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In [1] we obtained a short proof of the theorem of Thompson that a finite group
is soluble if and only if every two of its elements generate a soluble subgroup.
A natural next question to ask iswhat happens if we keep one of the generators
fixed? For a finite group we define

sol(G),

the soluble radical ofG, to be the largest normal soluble subgroup ofG, and

SOL(G)= {
x ∈G

∣∣ 〈x,g〉 is soluble for allg ∈G
}
.

Conjecture. For any finite group G,

SOL(G)= sol(G).

Some progress towards a proof of this conjecture is reported in [2] and the
author’s work in this area has led to a number of results of independent interest,
notably [3,4]. The interested reader is referred to the survey article [5].

It is the purpose of this article to record further progress towards a proof of the
above conjecture. Recall that for a groupG,

F2(G)

is defined to be the inverse image ofF(G/F(G)) in G. Equivalently,F2(G) is
the largest normal soluble subgroup ofG with Fitting height at most two. Define

F2(G)= {
x ∈G

∣∣ x ∈ F2
(〈x,g〉) for all g ∈G

}
.

We shall prove the following result.
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Theorem A. Let G be a finite group. Then

F2(G)= F2(G).

We remark that Theorem A may be restated as follows:

Let x be an element of the finite group G. Then 〈xG〉 is soluble with Fitting
height at most two if and only if 〈x〈g〉〉 has this property for all g ∈G.

The corresponding assertion with ‘Fitting height at most two’ replaced by
‘Fitting height at most one’ is an immediate consequence of the Baer–Suzuki
Theorem.

It should be pointed out that ifx ∈G satisfies the following:

〈x, xg〉 is soluble with Fitting height at most two for all g ∈G,

then one cannot conclude thatx ∈ F2(G). Indeed, a counterexample may be found
in any non-abelian finite simple group.

We hope that the proof of Theorem A presented here provides a model for an
eventual proof of the conjectured characterisation of the soluble radical of a finite
group.

1. Preliminaries

Henceforth the word group will mean finite group. We shall need a number of
results concerning the action of ap-group on ap′-group.

Lemma 1.1. Let the p-group A act on the p′-group G. Then:

(i) [G,A] �G,
(ii) G= CG(A)[G,A], and
(iii) [G,A,A] = [G,A].

Proof. This is well known. (i) follows from commutator identities and (ii) follows
from a Frattini Argument. ✷

The following is a special case of a result of Goldschmidt [6, (11.12), p. 589].

Lemma 1.2. Let the abelian p-group A act on the soluble p′-group G. Then

C[G,A](A)= 〈
C[CG(B),A](A)

∣∣ B �A and A/B is cyclic
〉
.

Definition. Let A be an elementary abelianp-group that acts on theq-groupQ,
q �= p. ThenQ is A-minimal provided:
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(i) A/CA(Q) is cyclic, and
(ii) if p = 2 thenQ is cyclic.

Lemma 1.3. Let the elementary abelian p-group A act on the q-group Q, q �= p.
If 1 and Q are the only A-invariant subgroups of Q then Q is A-minimal.

Proof. Note thatQ is elementary abelian and that an abelian group with a faithful
irreducible representation must be cyclic. This proves (i). Recall that if an
involution t acts on a 2′-groupX then every element ofX can be written in the
form xy wheret centralizesx and invertsy. This proves (ii). ✷
Lemma 1.4. Let the elementary abelian p-group A act on the q-group Q, q �= p.
Let P �A. Then

[Q,P ] = 〈[T ,P ] ∣∣ T �Q is A-invariant and A-minimal
〉
.

Proof. By a result of Goldschmidt [6, (7.13), p. 484], we have

[Q,P ] = 〈[
CQ(B),P

] ∣∣ B �A andA/B is cyclic
〉
.

Thus ifp > 2 the lemma is proved. Ifp = 2 note that[CQ(B),P ] is generated by
elements that are inverted by a generator forA moduloB. ✷

The preceding results of Goldschmidt are particularly effective when a non-
cyclic abelianp-group is available. In the contrary case, the following result can
act as a substitute.

Theorem 1.5. Let p be an odd prime and suppose that the p-group P acts on the
p′-group G. Then

C[G,P ](P )= 〈
C[x,P ](P )

∣∣ x ∈G and x ∈ [x,P ]〉.

Note that the subgroups[x,P ] areP -invariant, that〈P,Px 〉 = P [x,P ] and
that any subgroup of the form[y,P ] may be written in the form[x,P ] with
x ∈ [x,P ].

Theorem 1.5 is proved in [3] using the Glauberman Character Correspondence.
We shall only need this result in the case thatG is aq-group and an elementary
proof in this case may be found in [7]. We note that Theorem 1.5 is simply not true
if |P | = 2, the right-hand side being trivial. This is the cause of some difficulty.

The proof of Theorem A proceeds by constructing collections of subgroups
Ω with the property that any member ofΩ is contained in a unique maximal
member ofΩ . The following hypothesis and lemma describe the basic idea.
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Hypothesis (U).

(i) G is a group withF(G)= 1, A is a subgroup ofG andΩ is a collection of
A-invariant nilpotent subgroups ofG.

(ii) If R �Q ∈Ω andR is A-invariant thenR ∈Ω .
(iii) If Q, R ∈Ω andA〈Q,R〉 �=G then〈Q,R〉 ∈Ω .

