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In [1] we obtained a short proof of the theorem of Thompson that a finite group
is soluble if and only if every two of its elements generate a soluble subgroup.
A natural next question to ask vghat happens if we keep one of the generators
fixed? For a finite group we define

sol(G),
the soluble radical of;, to be the largest normal soluble subgrougsefand
SOL(G) = {x € G | (x, g) is soluble for allg € G}.

Conjecture. For any finite group G,
SOL(G) = sol(G).

Some progress towards a proof of this conjecture is reported in [2] and the
author’s work in this area has led to a number of results of independent interest,
notably [3,4]. The interested reader is referred to the survey article [5].

Itis the purpose of this article to record further progress towards a proof of the
above conjecture. Recall that for a groGp

F2(G)

is defined to be the inverse image B{G/F(G)) in G. Equivalently,F>(G) is
the largest normal soluble subgroup®@fwith Fitting height at most two. Define

F2(G) = {x eG ’ x € Fz((x, g)) forall g € G}.
We shall prove the following result.
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Theorem A. Let G be a finite group. Then
F2(G) = F2(G).

We remark that Theorem A may be restated as follows:

Let x be an element of the finite group G. Then (x%) is soluble with Fitting
height at most two if and only if (x‘¢) hasthis property for all g € G.

The corresponding assertion with ‘Fitting height at most two’ replaced by
‘Fitting height at most one’ is an immediate consequence of the Baer—Suzuki
Theorem.

It should be pointed out that if € G satisfies the following:

(x, x8) is soluble with Fitting height at most two for all ¢ € G,

then one cannot conclude that F>(G). Indeed, a counterexample may be found
in any non-abelian finite simple group.

We hope that the proof of Theorem A presented here provides a model for an
eventual proof of the conjectured characterisation of the soluble radical of a finite

group.

1. Preliminaries

Henceforth the word group will mean finite group. We shall need a number of
results concerning the action ofpagroup on ap’-group.

Lemma 1.1. Let the p-group A act on the p’-group G. Then:

() [G.A]<G,
(i) G=Cg(A)[G, A, and
(i) [G, A, Al=[G, Al.

Proof. Thisiswell known. (i) follows from commutator identities and (i) follows
from a Frattini Argument. O

The following is a special case of a result of Goldschmidt [6, (11.12), p. 589].

Lemma 1.2. Let the abelian p-group A act on the soluble p’-group G. Then
C[G,A](A) = (C[CG(B),A](A) | B < Aand A/B iscyC|iC>.

Definition. Let A be an elementary abeligngroup that acts on thg-group Q,
g # p. ThenQ is A-minimal provided:
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(i) A/C4(Q) is cyclic, and
(i) if p=2thenQ is cyclic.

Lemma 1.3. Let the elementary abelian p-group A act on the g-group Q, g # p.
If 1and Q arethe only A-invariant subgroupsof Q then Q is A-minimal.

Proof. Note thatQ is elementary abelian and that an abelian group with a faithful
irreducible representation must be cyclic. This proves (i). Recall that if an
involution ¢ acts on a 2group X then every element aX can be written in the
form xy wherer centralizesc and invertsy. This proves (ii). O

Lemma 1.4. Let the elementary abelian p-group A act on the g-group Q, g # p.
Let P < A.Then

[0, P1=([T, P]| T < Qis A-invariantand A-minimal ).

Proof. By a result of Goldschmidt [6, (7.13), p. 484], we have
[0.P]=([Co(B), P]| B< AandA/B is cyclic).

Thus if p > 2 the lemmais proved. |§ = 2 note thafCo (B), P] is generated by
elements that are inverted by a generatorAonoduloB. O

The preceding results of Goldschmidt are particularly effective when a non-
cyclic abelianp-group is available. In the contrary case, the following result can
act as a substitute.

Theorem 1.5. Let p be an odd prime and suppose that the p-group P acts on the
p’-group G. Then

Ci6.p1(P) =(Clx,p)(P) | x € G and x € [x, P]).

Note that the subgrouds, P] are P-invariant, that(P, P*) = P[x, P] and
that any subgroup of the forrfy, P] may be written in the fornjx, P] with
x € [x, P].

Theorem 1.5is proved in [3] using the Glauberman Character Correspondence.
We shall only need this result in the case thats ag-group and an elementary
proofin this case may be found in [7]. We note that Theorem 1.5 is simply not true
if |P| =2, the right-hand side being trivial. This is the cause of some difficulty.

The proof of Theorem A proceeds by constructing collections of subgroups
£2 with the property that any member &f is contained in a uniqgue maximal
member ofs2. The following hypothesis and lemma describe the basic idea.
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Hypothesis ().

(i) G isagroup withF(G) =1, A is a subgroup ot; ands2 is a collection of
A-invariant nilpotent subgroups @f.

(i) If R< Q€ 2 andR is A-invariantthenR € £2.

