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1 Introduction

Suppose that H is a subgroup of a finite group G and that G is generated
by the conjugates of H. In this paper we consider the question:

how many conjugates of H are needed to generate G?

In order to answer this question we must study chains of subgroups that start
with H and end with G. The chain length of H in G is defined by

clG(H) = max {n ∈ N | there is a chain H = M0 < M1 < . . . < Mn = G}.

We are using the notation A < B to mean that A is a proper subgroup of B.
It is almost trivial to see that G can be generated by a set consisting of at
most clG(H) + 1 conjugates of H. Indeed, suppose that every set consisting
of at most clG(H) generates a proper subgroup of G. Then using the fact
that G is generated by the conjugates of H we can construct a chain

H = H0 < 〈H0, H1〉 < 〈H0, H1, H2〉 < . . . < 〈H0, . . . , HclG(H)〉 ≤ G
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where each Hi is a conjugate of H. This chain has length clG(H) + 1 so the
last inclusion cannot be proper. Thus G can be generated by clG(H) + 1
conjugates of H.

If H is a maximal subgroup of G then clG(H) = 1 and clG(H) + 1 conju-
gates of H are needed to generate G. However, if H is not maximal in G the
situation is different. We will prove that fewer than clG(H) + 1 conjugates
of H are required to generate G unless the structure of G is very restricted.
Our main theorem is:

Theorem A Let H be a subgroup of a finite group G such that G = 〈HG〉
and clG(H) ≥ 2. Then every set consisting of at most clG(H) conjugates of
H generates a proper subgroup of G if and only if G/HG has the following
structure.

(i) G/HG is a Frobenius group with cyclic complement H/HG;

(ii) There is a prime p such that the Frobenius kernel of G/HG is an ele-
mentary abelian p-group;

(iii) Considered as a GF(p)H-module, the kernel of G/HG is the direct sum
of clG(H) irreducible, nontrivial isomorphic GF(p)H-modules.

Theorem A has two immediate corollaries, the latter of which is reminis-
cent of Baer’s Criterion for a group to have a nontrivial normal p-subgroup.

Corollary B Let H be a subgroup of a finite group G such that G =
〈HG〉, clG(H) ≥ 2 and G/HG is insoluble. Then G can be generated by a
set consisting of at most clG(H) conjugates of H.

Corollary C Let H be a subgroup of a finite group G such that clG(H) ≥ 2
and G/HG is insoluble. Suppose that every set consisting of at most clG(H)
conjugates of H generates a proper subgroup of G. Then G 6= 〈HG〉.
Corollary B raises the following question for further study:

suppose that H is a subgroup of a finite group G such that G =
〈HG〉, clG(H) ≥ 3, G/HG is insoluble and every set consisting of
at most clG(H)− 1 conjugates of H generates a proper subgroup
of G. What can be said about the structure of G?
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This situation can happen if H ∼= Z2 and clG(H) = 3. This occurs in A5.
The proof of Theorem A uses ideas similar to those used by the author

in [2] and [3].

2 Notation and Quoted Results

Throughout this paper, group means finite group, A ≤ B means A is a
subgroup of B, A < B means A is a proper subgroup of B and A�B means
A is a normal subgroup of B. If A and B are subgroups of a group G then

AB = {Ab | b ∈ B}.

Note that AB is a set of conjugates of A, not the subgroup generated by
those conjugates, which we shall denote by

〈AB〉.

If H < G then

HG =
⋂
{Hg | g ∈ G} = the core of H in G.

Notice that HG is the largest subgroup of H that is normal in G. If H ≤ G
then H] = H − {1} and

clG(H) = max {n ∈ N | there is a chain H = H0 < H1 < . . . < Hn = G}.

A subgroup H of a group G is a Frobenius complement in G if 1 < H < G
and H∩Hg = 1 for all g ∈ G−H. G is a Frobenius group if it has a Frobenius
complement. If H is a Frobenius complement in a group G then the set

K = G− ∪{H]g | g ∈ G}

is called the Frobenius kernel of G.

