,(4)) =1
we have V N Ng(O,(A)) = 1 and it follows that the complements to V in
G are the normalizers of the Sylow ¢-subgroups of N. In particular, V acts
transitively by conjugation on its set of complements.

Choose a € A such that A = (P, P*). Let v € V and set B = (P, P*). Since
G = AV we have G = BV. Now G ¢ Y;(P) and V is a minimal normal
subgroup of G so it follows that B is a complement to V. By the previous
paragraph there exists u € V' such that B* = A. Then

(P*,P™") = A = (P,P%.

In particular,

w,P] < (P,P"YNV <ANV = 1,

and
[vu, P < (P, P )NV <ANV = 1.

Thus u € Cy(P) and vu € Cy(P%). Since v was arbitrary, we deduce that

V. = Cy(P)Cy(P?).
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Regarding V' as a GF(r)A-module, this implies that

1
dimCy(P) > §dimV.

But A acts irreducibly and nontrivially on V and A = (P4), so Corollary 2.5
supplies a contradiction. O

The proof of Corollary B. This follows from Theorem A and the fact that
Co(F(@)) < F(QG). O

The proof of Theorem C. Choose P € C. It suffices to show that there exists
A € ¥g(P) with f(A) = f(G). Assume this to be false and let G be a
minimal counterexample. Choose ¢ € 7(F(G)) and set

G = G/O,G).

Using Lemma 1.1 we see that f(G) = f(G) — 1. Then F(G) = O,(G) since
otherwise G would embed into a direct product of two groups, both with
Fitting height f(G) — 1.

The minimality of G implies that there exists A € Y5(P) such that f(A) =
f(G). By Lemma 1.1 there exists A € YXq(P) such that A maps onto A.
Choose A* such that .

A < A" € E4(P).

Now f(G) —1 = f(A) < f(A) < f(A*) so as G is a counterexample, we
deduce that f(A) = f(A) = f(A*). By Lemma 1.2 we have ¢(A4) < F(A*)
so Theorem A implies that ¢(A)O,(G) is nilpotent. Now F(G) = O,(G)
and G is soluble so Cx(0,(G)) < O,(G). We deduce that ¢(A) is a g-group.
Since f(A) = f(A) it follows from Lemma 1.3 that ¥(A) is a g-group.

Recall that f(A) = f(G) so Lemma 1.2 implies that 1)(A) < F(G). However,
G =G/0,(G) so F(G) is a ¢-group and then (A) = 1. This implies that
G = 1 and then that G = O,(G). Since G = (P%), this forces G = P and
then P is a member of ¥ (P) with Fitting height f(G). This contradiction
completes the proof. O
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The proof of Theorem D. Set H = (P%) and note that A < H. Then A €
»1(P). If H < G then by induction we have ¢)(A) < F(H). But H <G so
F(H) < F(G). Hence we may suppose that H = G. Then by Theorem C
we have f(A) = f(G) and then Lemma 1.2 forces ¢(A) < F(G). O

The proof of Corollary E. Choose P € C and A € Zé(P). Let g € G and set
H = (A, A9). Then H is soluble since it is generated by four members of C.
By Theorem D we have (¢)(A), ¥ (A)9) < F(H). In particular, (¢)(A), ¥ (A)9)
is nilpotent for all g € G so the Baer-Suzuki Theorem forces ¢(A) < F(G).
Now apply induction to G/F(G). O
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4 Generators for ¢(G)

Lemma 4.1. Let G be a soluble group. Suppose that f(G) > 2 and that ¥(Q)
is a q-group. Set G = G/¢(G) and let K be the inverse image of Oy (¥(Q))
i G. Then

W(G) = [W(G), K.

Proof. Let L be the inverse image of 1(G) in G and choose Q € Syl (L).
Since 1(G) is a g-group and since ¥(G) is nilpotent we have
L = KQ, K<L and Q<L (2)
Set
G* = G/W(G), K].

Now K*/¢(G)* = K/v(G), which is nilpotent. Since ¢(G)* < Z(K*) we
deduce that K* is nilpotent. Then using (2) we see that L* is nilpotent. We
have

G*/L* = G/L= G/y(G).

Since f(G) > 2 we have f(G/¥(G)) = f(G) — 2. Now L* is nilpotent so
f(G*/L*) > f(G*) — 1 whence f(G)—2 > f(G*)—1so f(G) > f(G*). But
then ¢ (G) < [(G), K], O
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The proof of Theorem F. Assume false and let G be a minimal counterex-
ample. Set

T = (W(4) | AeTL(P) ).

Using Theorem D we have

T <9(G) but T #(G).

Step 1 Suppose that V # 1 is a normal subgroup of G such that f(G/V) =
f(G). Then

W(G) = T(W(G)NV) and H(G)NV £T.