(i) If O, Re 2 andA(Q, R) # G then(Q, R) € 2.

Note thats2 is partially ordered by inclusion so we may consider the maximal
and minimal members aB.

Lemma (). Assume Hypothesis (/).

(i) If 0 and R are maximal membersof 2 thenQ=Ror QN R=1.
(i) If A(Q,R) # G whenever Q and R are minimal members of 2 then 2
possesses a unique maximal member.

Proof. Assume (i) to be false and choose a counterexample@ithR maximal.
LetT =QNR#1andH = Ng(T). SinceF(G) =1, we haveH # G. Let
Qo= Ngo(T) and Rg = Nr(T). SinceQ and R are nilpotent and? # R, we
have Qo > T and Rp > T. Now Qg, Ro € 2 and A{Qo, Ro) < H # G, sO
(Qo, Ro) € £2. Let S be a maximal member o2 that contains(Qo, Ro). We
haveT < Qo < 0 N S; so the maximal choice a N R forcesQ = §. Similarly
R = S;s0Q = R, acontradiction.

To prove (ii), letM andN be maximal members @¢2. Let Q0 andR be minimal
members of2 that are contained il and N, respectively. By assumption,
A(Q,R) #G; s0{(Q,R) € 2. Let L be a maximal member a2 containing
(O,R). ThenQ < MNL;soM=L.SimilarlyL=N;soM=N. O

We shall refer to this lemma simply &).
We shall need a number of nonsimplicity criteria. The first is a generalization
of Wielandt's characterization of subnormal subgroups.

Theorem 1.6 (D. Bartels [8]).Let P be a subgroup of the group G. Then
(P*|xeGandx (P, P¥))

is the smallest subnormal subgroup of G that contains P.
We shall also use the following result.

The Baer—Suzuki Theorem [6, Theorem 4.8, p. 195).et x be a g-element of
thegroup G. If (x, x¢) isag-groupfor all g € G thenx € 0,4 (G).
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Unfortunately, the Baer—Suzuki Theorem cannot be generalized from a single
prime to a set of primes. However, the following observation, when combined
with the Goldschmidt Lemma can sometimes be effective.

Lemma 1.7. Let t be a p’-element of the group G. If rg isa p’-element for every
p'-element ¢ € G thenr € 0,/ (G).

Proof. Use induction on the length of a word to show that every membeé®of
isap’-element. O

The Goldschmidt Lemma [6, (5.18), p. 112]Let u bea p-element of the soluble
group H. Then
0, (Cr(w)) <0y (H).

The following result is used to eliminate the final configuration in the proof of
Theorem A.

Lemma 1.8. Let M1, ..., M, and H # 1 be subgroups of the group G. Suppose
that

G=MU---UM,, G>M;>H,  M;NM;=H foralli#j,

that n > 2, and that H does not contain a nontrivial normal subgroup of G. Then
H isa Frobenius complementin G and F(G) # 1.

Proof. Leti # j, choosen; € M; — H and choose:; e M; — H. Thenml-m]

M, for somek #1i, j. Now

€

(Hn 15('"")”’-/l <MjNMy=H;
SOHNH™ < H™i.We deducethal N H™i = HNH™j, thatHNH™i = HM_/,
thatH N H™/ = Hy,, and thenthatiy, = Hy;. Note that = Hg = Hp, N---N
Hy,; whenceH N H™i = 1.

Itfollows thatH N H8 =1 forallg € G— H; soH is a Frobenius complement
in G. Frobenius’ Theorem implies that possesses a normal complemént
to H. Thompson’s Theorem on fixed-point free automorphisms implies khat
is nilpotent. Hence"(G) # 1 as claimed. O

2. The soluble case

We need to establish Theorem A in the case ¢hi soluble. For these groups,
a more general result is provable, which we shall now describe.
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For a groupG the characteristic subgroups(G), k > 0 are defined by
Fo(G)=1 and Fi41(G) = the inverse image of (G/F(G)) in G.

If G is soluble thenf (G), the Fitting height ofG, is the smallest integér such
that G = F;(G). For anyk we note thatF (G) has Fitting height at mosgt and
contains every normal subgroup Gfwith this property. Define

Fr(G) = {x eG | X € Fk((x, g)) forall g € G}
or equivalently

Fi(G)={xe G| f([x*)) <k forallg e G}.
It is trivial that F (G) € Fi(G).

Theorem 2.1. Let G be a soluble group. Then
Fi(G) = Fr(G) forall k>0.

Proof. Assume false and let be a minimal counterexample. Thér> 1 since
Fo(G) = 1= Fo(G). Choosex € Fi(G) — Fi(G). ThenG = (x%), f(G) > k,
and every proper quotient @ has Fitting height at most. ConsequentlyG
has a unique minimal normal subgroup since otherwise&s would embed into
a direct product of groups each of which has Fitting height at inddbte thatV
is an elementary abeliangroup for some prime.