Note thatΩ is partially ordered by inclusion so we may consider the maximal
and minimal members ofΩ .

Lemma (U). Assume Hypothesis (U).

(i) If Q and R are maximal members of Ω then Q=R or Q∩R = 1.
(ii) If A〈Q,R〉 �= G whenever Q and R are minimal members of Ω then Ω

possesses a unique maximal member.

Proof. Assume (i) to be false and choose a counterexample withQ∩R maximal.
Let T = Q ∩ R �= 1 andH = NG(T ). SinceF(G) = 1, we haveH �= G. Let
Q0 = NQ(T ) andR0 = NR(T ). SinceQ andR are nilpotent andQ �= R, we
haveQ0 > T and R0 > T . Now Q0,R0 ∈ Ω and A〈Q0,R0〉 � H �= G; so
〈Q0,R0〉 ∈ Ω . Let S be a maximal member ofΩ that contains〈Q0,R0〉. We
haveT <Q0 <Q∩ S; so the maximal choice ofQ∩R forcesQ= S. Similarly
R = S; soQ=R, a contradiction.

To prove (ii), letM andN be maximal members ofΩ . LetQ andR be minimal
members ofΩ that are contained inM andN , respectively. By assumption,
A〈Q,R〉 �= G; so 〈Q,R〉 ∈ Ω . Let L be a maximal member ofΩ containing
〈Q,R〉. ThenQ�M ∩L; soM = L. SimilarlyL=N ; soM =N . ✷

We shall refer to this lemma simply as(U).
We shall need a number of nonsimplicity criteria. The first is a generalization

of Wielandt’s characterization of subnormal subgroups.

Theorem 1.6 (D. Bartels [8]).Let P be a subgroup of the group G. Then
〈
Px

∣∣ x ∈G and x ∈ 〈
P,Px

〉〉

is the smallest subnormal subgroup of G that contains P .

We shall also use the following result.

The Baer–Suzuki Theorem [6, Theorem 4.8, p. 195].Let x be a q-element of
the group G. If 〈x, xg〉 is a q-group for all g ∈G then x ∈Oq(G).
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Unfortunately, the Baer–Suzuki Theorem cannot be generalized from a single
prime to a set of primes. However, the following observation, when combined
with the Goldschmidt Lemma can sometimes be effective.

Lemma 1.7. Let t be a p′-element of the group G. If tg is a p′-element for every
p′-element g ∈G then t ∈Op′(G).

Proof. Use induction on the length of a word to show that every member of〈tG〉
is ap′-element. ✷
The Goldschmidt Lemma [6, (5.18), p. 112].Let u be a p-element of the soluble
group H . Then

Op′
(
CH (u)

)
�Op′(H).

The following result is used to eliminate the final configuration in the proof of
Theorem A.

Lemma 1.8. Let M1, . . . ,Mn and H �= 1 be subgroups of the group G. Suppose
that

G=M1 ∪ · · · ∪Mn, G>Mi >H, Mi ∩Mj =H for all i �= j,

that n� 2, and that H does not contain a nontrivial normal subgroup of G. Then
H is a Frobenius complement in G and F(G) �= 1.

Proof. Let i �= j , choosemi ∈Mi −H and choosemj ∈Mj −H . Thenmim
−1
j ∈

Mk for somek �= i, j . Now

(
H ∩Hmi

)m−1
j �Mj ∩Mk =H ;

soH ∩Hmi �Hmj . We deduce thatH ∩Hmi =H ∩Hmj , thatH ∩Hmi =HMj ,
thatH ∩Hmj =HMi , and then thatHMi =HMj . Note that 1=HG =HM1 ∩· · ·∩
HMn ; whenceH ∩Hmi = 1.

It follows thatH ∩Hg = 1 for all g ∈G−H ; soH is a Frobenius complement
in G. Frobenius’ Theorem implies thatG possesses a normal complementK

to H . Thompson’s Theorem on fixed-point free automorphisms implies thatK

is nilpotent. HenceF(G) �= 1 as claimed. ✷

2. The soluble case

We need to establish Theorem A in the case thatG is soluble. For these groups,
a more general result is provable, which we shall now describe.



276 P. Flavell / Journal of Algebra 255 (2002) 271–287

For a groupG the characteristic subgroupsFk(G), k � 0 are defined by

F0(G)= 1 and Fk+1(G)= the inverse image ofF
(
G/Fk(G)

)
in G.

If G is soluble thenf (G), the Fitting height ofG, is the smallest integerk such
thatG = Fk(G). For anyk we note thatFk(G) has Fitting height at mostk and
contains every normal subgroup ofG with this property. Define

Fk(G)= {
x ∈G

∣∣ x ∈ Fk
(〈x,g〉) for all g ∈G

}

or equivalently

Fk(G)= {
x ∈G

∣∣ f
(〈
x〈g〉〉) � k for all g ∈G

}
.

It is trivial thatFk(G)⊆Fk(G).

Theorem 2.1. Let G be a soluble group. Then

Fk(G)= Fk(G) for all k � 0.