Proof. Set G = G/V. Since f(G) = f(G) we have ¥(G) = ¥(G) by
Lemma 1.3. The minimality of G implies that ¢)(G) = (¢(A) | A € Eg(ﬁ) ).
Let A € Eé(ﬁ). Theorem C implies that f(A) = f(G) and Lemma 1.1
implies that A has an inverse image A € Yg(P). Since f(G) = f(GQ) it
follows that A € XL (P) and then Lemma 1.3 yields /(A4) = ¥(A). Conse-
quently ¢(G) < ((A) | A € B5(P) )V = TV. Since T < ¢(G) we have
U(G) =T(Y(G)NV) and since T # 1(G) we have »(G) NV L T. O

Step 2 ¥(G) is an elementary abelian q-group for some prime q.

Proof. Suppose that ¢ and r are distinct prime divisors of |¢)(G)|. Then
P(G) £ O,(¢(G)) so f(G/O,(¥(G))) = f(G) and then Step 1 implies that
|Y(G) : T| is a power of ¢. Similarly, [¢)(G) : T| is a power of r whence
¥(G) = T, a contradiction. Thus ¥(G) is a ¢-group for some prime g.
Suppose that ®(1(G)) # 1. Since ®(¢¥(G)) # ¥(G) we may apply Step 1 to
conclude that ¥(G) = T®((G)). But then ¢(G) = T, a contradiction. We
deduce that ®(¢)(G)) = 1 and then that 1(G) is elementary abelian. O
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Let
G = G/H(G) and K = 0,(u(0)).

Let K be the inverse image of K in G. The minimality of G implies that
K = (Oy(4(A) | A =L(P)).

By Lemma 1.1, each member of Eé(ﬁ) has an inverse image in X (P) so we
let
— A (P
Y ={AeXqP)| A (P)}

and for each A € X we let
I1(A)

denote the inverse image of O, (¢)(A)) in A. Then

K = ¢(G)(II(A) [Aex).

Step 3 ¢(G) = ([¢(G),I(A)] [ Ae X).
Proof. We will apply Lemma 4.1. If f(G) < 2t
G = (P%) we have G = P and then G € SL(P

f(G) > 2 and Lemma 4.1 implies that

hen G is nilpotent so as
), a contradiction. Thus

Now K =¢(G)(1I(A) | A€ ¥ ) and ¢(G) is abelian. Then
W(G) = ([W(G),I(A)] | AeX)

because K centralizes the quotient of the left hand side by the right hand
side. O
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In what follows, we fix A € ¥ such that
[W(G), II(A)] £ T.
Such an A exists by Step 3 and the fact that ¢(G) £ T. Set
H = A[y(G), 11(A)].

Choose B such that y
A< BeXyP).

Step 4 [¢(G), T(A)] = [&(G),11(A), [I(A)].

Proof. This is because II(A)/¢(G) NII(A) is a ¢’-group and ¥ (G) is abelian.
O

Step 5 f(A) = f(G) — 1, B e XL(P) and f(H) = f(G).

Proof. Since A € ©L(P ( )and G = G/¢(G) = (? ), Theorem C implies that
f(A) = f(G) - 1. We claim that f(B) = f(G).

f(G)=1> f(B)> f(A) > f(A) = f(G) -1

Assume false. Then

whence

f(A).

¥(@)) and then using Lemma 1.2
(P) so Theorem A implies that

f(B)

Lemma 1.3 implies that [1(A) < ¢(A)
we have II(A) < F(B). Now B €
II(A)F(H) is nilpotent. But [¢(G),II(A)] < F(H) so it follows from Step 4
that [¢(G), II(A)] = 1, contrary to the choice of A. We deduce that f(B) =

f(G) so B € ©5(P) and then also f(H) = f(G). O

f(A)

(AN
Sy
J
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Step 6 [¢(G), II(A)] < ¢ (H).
Proof. Set H* = H/vy(H). By Step 5 we have f(H) = f(G) so¢¥(H) < ¢(G).

In particular, A is a homomorphic image of A*. Then

f(G)—1=f(H") > f(A") > f(A) = f(G)—1

so f(A*) = f(A) = f(H*). Lemma 1.3 yields II(A)* < ¢¥(A*)(ANY(G))*
and then Lemma 1.2 forces [1(A)* < F(H*). From Step 4 we have

[W(G), TI(A)]" = [[(G), TI(A)]", TI(A)"].

Now [(G),TI(A)]* < F(H*) so as [I(A)* < F(H*) and F(H*) is nilpotent
it follows that [¢(G),II(A)]* = 1. Hence [¢(G),I1(A)] < ¢ (H). O

We are now in a position to obtain a final contradiction. Since A = (P4)
and H = A[(G),1I(A)], it follows from Step 4 that H = (PH). Also,
»1(P) C ©L(P) since f(H) = f(G). Now [¢)(G),TI(A)] £ T so Step 6 and
the minimality of G force G = H. Since f(B) = f(G) we have ¢(B) < ¢(G).
Moreover, A < B, ¥(G) is elementary abelian and G = A[y(G),1I(A)] so
1 # ¢(B) < G. By Step 5 and the definition of 7" we have ¥(B) < T so
applying Step 1 with V' = ¢(B) it follows that (G) = (B). This is a
contradiction since B € XL (P). O
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