It is a general fact that"(G/®(G)) = F(G)/®(G), where ®(G) is the
Frattini subgroup o6. Thusf(G/®(G)) = f(G) and we deduce th&@ (G) = 1.
SinceV is the unique minimal normal subgroup 6f, it follows thatCs (V) =
V = 04(G). The solubility of G implies that there is a unique conjugacy class of
complementstd in G.

SetG = G/ V. Thenf(G) =k. SinceG = (x¢), the minimality ofG implies
that there existg € G such thatf ((x‘¢")) = k. SetM = (x‘¢)) andH = (M").
Note thatH = M = (x'®’) and thatf (H) > f(M) = f(M) =k.

We claim thatf (H) > k. Indeed, let

T = ﬂ{N <H| f(H/N) < f(H))}.

Notice that H/T embeds into a direct product of groups each of which has
Fitting height less thary(H). Thus 1# T < F(H). Now V normalizesH,
whence[O, (F(H)), V] < Oy (F(H)) NV =1, sinceV is ag-group. Recall
thatCg (V) =V, whenceO, (F(H)) = 1 and therT is ag-group. Now

f(H/HNF(G))< f(G/F(G)) <k;

whenceTl < ker(H — H/H N F(G)) and therT < F(G). SinceV = 0,4(G), it
follows thatF(G) is aq’'-group. ButT is ag-group; soT = 1. ThusT <V and
SO0 f(H) < f(H). Sincef(H) =k, this proves the claim.
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By its definition, H is generated by conjugates of so the minimality ofG
forcesG = H. ThusG = MV. Now x € F(G) andM = (x{¢)); so f (M) < k.
ThenM # G and, sinceV is abelian and a minimal normal subgroup®f we
haveM NV =1. ThusM is a complement td/ in G. Using the fact that/
is the unique minimal normal subgroup 6f, it follows that Ng (M) = M. But
g € Ng(M); whenceM = (x, g).

Choosev € V. Then (x8")) = (x{8); so the previous argument, wigv in
place ofg, implies that(x, gv) is also a complement t&. Recall that there is
a unique conjugacy class of complement¥'ti G. Thus

(x,gv)" = (x,8)
for someu € V. We have
M =[x,ule VN ix, g =1
and
g Mg =g g v=[g.ulve VNix, g =1.

Thusu € Cy(x) andv = [u, g]. Sincev is an arbitrary element df , it follows
that|Cy (x)| > |V]. Consequently,

x € Cg(V)=V L F(G).
This final contradiction completes the proof

Corollary 2.2. Let G beasolublegroup, k >0, and x € G. Then (x%) hasFitting
height at most & if and only if (x(¢) has Fitting height at most & for all g € G.

3. The minimal counterexample

Henceforth we letG be a minimal counterexample to Theorem A. Then
G = (F2(G)). Theorem 2.1 implies that (G) = 1. Fix a primep such thatF>(G)
containsp-elements. Set

F={P <G| P hasordep and is generated by a member&£(G)}
and

A= {A <G | A is an elementary abeligp-group that is generated
by members ofF2(G) and one of the following holds:
(i) m(A)>=3andp > 2, or
(i) m(A) =2 andA contains at most one subgroup of
orderp that is not a member OF}.

Here,m(A) is the minimal number of generators far Note that(P, g) # G
forall P € F andg € G.
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If A# ¢ then we uself) and Bartels’s Theorem to construct a nilpotent
normal subgroup ofG. If A = @ then the p-local structure ofG is severely
restricted, and we obtain a contradiction using Lemma 1.8.

Fundamental to the whole argument is the construction of collections of
subgroups satisfying Hypothesid). If A is a p-subgroup ofG we define

24(A) ={Q e U(A,q) | Co(A) < 04(Ci(A))}.

Recall that1(A, ¢) is the set ofy-subgroups of5 that are normalized by.

We remark that the even prime is particularly pleasant to deal with in the case
A # 0. Inthe cased = ¢, Theorem 1.5 plays a crucial role. However, this result
is only available for odd primes and thus the even prime creates severe difficulties
in the cased = ¢@.

Lemma 3.1. Let A bea p-subgroup of G that is generated by members of F2(G)
and supposethat A < H < G. Then A < F>(H). If Q isa p’-subgroup of H that
isnormalized by A then [Q, A]isnilpotentand [Q, A] < O,/(F(H)). Moreover,
if Qisag-groupthen[Q, A] < O4(H).

Proof. The minimality of G forcesA < F2(H); so by settingd = H/F(H) we
haveA < 0,(H). Thus[Q, A1 < O,(H) N Q =1, hence the result.O

Lemma 3.2. Let P € F and suppose that x € G satisfies x € [x, P]. Let n €
Ng(P)andset H=(P,n, x). Then:

() H+#G.
(i) [x, P1< Oy (F(H)).
(@iii) ([x, P], [x, P]") isnilpotent.