Proof. Assume false and letG be a minimal counterexample. Thenk � 1 since
F0(G) = 1 = F0(G). Choosex ∈ Fk(G) − Fk(G). ThenG = 〈xG〉, f (G) > k,
and every proper quotient ofG has Fitting height at mostk. Consequently,G
has a unique minimal normal subgroupV , since otherwiseG would embed into
a direct product of groups each of which has Fitting height at mostk. Note thatV
is an elementary abelianq-group for some primeq .

It is a general fact thatF(G/Φ(G)) = F(G)/Φ(G), whereΦ(G) is the
Frattini subgroup ofG. Thusf (G/Φ(G))= f (G) and we deduce thatΦ(G)= 1.
SinceV is the unique minimal normal subgroup ofG, it follows thatCG(V ) =
V =Oq(G). The solubility ofG implies that there is a unique conjugacy class of
complements toV in G.

SetG=G/V . Thenf (G)= k. SinceG= 〈xG〉, the minimality ofG implies
that there existsg ∈ G such thatf (〈x〈g〉〉) = k. SetM = 〈x〈g〉〉 andH = 〈MV 〉.
Note thatH =M = 〈x〈g〉〉 and thatf (H)� f (M)= f (M)= k.

We claim thatf (H) > k. Indeed, let

T =
⋂{

N �H
∣∣ f (H/N)< f (H)

}
.

Notice thatH/T embeds into a direct product of groups each of which has
Fitting height less thanf (H). Thus 1 �= T � F(H). Now V normalizesH ;
whence[Oq ′(F (H)),V ] � Oq ′(F (H)) ∩ V = 1, sinceV is a q-group. Recall
thatCG(V )= V ; whenceOq ′(F (H))= 1 and thenT is aq-group. Now

f
(
H/H ∩F

(
G

))
� f

(
G/F

(
G

))
< k;

whenceT � ker(H →H/H ∩F(G)) and thenT � F(G). SinceV =Oq(G), it
follows thatF(G) is aq ′-group. ButT is aq-group; soT = 1. ThusT � V and
sof (H) < f (H). Sincef (H)= k, this proves the claim.
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By its definition,H is generated by conjugates ofx; so the minimality ofG
forcesG = H . ThusG = MV . Now x ∈ Fk(G) andM = 〈x〈g〉〉; sof (M) � k.
ThenM �= G and, sinceV is abelian and a minimal normal subgroup ofG, we
haveM ∩ V = 1. ThusM is a complement toV in G. Using the fact thatV
is the unique minimal normal subgroup ofG, it follows thatNG(M) = M. But
g ∈NG(M); whenceM = 〈x,g〉.

Choosev ∈ V . Then〈x〈gv〉〉 = 〈x〈g〉〉; so the previous argument, withgv in
place ofg, implies that〈x,gv〉 is also a complement toV . Recall that there is
a unique conjugacy class of complements toV in G. Thus

〈x,gv〉u = 〈x,g〉
for someu ∈ V . We have

x−1xu = [x,u] ∈ V ∩ 〈x,g〉 = 1

and

g−1(gv)u = g−1guv = [g,u]v ∈ V ∩ 〈x,g〉 = 1.

Thusu ∈ CV (x) andv = [u,g]. Sincev is an arbitrary element ofV , it follows
that|CV (x)| � |V |. Consequently,

x ∈ CG(V )= V � Fk(G).

This final contradiction completes the proof.✷
Corollary 2.2. Let G be a soluble group, k � 0, and x ∈G. Then 〈xG〉 has Fitting
height at most k if and only if 〈x〈g〉〉 has Fitting height at most k for all g ∈G.

3. The minimal counterexample

Henceforth we letG be a minimal counterexample to Theorem A. Then
G= 〈F2(G)〉. Theorem 2.1 implies thatF(G)= 1. Fix a primep such thatF2(G)

containsp-elements. Set

F = {
P �G

∣∣ P has orderp and is generated by a member ofF2(G)
}

and

A= {
A�G

∣∣A is an elementary abelianp-group that is generated
by members ofF2(G) and one of the following holds:
(i) m(A)� 3 andp > 2, or
(ii) m(A)= 2 andA contains at most one subgroup of

orderp that is not a member ofF
}
.

Here,m(A) is the minimal number of generators forA. Note that〈P,g〉 �= G

for all P ∈F andg ∈G.
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If A �= ∅ then we use(U) and Bartels’s Theorem to construct a nilpotent
normal subgroup ofG. If A = ∅ then thep-local structure ofG is severely
restricted, and we obtain a contradiction using Lemma 1.8.

Fundamental to the whole argument is the construction of collections of
subgroups satisfying Hypothesis(U). If A is ap-subgroup ofG we define

Ωq(A)= {
Q ∈ N(A,q)

∣∣CQ(A)�Oq

(
CG(A)

)}
.

Recall that N(A,q) is the set ofq-subgroups ofG that are normalized byA.
We remark that the even prime is particularly pleasant to deal with in the case

A �= ∅. In the caseA = ∅, Theorem 1.5 plays a crucial role. However, this result
is only available for odd primes and thus the even prime creates severe difficulties
in the caseA= ∅.

Lemma 3.1. Let A be a p-subgroup of G that is generated by members of F2(G)

and suppose that A�H <G. Then A� F2(H). If Q is a p′-subgroup of H that
is normalized by A then [Q,A] is nilpotent and [Q,A] �Op′(F (H)). Moreover,
if Q is a q-group then [Q,A] �Oq(H).