Proof. We have
x €[x, PI<(P, P*)=(P, P"™*) < (P, nx)

and it follows thatd = (P, nx). Now P € F; sOP < F>(H) and thenH # G.

SetH = H/O,(F(H)). ThenP < 0,(H) and sox € [X, P] < O,(H). But
[¥, P, P]1=[X, P] and O,(H) is nilpotent; so we havgr, P] = 1. This proves
(i), and (iii) follows immediately. O

4. Uniquenessresults
Lemma 4.1. Let P € F and let D be a nilpotent p’-subgroup of G that is

normalized by P. Supposethat D = [D, P] and that | D| is divisible by at least
two primes. Then (D)) is nilpotent and, in particular, (N(P), D) # G.



P. Flavell / Journal of Algebra 255 (2002) 271-287 279

Proof. It suffices to assume that is maximal subject to the above conditions and
prove thatN (P) normalizesD. Let g be a prime divisor ofD|, setQ = 0,(D)
andR = O, (D). SinceD is nilpotent, we haved = Q x R and, by hypothesis,
R # 1. Moreover, a®d = [D, P] we haveQ =[Q, P]andR =[R, P].

Choosey € Q such thaty € [y, P] andz € R such that; € [z, P]. Setx = yz
and note that € [x, P] since[Q, R] = 1. Letn € N(P) and setH = (P, x, n).
Lemma 3.2 implies that € F(H). Consequentlyy € O,(H), z € Oy (H), and
we deduce thaky”, z] = 1. Now Q is generated by such elementsand R is
generated by such elementsso it follows thatQ” < Cg(R). Let M = Ng(R).
Now PD < M, so using Lemmas 3.1 and 1.1 we haveC [0, (F(M)), P] and
then the maximal choice ab forcesD =[O0,/ (F(M)), P]. Sincen € N(P) and
0 =1[0, P], we haveQ" = [Q", P]; whenceQ"” < D. ThenQ" = Q and we
deduce thaitVs (P) < Ng(Q). Now g was an arbitrary prime divisor gD|; so
Ng(P) < Ng(D) as desired. O

Lemma 4.2. Let P € F, let ¢ # p and suppose that p # 2. Then the following
hold:

(i) 1f 0 eU(P,q) then[Q, P] € £2,(P).
(i) $2,(P) satisfies Hypothesis (4).
(i) Ng(P) normalizes the maximal members of £2,(P).

Proof. (i) By Theorem 1.5 we have
Cio.p1(P) =(Clx,p1(P) | x € Q andx € [x, P]);

hence we may suppose th& = [x, P] for somex € Q. Let ¢ € Cg(P).
Lemma 3.2 implies thatQ, O¢) is nilpotent and hence g-group. Thus
(Co(P),Cgo(P)°) 1s a g-group and, since: was arbitrary, the Baer—Suzuki
Theorem force€ g (P) < 04(Cg(P)). This proves (i).

(if) By the definition £2,(P), it suffices to verify (iii) of Hypothesis/).
Let Q,R € £2,(P), set H = P(Q,R), and suppose thall # G. Set S =
(H N 04(Cg(P))[04(H), P]. Using (i) we haveS € §2,(P). Note thatQ =
Co(P)[Q, P]. Now Co(P) < 0,(Cg(P)) since Q € 2,(P) and [Q, P] <
[04(H), P] by Lemma 3.1. Thug) < S. Similarly, R < S; so(Q, R) € £2,(P)
as desired.

(i) Let Q be a maximal member o2, (P) and letn € Ng(P). Note that
Q" is also a maximal member a,(P). If [Q, P] =1 thenQ = 0,(Cs(P))
and the result is clear. Hence, we may suppose[tBal] # 1. Choosex € Q
such that £ x € [x, P]. SetT = ([x, P], [x, P]"). Lemma 3.2 implies thaf is
ag-group. Sincen € Ng(P), we haveT = [T, P]; soT € £2,(P) by (i). Now
1+#[x,P1<ONT;sold) impliesthatl < Q. Then 1#4 [x, P1* < 9N Q" and
another application af/) yields O = Q". ThusNg(P) normalizesQ. 0O
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Lemma 4.3. Let A€ A, let ¢ # p and r # p be primes and suppose that
QeWN(A,g)and R e (A, r) are A-minimal. Then A(Q, R) #G.

Proof. Let B=C4(Q) andC = C4(R), sothatA/B andA/C are cyclic. Then
A{Q, R) < Cg(BNC); sowe may assume thBNC = 1. The members ofl are
noncyclic and elementary abelian; so it follows tlat B x C and thatB andC
are cyclic of ordep. We also havéQ, C] # 1 and[R, B] # 1. Sincem(A) = 2,
the definition of A implies that at least one & or C is a member ofF. Without
loss of generality we may suppose tidag F.

Suppose thap > 2. Lemma 4.2 implies thatQ, C] € £2,(C). Let Q* be
a maximal member of2,(C) that containgQ, C]. Then Cg(C) < Ng(Q*)
by Lemma 4.2. Note thap = Co(C)[Q, C] and thatAR < Cg(C). Thus
A{Q, R) < Ng(Q%*) and the result is proved in this case.

Suppose thap = 2. Then the definition ofA-minimality implies thatQ andR
are cyclic. Letx be a generator fof. Since[Q, C] # 1 it follows thatx € [x, C].
SetH = (C, x, R). Lemma 3.2 implies that € O,(H). SinceQ = (x), it follows
that F({(Q, R)) # 1. Now A normalizes(Q, R) andF(G) =1; SOA(Q,R) # G
in this case also. O

Lemma4.4. Let A € A and supposethat ¢ # p. Then:

(i) 1f 0 eVI(A, q) then[Q, Al € £2,(A).
(i) $24(A) hasa unique maximal member.
(i) Let P € F with P < A. If O € (P, q) then [Q, P] is contained in the
unique maximal member of £2,(A).

Proof. (i) We must show tha€[p 41(A) < 04(Cs(A)). By Lemma 1.2, we have
Cro.41(A) = (Cey(8).41(Q) | B < AandA/B is cyclig).

Hence we may suppose th&g = [Co(B), A] for some B < A with A/B
cyclic. The members afl are noncyclic and abelian; sb< Cg(B) < G. Then
[Co(B), Al < 04(C(B)) by Lemma 3.1. Sinc&lg(A) < Cg(B), we have
[Co(B), AIN CG(A) < 0,(Cg(A)). This proves (i).

(i) An argument identical to the one employed in the proof of Lemma 4.2(ii)
shows that2, (A) satisfies Hypothesi@/). Then(l{) together with Lemmas 1.3
and 4.3 imply that2,(A) has a uniqgue maximal member.

(i) We may suppose thap = [x, P] for somex € Q. SetS = ([x, P]*) and
note thatS = [S, A]. By (i) it suffices to prove tha$ is ag-group.

If p> 2 then|[x, P] € £2,(P) by Lemma 4.2(i), and then the desired
conclusion follows from Lemma 4.2(iii). Hence, we may assume fhat 2.
The definition of A implies thatm(A) =2 so A = (P, n) for somen € A. Set
H = (P,x,n). By Lemma 3.2 we havpx, P] < O,(H) so0S is ag-group in this
case also. O
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The following result terminates our study of the gkt
Theorem 4.5. A= 0.

Proof. Assume false, left € A, and choos& € F with P < A. The minimality
of G implies thatG is the smallest subnormal subgroup@fthat containsP
and then Bartels’'s Theorem yields= (P* | x € G andx € (P, P*)). Note that
(P, P*) = P[x, P] foranyx. Thus

G=PK where K =[x, P]|xeG andx € [x, P]).
We shall prove thak is nilpotent. Note that? normalizesk. For each prime
q # p, set

K, =[x, P1|x € G, x €[x, Pland[x, P]is ag-grouy.
If x € G satisfiesy € [x, P] then by Lemma 3.2 we hawee O,/ (F((P, x))) and
it follows that

K=(Ky|q#Dp).

Lemma 4.4(iii) implies that eacK, is ag-group. Thus it suffices to show that
[K4, K-1=1 whenevel # p andr # p are distinct primes. Note th&, and
K, areA-invariant sinceA centralizesP.

Let Q andR be A-invariantA-minimal subgroups oK, andK ., respectively.
SetH = A(Q, R). Lemma 4.3 implies thatl # G and then Lemma 3.1 forces
[0, P] < O4(H) and [R, P] < O,(H). Thus[Q, P] commutes with[R, P].
Using Lemma 1.4 we deduce tHd,, K] =1 and then thak is nilpotent.

SinceG = PK and P normalizesk, we havek < F(G)=1;s0G =P <
F>(G), a contradiction. O

5. Reduction to theisolated case

Throughout the remainder of this paper, we fixe F. We say thatP is
isolated in G if the only conjugate ofP that commutes witlP is P itself.

Lemma5.1.If p=2then P isisolatedin G.

Proof. Assume false and le®; # P be a conjugate oP that commutes withP.
SetA = (P, P1). Thenm(A) = 2 andA has only one subgroup of order 2 that is
not equal toP or P1. ThusA € A, contrary to Theorem 4.5.0

The goal of this section is to extend the above result to odd primes.

Lemmab5.2. If P < S with S a p-group then P < Z(S).
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Proof. Assume false and letbe a minimal counterexample. Set= (PS). Then
A is noncyclic and elementary abelian. The previous lemma fogce; so as
A = ¢ it follows thatm(A) = 2. If S fails to centralizeA then it has two orbits
on the set of subgroups df with order p, one of size 1, the other of size But
A contains at least two membersBf so it follows thatA € A, a contradiction.
ThusA < Z(S) as claimed. O

Lemmab5.3. Let P < A < G with A abelian and generated by conjugates of P.
Then A < 0,(CG(P)).