Proof. The minimality ofG forcesA� F2(H); so by settingH = H/F(H) we
haveA�Op(H). Thus[Q,A] �Op(H)∩Q= 1, hence the result.✷
Lemma 3.2. Let P ∈ F and suppose that x ∈ G satisfies x ∈ [x,P ]. Let n ∈
NG(P) and set H = 〈P,n, x〉. Then:

(i) H �=G.
(ii) [x,P ] �Op′(F (H)).
(iii) 〈[x,P ], [x,P ]n〉 is nilpotent.

Proof. We have

x ∈ [x,P ] �
〈
P,Px

〉 = 〈
P,Pnx

〉
� 〈P,nx〉

and it follows thatH = 〈P,nx〉. NowP ∈ F ; soP � F2(H) and thenH �=G.
SetH = H/Op′(F (H)). ThenP � Op(H) and sox ∈ [x,P ] � Op(H). But

[x,P ,P ] = [x,P ] andOp(H) is nilpotent; so we have[x,P ] = 1. This proves
(ii), and (iii) follows immediately. ✷

4. Uniqueness results

Lemma 4.1. Let P ∈ F and let D be a nilpotent p′-subgroup of G that is
normalized by P . Suppose that D = [D,P ] and that |D| is divisible by at least
two primes. Then 〈DN(P)〉 is nilpotent and, in particular, 〈N(P),D〉 �=G.
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Proof. It suffices to assume thatD is maximal subject to the above conditions and
prove thatN(P) normalizesD. Let q be a prime divisor of|D|, setQ = Oq(D)

andR = Oq ′(D). SinceD is nilpotent, we haveD = Q×R and, by hypothesis,
R �= 1. Moreover, asD = [D,P ] we haveQ= [Q,P ] andR = [R,P ].

Choosey ∈Q such thaty ∈ [y,P ] andz ∈ R such thatz ∈ [z,P ]. Setx = yz

and note thatx ∈ [x,P ] since[Q,R] = 1. Letn ∈ N(P) and setH = 〈P,x,n〉.
Lemma 3.2 implies thatx ∈ F(H). Consequently,y ∈ Oq(H), z ∈ Oq ′(H), and
we deduce that[yn, z] = 1. Now Q is generated by such elementsy andR is
generated by such elementsz; so it follows thatQn � CG(R). LetM = NG(R).
Now PD �M; so using Lemmas 3.1 and 1.1 we haveD � [Op′(F (M)),P ] and
then the maximal choice ofD forcesD = [Op′(F (M)),P ]. Sincen ∈N(P) and
Q = [Q,P ], we haveQn = [Qn,P ]; whenceQn � D. ThenQn = Q and we
deduce thatNG(P) � NG(Q). Now q was an arbitrary prime divisor of|D|; so
NG(P)�NG(D) as desired. ✷
Lemma 4.2. Let P ∈ F , let q �= p and suppose that p �= 2. Then the following
hold:

(i) If Q ∈ N(P, q) then [Q,P ] ∈Ωq(P ).
(ii) Ωq(P ) satisfies Hypothesis (U).
(iii) NG(P) normalizes the maximal members of Ωq(P ).

Proof. (i) By Theorem 1.5 we have

C[Q,P ](P )= 〈
C[x,P ](P )

∣∣ x ∈Q andx ∈ [x,P ]〉;
hence we may suppose thatQ = [x,P ] for some x ∈ Q. Let c ∈ CG(P).
Lemma 3.2 implies that〈Q,Qc〉 is nilpotent and hence aq-group. Thus
〈CQ(P),CQ(P )

c〉 is a q-group and, sincec was arbitrary, the Baer–Suzuki
Theorem forcesCQ(P)�Oq(CG(P )). This proves (i).

(ii) By the definition Ωq(P ), it suffices to verify (iii) of Hypothesis(U).
Let Q,R ∈ Ωq(P ), set H = P 〈Q,R〉, and suppose thatH �= G. Set S =
(H ∩ Oq(CG(P )))[Oq(H),P ]. Using (i) we haveS ∈ Ωq(P ). Note thatQ =
CQ(P)[Q,P ]. Now CQ(P) � Oq(CG(P )) sinceQ ∈ Ωq(P ) and [Q,P ] �
[Oq(H),P ] by Lemma 3.1. ThusQ � S. Similarly,R � S; so 〈Q,R〉 ∈ Ωq(P )

as desired.
(iii) Let Q be a maximal member ofΩq(P ) and letn ∈ NG(P). Note that

Qn is also a maximal member ofΩq(P ). If [Q,P ] = 1 thenQ = Oq(CG(P ))

and the result is clear. Hence, we may suppose that[Q,P ] �= 1. Choosex ∈ Q

such that 1�= x ∈ [x,P ]. SetT = 〈[x,P ], [x,P ]n〉. Lemma 3.2 implies thatT is
a q-group. Sincen ∈ NG(P), we haveT = [T ,P ]; so T ∈ Ωq(P ) by (i). Now
1 �= [x,P ] �Q∩T ; so(U) implies thatT �Q. Then 1�= [x,P ]n �Q∩Qn and
another application of(U) yieldsQ=Qn. ThusNG(P) normalizesQ. ✷
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Lemma 4.3. Let A ∈ A, let q �= p and r �= p be primes and suppose that
Q ∈ N(A,q) and R ∈ N(A, r) are A-minimal. Then A〈Q,R〉 �=G.

Proof. Let B = CA(Q) andC = CA(R), so thatA/B andA/C are cyclic. Then
A〈Q,R〉 �CG(B∩C); so we may assume thatB∩C = 1. The members ofA are
noncyclic and elementary abelian; so it follows thatA= B ×C and thatB andC
are cyclic of orderp. We also have[Q,C] �= 1 and[R,B] �= 1. Sincem(A)= 2,
the definition ofA implies that at least one ofB orC is a member ofF . Without
loss of generality we may suppose thatC ∈F .

Suppose thatp > 2. Lemma 4.2 implies that[Q,C] ∈ Ωq(C). Let Q∗ be
a maximal member ofΩq(C) that contains[Q,C]. ThenCG(C) � NG(Q

∗)
by Lemma 4.2. Note thatQ = CQ(C)[Q,C] and thatAR � CG(C). Thus
A〈Q,R〉 �NG(Q

∗) and the result is proved in this case.
Suppose thatp = 2. Then the definition ofA-minimality implies thatQ andR

are cyclic. Letx be a generator forQ. Since[Q,C] �= 1 it follows thatx ∈ [x,C].
SetH = 〈C,x,R〉. Lemma 3.2 implies thatx ∈Oq(H). SinceQ= 〈x〉, it follows
thatF(〈Q,R〉) �= 1. NowA normalizes〈Q,R〉 andF(G) = 1; soA〈Q,R〉 �= G

in this case also. ✷
Lemma 4.4. Let A ∈ A and suppose that q �= p. Then:

(i) If Q ∈ N(A,q) then [Q,A] ∈Ωq(A).
(ii) Ωq(A) has a unique maximal member.
(iii) Let P ∈ F with P < A. If Q ∈ N(P, q) then [Q,P ] is contained in the

unique maximal member of Ωq(A).

Proof. (i) We must show thatC[Q,A](A)�Oq(CG(A)). By Lemma 1.2, we have

C[Q,A](A)= 〈
C[CQ(B),A](Q)

∣∣ B �A andA/B is cyclic
〉
.

Hence we may suppose thatQ = [CQ(B),A] for someB � A with A/B

cyclic. The members ofA are noncyclic and abelian; soA � CG(B) < G. Then
[CQ(B),A] � Oq(CG(B)) by Lemma 3.1. SinceCG(A) � CG(B), we have
[CQ(B),A] ∩CG(A)�Oq(CG(A)). This proves (i).

(ii) An argument identical to the one employed in the proof of Lemma 4.2(ii)
shows thatΩq(A) satisfies Hypothesis(U). Then(U) together with Lemmas 1.3
and 4.3 imply thatΩq(A) has a unique maximal member.

(iii) We may suppose thatQ = [x,P ] for somex ∈ Q. SetS = 〈[x,P ]A〉 and
note thatS = [S,A]. By (i) it suffices to prove thatS is aq-group.

If p > 2 then [x,P ] ∈ Ωq(P ) by Lemma 4.2(i), and then the desired
conclusion follows from Lemma 4.2(iii). Hence, we may assume thatp = 2.
The definition ofA implies thatm(A) = 2 soA = 〈P,n〉 for somen ∈ A. Set
H = 〈P,x,n〉. By Lemma 3.2 we have[x,P ] �Oq(H) soS is aq-group in this
case also. ✷
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The following result terminates our study of the setA.

Theorem 4.5. A = ∅.

Proof. Assume false, letA ∈A, and chooseP ∈ F with P <A. The minimality
of G implies thatG is the smallest subnormal subgroup ofG that containsP
and then Bartels’s Theorem yieldsG = 〈Px | x ∈ G andx ∈ 〈P,Px 〉〉. Note that
〈P,Px 〉 = P [x,P ] for anyx. Thus

G= PK where K = 〈[x,P ] ∣∣ x ∈G andx ∈ [x,P ]〉.
We shall prove thatK is nilpotent. Note thatP normalizesK. For each prime
q �= p, set

Kq = 〈[x,P ] ∣∣ x ∈G, x ∈ [x,P ] and[x,P ] is aq-group
〉
.

If x ∈G satisfiesx ∈ [x,P ] then by Lemma 3.2 we havex ∈Op′(F (〈P,x〉)) and
it follows that

K = 〈Kq | q �= p〉.
Lemma 4.4(iii) implies that eachKq is aq-group. Thus it suffices to show that

[Kq,Kr ] = 1 wheneverq �= p andr �= p are distinct primes. Note thatKq and
Kr areA-invariant sinceA centralizesP .

LetQ andR beA-invariantA-minimal subgroups ofKq andKr , respectively.
SetH = A〈Q,R〉. Lemma 4.3 implies thatH �= G and then Lemma 3.1 forces
[Q,P ] � Oq(H) and [R,P ] � Or(H). Thus [Q,P ] commutes with[R,P ].
Using Lemma 1.4 we deduce that[Kq,Kr ] = 1 and then thatK is nilpotent.