Proof. SinceA < F2(Cg (P)), it suffices to show thdto, (F(Cg (P))), Al = 1.
Note thatp > 2 by Lemma 5.1.

Let ¢ # p, choosey € [0,(Cg(P)), Al andg € G, let u be a generator for
P and setH = (P, (uy)8). Observe that?®, y¢ € H sincex andy commute and
have coprime orders. Now < F>(H); S0 H is soluble. Since € 0, (C (uf)),
we may apply the Goldschmidt Lemma to conclude tfat O, (H).

We have O, (H) = Cop/(H)(P)[Op/(H), P] and Lemma 3.1 implies that
[0, (H), P] is nilpotent. SetM = (Ng(P),[0,(H), P]). Lemmas 4.1 and
4.2 imply that M # G. Note thaty® € O, (H) < M. Lemma 3.1 yields
[04(CG(P)), Al < O4(M) and we deduce thaty, y%) is a g-group. Since
g was arbitrary, the Baer—Suzuki Theorem forges O,(G). Consequently,
[04(CG(P)), A] =1, which completes the proof of this lemmar]

Theorem 5.4.
(i) PisisolatedinG.
(i) f P<M < GthenM =Ny (P)[O,(F(M)), P].

Proof. Suppose thaP < M < G and thatP is isolated inM. SinceP < F2(M)
we may choose € Syl,(F2(M)) with P < S. ThenSO,/(F(M)) < M and the
Frattini Argumentyield$/ = Ny (S) O (F(M)). Now P < Z(S) by Lemma5.2
and since we are assuming thatis isolated inM we obtain P < Ny (S).
ConsequentlyM = Ny (P)O,/(F(M)) and applying Lemma 1.1(ii) we deduce
that M = Ny (P)[ O,/ (F(M)), P]. In particular, (i) follows from (i).

Assume (i) to be false. Then there exists a conjugateof P such that
[P,Pil=1andP # P1. SetA = (P, P1) = C, x C,. Note thatp > 2 by
Lemma 5.1. We shall derive a contradiction by showing that A. Letg € G
and setM = (P, g).

Suppose thatP is isolated in M. Then M = Ny (P)[O, (F(M)), P].
Lemmas 4.1 and 4.2 imply thaNg (P), [0,/ (F(M)), P]) # G and we deduce
that(A, g) #G.

Suppose thaf” is not isolated inM. Then we can findB < M such that
P <B=C, x C, and B is generated by conjugates 8f By Lemma 5.3 we
have(A, B) < 0,(Cg(P)) andthen Lemma 5.2 implies th@gt, B) is elementary
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abelian. Sinced = @ we haven({A, B)) < 3; whenceA = B and we deduce that
(A, g) # G in this case also.

What we have just done implies that < F>({A, g)) for all g € G. Thus
A C F2(G) and soA € A. This contradicts Theorem 4.5 and completes the
proof. O

6. Theeven prime
The purpose of this section is to establish the following result.

Theorem 6.1. Supposethat Q isa nilpotent p’-subgroup of G that is normalized
by P and that Q = [Q, P]. Then (QN¢P)) is nilpotent and, in particular,
(QN(P) £ G.

If pisodd, the resultfollows from Lemmas 4.1 and 4.2. One way of dispensing
with the casep = 2 is as follows: Theorem 4.5 and Glaubermaf*sTheorem
imply that P < Z(G modO(G)), consequenthG = PO(G). The Odd Order
Theorem implies tha® (G) is soluble, a contradiction.

However, we prefer a more elementary approach since this may shed more
light on more general problems than the one considered in this paper. Throughout
the remainder of this section we assume {hat 2.

Lemma6.2. G = PO(G).

Proof. Recall that any elemeng of a group can be expressed uniquely as
a commuting product of a 2-element, the 2-partgofand a 2-element. Letu
be a generator foP. Set

Aog={geG|gisaZ-element and
A1 ={g € G| the 2-part ofg is conjugate ta:}.

We claim thatAou C A1. Indeed, lefg € Ag and setM = (P, g). Theorem 5.4
implies thatM = Cy (u)O(M). Let M = M/O(M) so thenO(M) = 1 and
i e Z(M). SinceM = (i, g), it follows thatM is an abelian 2-group. Then= 1
and(u) € Syl,(M). The 2-part ofgu is nontrivial sincegu = i and is conjugate
to u since(u) € Syl,(M). ThusAou € A1, as claimed.