SinceG = PK andP normalizesK, we haveK � F(G) = 1; soG = P �
F2(G), a contradiction. ✷

5. Reduction to the isolated case

Throughout the remainder of this paper, we fixP ∈ F . We say thatP is
isolated in G if the only conjugate ofP that commutes withP is P itself.

Lemma 5.1. If p = 2 then P is isolated in G.

Proof. Assume false and letP1 �= P be a conjugate ofP that commutes withP .
SetA= 〈P,P1〉. Thenm(A)= 2 andA has only one subgroup of order 2 that is
not equal toP or P1. ThusA ∈ A, contrary to Theorem 4.5.✷

The goal of this section is to extend the above result to odd primes.

Lemma 5.2. If P � S with S a p-group then P � Z(S).
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Proof. Assume false and letS be a minimal counterexample. SetA= 〈PS 〉. Then
A is noncyclic and elementary abelian. The previous lemma forcesp > 2; so as
A = ∅ it follows thatm(A) = 2. If S fails to centralizeA then it has two orbits
on the set of subgroups ofA with orderp, one of size 1, the other of sizep. But
A contains at least two members ofF ; so it follows thatA ∈ A, a contradiction.
ThusA� Z(S) as claimed. ✷
Lemma 5.3. Let P < A <G with A abelian and generated by conjugates of P .
Then A�Op(CG(P)).

Proof. SinceA� F2(CG(P )), it suffices to show that[Op′(F (CG(P ))),A] = 1.
Note thatp > 2 by Lemma 5.1.

Let q �= p, choosey ∈ [Oq(CG(P )),A] andg ∈ G; let u be a generator for
P and setH = 〈P, (uy)g〉. Observe thatug, yg ∈ H sinceu andy commute and
have coprime orders. NowP � F2(H); soH is soluble. Sinceyg ∈Op′(CG(u

g)),
we may apply the Goldschmidt Lemma to conclude thatyg ∈Op′(H).

We haveOp′(H) = COp′ (H)(P )[Op′(H),P ] and Lemma 3.1 implies that
[Op′(H),P ] is nilpotent. SetM = 〈NG(P), [Op′(H),P ]〉. Lemmas 4.1 and
4.2 imply that M �= G. Note that yg ∈ Op′(H) � M. Lemma 3.1 yields
[Oq(CG(P )),A] � Oq(M) and we deduce that〈y, yg〉 is a q-group. Since
g was arbitrary, the Baer–Suzuki Theorem forcesy ∈ Oq(G). Consequently,
[Oq(CG(P )),A] = 1, which completes the proof of this lemma.✷
Theorem 5.4.
(i) P is isolated in G.
(ii) If P �M <G then M =NM(P)[Op′(F (M)),P ].

Proof. Suppose thatP �M <G and thatP is isolated inM. SinceP � F2(M)

we may chooseS ∈ Sylp(F2(M)) with P � S. ThenSOp′(F (M)) � M and the
Frattini Argument yieldsM =NM(S)Op′(F (M)). NowP � Z(S) by Lemma 5.2
and since we are assuming thatP is isolated inM we obtainP � NM(S).
Consequently,M = NM(P)Op′(F (M)) and applying Lemma 1.1(ii) we deduce
thatM =NM(P)[Op′(F (M)),P ]. In particular, (ii) follows from (i).

Assume (i) to be false. Then there exists a conjugateP1 of P such that
[P,P1] = 1 andP �= P1. Set A = 〈P,P1〉 ∼= Cp × Cp . Note thatp > 2 by
Lemma 5.1. We shall derive a contradiction by showing thatA ∈ A. Let g ∈ G

and setM = 〈P,g〉.
Suppose thatP is isolated in M. Then M = NM(P)[Op′(F (M)),P ].

Lemmas 4.1 and 4.2 imply that〈NG(P), [Op′(F (M)),P ]〉 �= G and we deduce
that〈A,g〉 �= G.

Suppose thatP is not isolated inM. Then we can findB � M such that
P < B ∼= Cp × Cp andB is generated by conjugates ofP . By Lemma 5.3 we
have〈A,B〉 �Op(CG(P)) and then Lemma 5.2 implies that〈A,B〉 is elementary
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abelian. SinceA = ∅ we havem(〈A,B〉) < 3; whenceA= B and we deduce that
〈A,g〉 �=G in this case also.

What we have just done implies thatA � F2(〈A,g〉) for all g ∈ G. Thus
A ⊆ F2(G) and soA ∈ A. This contradicts Theorem 4.5 and completes the
proof. ✷

6. The even prime

The purpose of this section is to establish the following result.

Theorem 6.1. Suppose that Q is a nilpotent p′-subgroup of G that is normalized
by P and that Q = [Q,P ]. Then 〈QNG(P)〉 is nilpotent and, in particular,
〈QNG(P)〉 �=G.

If p is odd, the result follows from Lemmas 4.1 and 4.2. One way of dispensing
with the casep = 2 is as follows: Theorem 4.5 and Glauberman’sZ∗-Theorem
imply that P � Z(GmodO(G)), consequentlyG = PO(G). The Odd Order
Theorem implies thatO(G) is soluble, a contradiction.

However, we prefer a more elementary approach since this may shed more
light on more general problems than the one considered in this paper. Throughout
the remainder of this section we assume thatp = 2.

Lemma 6.2. G= PO(G).

Proof. Recall that any elementg of a group can be expressed uniquely as
a commuting product of a 2-element, the 2-part ofg, and a 2′-element. Letu
be a generator forP . Set

∆0 = {g ∈G | g is a 2′-element} and

∆1 = {g ∈G | the 2-part ofg is conjugate tou}.
We claim that∆0u⊆∆1. Indeed, letg ∈∆0 and setM = 〈P,g〉. Theorem 5.4

implies thatM = CM(u)O(M). Let M = M/O(M) so thenO(M) = 1 and
u ∈ Z(M). SinceM = 〈u, g〉, it follows thatM is an abelian 2-group. Theng = 1
and〈u〉 ∈ Syl2(M). The 2-part ofgu is nontrivial sincegu = u and is conjugate
to u since〈u〉 ∈ Syl2(M). Thus∆0u⊆∆1, as claimed.

We claim also that∆1u ⊆ ∆0. Let g ∈ ∆1 and letM andM be as in the
previous paragraph. Again,M is an abelian 2-group. LetS be a Sylow 2-subgroup
of M that containsu. The 2-part ofg is conjugate inM to a member ofS. Using
Theorem 5.4, we see that the 2-part ofg is conjugate inM to u. SinceM is
abelian andM = 〈u,g〉, we deduce thatu= g. Thusgu= 1; sogu ∈O(M) and
thengu ∈∆0.



284 P. Flavell / Journal of Algebra 255 (2002) 271–287

What we have just done implies thatu permutes transitively the setΓ =
{∆0,∆1} by right multiplication. Observe that∆0 and∆1 are unions of conjugacy
classes so any conjugate ofu also has this property. The minimality ofG implies
thatG= 〈uG〉; soG acts transitively by right multiplication onΓ . Let

K = ker
(
G→ Sym(Γ )

)
.

ThenK �G andG= PK. Now 1∈∆0, whenceK ⊆∆0. ThusK =O(G) and
the lemma is proved. ✷
Lemma 6.3. Let r be an odd prime and let z �= 1 be an r-element of CG(P). Then
[O(F(CG(z))),P ] has order divisible by r .

Proof. Assume false and letR be a Sylowr-subgroup ofCG(P) that con-
tainsz. SetH = NG(R). Theorem 5.4 implies thatH = CH(P)[O(F(H)),P ].
Now P � CH (R); whence[O(F(H)),P ] � CH(R). Since [O(F(H)),P ] �
[O(F(CG(z))),P ], we deduce that[O(F(H)),P ] is an r ′-group and then that
R ∈ Sylr (NG(R)). Consequently,R ∈ Sylr (G). Thus P centralizes a Sylow
r-subgroup ofG and it follows readily from Sylow’s Theorem and fromG =
PO(G) thatP centralizes everyP -invariantr-subgroup ofG.

Let g ∈ G be anr ′-element andM = 〈P,g〉; soM = CM(P)[O(F(M)),P ].
Now [O(F(M)),P ] is nilpotent; so[Or(M),P ] is a Sylow r-subgroup of
[O(F(M)),P ]. The previous paragraph and Lemma 1.1 imply that[O(F(M)),P ]
is anr ′-group. Considering the abelian groupM/[O(F(M)),P ], we see thatM
is an r ′-group. However,g was an arbitraryr ′-element; so Lemma 1.7 forces
P �Or ′(G). ButG= 〈PG〉; soG is anr ′-group, contrary toz �= 1 and complet-
ing the proof of this lemma. ✷

We observe that sinceG= PO(G) we have available the extension of Sylow’s
Theorems to groups with operators. Thus forq �= 2, G possessesP -invariant
Sylow q-subgroups,CG(P) acts transitively on these subgroups, and anyP -
invariantq-subgroup is contained in aP -invariant Sylowq-subgroup. It follows
thatG possesses a unique maximalP -invariantq-subgroup that is normalized by
CG(P).

Lemma 6.4. Let q be an odd prime and let z �= 1 be a q-element that is inverted
by P . Then 〈zCG(P )〉 is a q-group.

Proof. Assume false and setH = CG(z). Note thatH has odd order, thatH
is normalized byP , thatH = CH (P)[H,P ] and that[H,P ] is nilpotent. Now
z ∈ [z,P ] � [H,P ]; so using Lemma 4.1 we conclude that[H,P ] is aq-group.
Suppose that 1�= h ∈CH (P) has prime orderr �= q . SetL= CG(h). Thenz ∈ L,
whencez ∈ [z,P ] � [O(F(L)),P ]. Applying the previous lemma it follows that
the nilpotent group[O(F(L)),P ] has order divisible by bothq and r. Again
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Lemma 4.1 supplies a contradiction. We deduce thatCH (P) is a q-group and
then thatCG(z) is aq-group.

We claim that ifQ and R are P -invariant Sylowq-subgroups ofG that
containz then[Q,P ] = [R,P ]. We proceed by reverse induction on|T | where
T = Q∩ R. The result is vacuously true ifQ= R; so assume thatQ �= R. Then
T <NQ(T ) andT <NR(T ).