We claim also thatA;u € Ag. Let g € A and letM and M be as in the
previous paragraph. Agai is an abelian 2-group. Letbe a Sylow 2-subgroup
of M that containg:.. The 2-part ofg is conjugate in/ to a member of. Using
Theorem 5.4, we see that the 2-partgofs conjugate inM to u. Since M is
abelian andV = (i, g), we deduce thai = g. Thusgu = 1; sogu € O(M) and
thengu € Ap.
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What we have just done implies thatpermutes transitively the sdt =
{Ap, A1} by right multiplication. Observe thatg and A1 are unions of conjugacy
classes so any conjugateiflso has this property. The minimality 6f implies
thatG = (u“); soG acts transitively by right multiplication ofr. Let

K =ker(G — SymI)).

ThenK < G andG = PK. Now 1€ Ag, whenceK C Ag. Thusk = O(G) and
the lemma is proved. O

Lemma6.3. Let r bean odd primeand let z £ 1 bean r-element of C (P). Then
[O(F(Cg(z))), P] hasorder divisbleby r.

Proof. Assume false and lerR be a Sylowr-subgroup ofCg(P) that con-
tainsz. SetH = Ng(R). Theorem 5.4 implies tha/ = Cy (P)[O(F(H)), P].
Now P < Cyx(R); whence[O(F(H)), P] < Cy(R). Since[O(F(H)), P] <
[O(F(Cs(2))), P1, we deduce thatO (F(H)), P] is anr’-group and then that
R € Syl.(Ng(R)). ConsequentlyR € Syl.(G). Thus P centralizes a Sylow
r-subgroup ofG and it follows readily from Sylow’s Theorem and frot =
PO(G) that P centralizes every-invariantr-subgroup ofG.

Let g € G be anr’-element and¥ = (P, g); SOM = Cy (P)[O(F(M)), P].
Now [O(F(M)), P] is nilpotent; so[O,(M), P] is a Sylow r-subgroup of
[O(F(M)), P]. The previous paragraph and Lemma 1.1 imply flaxtF (M)), P]
is anr’-group. Considering the abelian groiy[O (F(M)), P], we see thatt
is anr’-group. Howeverg was an arbitrary’-element; so Lemma 1.7 forces
P < 0,/(G).ButG = (P%); soG is anr’-group, contrary taq # 1 and complet-
ing the proof of this lemma. O

We observe that sind@ = P O (G) we have available the extension of Sylow’s
Theorems to groups with operators. Thus §o# 2, G possesse®-invariant
Sylow g-subgroupsCg(P) acts transitively on these subgroups, and @y
invariantg-subgroup is contained in A-invariant Sylowg-subgroup. It follows
thatG possesses a unique maxinfainvariantg-subgroup that is normalized by
Cg(P).

Lemma 6.4. Let g be an odd prime and let z # 1 be a ¢-element that is inverted
by P. Then (z¢¢P)) isa ¢-group.

Proof. Assume false and s&f = C;(z). Note thatH has odd order, that/

is normalized byP, that H = Cy (P)[H, P] and that[H, P] is nilpotent. Now
z € [z, P] < [H, P]; so using Lemma 4.1 we conclude that, P] is ag-group.
Suppose that % h € Cy(P) has prime order #£ g. SetL = Cg(h). Thenz € L,
whencez € [z, P] < [O(F (L)), P]. Applying the previous lemma it follows that
the nilpotent groud O (F (L)), P] has order divisible by both andr. Again
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Lemma 4.1 supplies a contradiction. We deduce that P) is a ¢-group and
then thatCg (z) is ag-group.

We claim that if 9 and R are P-invariant Sylowg-subgroups ofG that
containz then[Q, P] = [R, P]. We proceed by reverse induction | where
T = Q N R. The result is vacuously true @ = R; so assume thad # R. Then
T < No(T)andT < Ng(T).

Let M be a maximal subgroup af that containsNg(T). Let O* be a P-
invariant Sylowg-subgroup ofG chosen so tha N M < Q* N M € Syl (M).
We haveT < Q9 N M < Q N 0%, so the inductive hypothesis yield®, P] =
[Q*, P]. Similarly there exists &-invariant Sylowg-subgroupR* of G such
thatR* N M € Syl, (M) and[R, P] =[R*, P].

Nowz € [z, P]1 <[04(M), PlandCg(z) is ag-group. HenceCy (04 (M)) <
04(M). Also, G = PO(G); so G cannot involve Sk(g). Glauberman’'sZJ-
Theorem implies thatZJ(Q* N M) < M. ConsequentlyNo=(Q* N M) <
No+(ZJ(Q* N M)) < Ng(ZJ(Q* N M)) = M and we deduce tha®* < M.
SinceM = Cy (P)[O(F(M)), P] and[O(F(M)), P] is nilpotent, it follows that
[Q*, P1=1[0,(M), P]. Similarly [R*, P] = [04(M), P]. Thus[Q, P] =[R, P]
as claimed.