Let M be a maximal subgroup ofG that containsNG(T ). Let Q∗ be aP -
invariant Sylowq-subgroup ofG chosen so thatQ ∩M � Q∗ ∩ M ∈ Sylq(M).
We haveT < Q ∩ M � Q ∩ Q∗; so the inductive hypothesis yields[Q,P ] =
[Q∗,P ]. Similarly there exists aP -invariant Sylowq-subgroupR∗ of G such
thatR∗ ∩M ∈ Sylq(M) and[R,P ] = [R∗,P ].

Now z ∈ [z,P ] � [Oq(M),P ] andCG(z) is aq-group. Hence,CM(Oq(M))�
Oq(M). Also, G = PO(G); so G cannot involve SL2(q). Glauberman’sZJ -
Theorem implies thatZJ(Q∗ ∩ M) � M. Consequently,NQ∗(Q∗ ∩ M) �
NQ∗(ZJ (Q∗ ∩ M)) � NG(ZJ (Q

∗ ∩ M)) = M and we deduce thatQ∗ � M.
SinceM = CM(P)[O(F(M)),P ] and[O(F(M)),P ] is nilpotent, it follows that
[Q∗,P ] = [Oq(M),P ]. Similarly [R∗,P ] = [Oq(M),P ]. Thus[Q,P ] = [R,P ]
as claimed.

Let Q be aP -invariant Sylowq-subgroup ofG that containsz and choose
c ∈ CG(P). SinceP invertsz, we may invoke Lemma 3.2 to conclude that〈z, zc〉
is a P -invariantq-group. LetR be aP -invariant Sylowq-subgroup ofG that
contains〈z, zc〉. Then[Q,P ] = [R,P ]. Now P invertszc; whencezc ∈ [R,P ].
We deduce thatzc ∈Q for all c ∈CG(P) and then that〈zCG(P )〉 is aq-group. ✷
The proof of Theorem 6.1. By Lemma 4.1, we may suppose thatQ is aq-group
for some odd primeq . As we have already remarked,G possesses a unique
maximal P -invariant q-subgroupV that is normalized byCG(P). If z is an
element ofQ that is inverted byP then the previous lemma implies thatz ∈ V .
But Q = [Q,P ]; so Q is generated by such elements. ThusQ � V and the
theorem is proved. ✷

7. The final contradiction

Lemma 7.1. If M is a maximal subgroup of G that contains P then NG(P)�M

and M =NG(P)[Op′(F (M)),P ].

Proof. This follows from Theorems 5.4 and 6.1.✷
Lemma 7.2. Op′(F (CG(P )))= 1.

Proof. Set T = Op′(F (CG(P ))). Let g ∈ G and let M be a maximal sub-
group of G that contains〈P,g〉. The previous lemma implies thatM =
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NG(P)Op′(F (M)). Consequently,T � F2(M) and alsoT � Op′(M). Sinceg
was arbitrary, we deduce thatT ⊆F2(G) and that〈T ,g〉 is ap′-group whenever
g is ap′-element ofG. Lemma 1.7 forcesT � Op′(G). ThenT ⊆ F2(Op′(G))
and using the minimality ofG we haveT � F2(Op′(G))� F2(G)= 1. The result
follows. ✷

We are now in a position to derive a contradiction. We shall use(U) to show
thatG satisfies the hypotheses of Lemma 1.8. Set

Ω = {
Q�G

∣∣Q is a nilpotentp′-subgroup ofG that is normalized
by P andQ= [Q,P ]}.

Lemma 3.1 shows thatΩ satisfies (iii) of Hypothesis(U); so it remains to
verify (ii). Let Q ∈ Ω and letM be a maximal subgroup ofG that contains
PQ. ThenQ= [Q,P ] � Op′(F (M)) and by Lemma 7.1 we haveNG(P) �M.
The previous lemma forcesCQ(P) = 1. Consequently, ifR is a P -invariant
subgroup ofQ thenCR(P) = 1; soR = [R,P ] ∈Ω . We deduce thatΩ satisfies
Hypothesis(U) and then(U) implies that distinct maximal members ofΩ have
trivial intersection.

LetM1, . . . ,Mn be the distinct maximal subgroups ofG that containP . Since
〈P,g〉 �=G, for all g ∈G we have

G=M1 ∪ · · · ∪Mn and n� 2.

SetH = NG(P). Lemma 7.1 implies thatH � Mi for all i. Also,H <Mi since
otherwiseH would be a maximal subgroup ofG, contrary ton� 2. It is an easy
consequence of the minimality ofG thatHG = 1.

For eachi, setQi = [Op′(F (Mi)),P ]. Lemma 7.1 implies thatMi =HQi and
so 1 �= Qi ∈ Ω . Now H permutes the maximal members ofΩ that containQi ;
so (U) and the maximality ofMi imply thatQi is a maximal member ofΩ . Let
i �= j . Then

Mi ∩Mj =H(Qi ∩Mj).

Set T = Qi ∩ Mj . Now CT (P ) � CQi (P ) � Op′(F (CG(P ))) = 1; so T =
[T ,P ] � Qi ∩ [Op′(F (Mj )),P ] = Qi ∩ Qj . By (U) we haveQi ∩ Qj = 1; so
we deduce thatMi ∩ Mj = H for all i �= j . Lemma 1.8 implies thatF(G) �= 1,
a contradiction. This completes the proof of Theorem A.
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