Let O be aP-invariant Sylowg-subgroup ofG that containg and choose
¢ € Cg(P). SinceP invertsz, we may invoke Lemma 3.2 to conclude thatz¢)
is a P-invariantg-group. LetR be a P-invariant Sylowg-subgroup ofG that
contains(z, z¢). Then[Q, P] =[R, P]. Now P invertsz¢; whencez € [R, P].
We deduce that € Q for all ¢ € Cg(P) and then thatz¢¢ (")) is ag-group. O

Theproof of Theorem 6.1. By Lemma 4.1, we may suppose thais aq-group
for some odd prime;. As we have already remarke@, possesses a unique
maximal P-invariant g-subgroupV that is normalized byCg(P). If z is an
element ofQ that is inverted byP then the previous lemma implies that V.
But O = [0, P]; so Q is generated by such elements. Th@s< V and the
theorem is proved. O

7. Thefinal contradiction

Lemma 7.1. If M isamaximal subgroup of G that contains P then Ng(P) < M
and M = NG (P)[Op (F(M)), P].

Proof. This follows from Theorems 5.4 and 6.10
Lemma7.2. O, (F(Cg(P)))=1.

Proof. SetT = 0,(F(Cg(P))). Let g € G and let M be a maximal sub-
group of G that contains(P, g). The previous lemma implies tha¥ =



286 P. Flavell / Journal of Algebra 255 (2002) 271-287

NG (P)Op (F(M)). Consequently] < F>(M) and alsoT’ < O,/(M). Sinceg
was arbitrary, we deduce thatC F»>(G) and that(T, g) is a p’-group whenever
g is ap’-element ofG. Lemma 1.7 force§” < 0,/(G). ThenT C F2(0,(G))
and using the minimality o we havel’ < F2(0,(G)) < F2(G) = 1. The result
follows. O

We are now in a position to derive a contradiction. We shall @eto show
thatG satisfies the hypotheses of Lemma 1.8. Set

2= {Q <G \ Q is a nilpotentp’-subgroup of5 that is normalized
by P andQ =[0Q, P1}.

Lemma 3.1 shows tha® satisfies (iii) of Hypothesigi/); so it remains to
verify (ii). Let O € £ and letM be a maximal subgroup af that contains
PQ.ThenQ =[Q, P] < O, (F(M)) and by Lemma 7.1 we havés (P) < M.
The previous lemma force€g(P) = 1. Consequently, ifR is a P-invariant
subgroup ofQ thenCr(P) =1; SOR =[R, P] € 2. We deduce tha® satisfies
Hypothesis(l/) and thenl/) implies that distinct maximal members &f have
trivial intersection.

Let My, ..., M, be the distinct maximal subgroups@fthat containP. Since
(P,g)#G,forall g e G we have

G=MiU---UM, and n>2.

SetH = Ng(P). Lemma 7.1 implies thatl < M; for all i. Also, H < M; since
otherwiseH would be a maximal subgroup ¢f, contrary torn > 2. It is an easy
consequence of the minimality of that Hg = 1.

Foreach, setQ; =[0,(F(M;)), P].Lemma7.1implies tha¥/; = H Q; and
so 14 Q; € 2. Now H permutes the maximal members @fthat containQ;;
so () and the maximality of\f; imply that Q; is a maximal member of2. Let
i #j.Then

M;NM;=H(Q;NMj).

SetT = Q; N M. Now Cr(P) < Cg,(P) < Oy(F(Cg(P))) =1;s0T =
[T, P]1< QiN[Oy(F(Mj)), Pl=Q;N Q;. By (U) we haveQ; N Q; =1; so
we deduce thad; N M; = H for all i # j. Lemma 1.8 implies thaF (G) # 1,
a contradiction. This completes the proof of Theorem A.

References

[1] P. Flavell, Finite groups in which every two elements generate a soluble subgroup, Invent.
Math. 121 (1995) 279-285.

[2] P. Flavell, A characterisation gf-soluble groups, Bull. London Math. Soc. 29 (1997) 177-183.

[3] P. Flavell, G.R. Robinson, Fixed points of coprime automorphisms and generalizations of
Glauberman'sz*-theorem, J. Algebra 226 (2000) 714-718.



P. Flavell / Journal of Algebra 255 (2002) 271-287 287

[4] P. Flavell, On the Fitting height of a soluble group that is generated by a conjugacy class,
J. London Math. Soc. 66 (2002) 101-113.

[5] P. Flavell, Generation theorems for finite groups, in: group Theory and Combinatorics—In
Memory of Michio Suzuki, in: Adv. Stud. Pure Math., Vol. 32, Math. Soc. Japan, 2001, pp. 291—
300.

[6] M. Suzuki, Group Theory I, in: Grundlehren Math. Wiss., Vol. 248, Springer-Verlag, Berlin,
1986.

[7] P. Flavell, The fixed points of coprime action, Arch. Math. 75 (2000) 173-177.

[8] D. Bartels, Subnormality and invariant relations on conjugacy classes in finite groups,
Math. Z. 157 (1977) 13-17.