Frobenius’ Theorem Let G be a Frobenius group with complement H. Then
the Frobenius kernel K of G is a normal subgroup of G with order coprime
to the order of H, G = HK and H ∩K = 1.
[1, (35.24) page 191]

Thompson’s Theorem Frobenius kernels are nilpotent.
[1, (40.8) page 207]
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3 Preliminary Lemmas

Lemma 3.1 Let 1 < V � G, H ≤ G and suppose that V ∩ H = 1. Set
G∗ = G/V . Then.

(i) clG∗(H
∗) ≤ clG(H)− 1;

(ii) If H does not normalize any nontrivial proper subgroups of V then
clG∗(H

∗) = clG(H)− 1.

Proof Suppose H∗ = H∗
0 < H∗

1 < . . . < H∗
r = G∗ is a chain of subgroups

in G∗. Let Hi be the inverse image of H∗
i in G. Then H < HV = H0 <

H1 < . . . < Hr = G is a chain of subgroups in G of length r + 1. Thus
r + 1 ≤ clG(H) and hence clG∗(H

∗) ≤ clG(H)− 1.
Now suppose that H does not normalize any nontrivial proper subgroups

of V . Let c = clG(H). Then there exists a chain H = H0 < H1 < . . . < Hc =
G of length c in G. Thus we have

H∗ = H∗
0 ≤ H∗

1 ≤ . . . ≤ H∗
c = G∗ (1)

and since clG∗(H
∗) ≤ c−1, there exists i such that H∗

i = H∗
i+1. Choose i min-

imal with this property. Then HiV = Hi+1V so Hi < Hi+1 ≤ HiV whence
Hi+1 = Hi(Hi+1 ∩ V ). Now Hi 6= Hi+1 so Hi+1 ∩ V 6= 1 and as H ≤ Hi+1,
we have that Hi+1∩V = V so V ≤ Hi+1. Since Hi+1 < . . . < Hc this implies
that H∗

i+1 < H∗
i+2 < . . . < H∗

c so all except one of the containments in (1) is
strict. We deduce that clG∗(H

∗) = c− 1.

Lemma 3.2 Let 1 < H < G and suppose that NG(P ) ≤ H whenever
1 < P ≤ H. Then H is a Frobenius complement in G.

Proof This is well known.

Lemma 3.3 Let H be a Frobenius complement in a group G. Let g ∈ G.
Then 〈H, g〉 = 〈H, Hg〉 = H〈gH〉.
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Proof We may assume that g 6∈ H. Let M = 〈H, Hg〉. Then 1 < H < M so
H is a Frobenius complement in M , as is Hg. Let K be the Frobenius kernel
of M . Then K is a nilpotent Hall subgroup of M and H and Hg are comple-
ments to K in M . The Schur-Zassenhaus Theorem implies that there exists
m ∈ M such that Hg = Hm. Then Hgm−1

= H forcing gm−1 ∈ H ≤ M
whence g ∈ M . We deduce that 〈H, g〉 = 〈H, Hg〉. Clearly 〈H, g〉 = H〈gH〉.

Lemma 3.4 Let p be a prime; H a cyclic p′-group; X a faithful irreducible
GF(p)H-module; n a natural number; V a GF(p)H-module that is the di-
rect sum of n submodules each isomorphic to X and let G = HV , the
semidirect product of V considered as an abelian group with H. Then G =
〈HG〉, clG(H) = n and every set consisting of at most n conjugates of H
generates a proper subgroup of G.

Proof Let V = U1 ⊕ . . .⊕ Un where each Ui is a submodule isomorphic to
X. Since each Ui is nontrivial and irreducible we have Ui = [Ui, H] and so
V = [V, H] ≤ 〈HG〉. Now H ≤ 〈HG〉 hence G = 〈HG〉.

Since X is irreducible, we know that EndH(X) is a field. This field
contains H since H is abelian. Let F be the subfield of EndH(X) generated
by H. Then X is an F -vectorspace. The irreducibility of X implies that
dimF (X) = 1. Also, V and each Ui are F -vectorspaces, dimF (Ui) = 1 and
dimF (V ) = n.

Suppose that H = H0 < H1 < . . . < Hr = G is a chain of subgroups.
Since G = HV , for each i we have Hi = HWi where Wi = Hi ∩ V . Each
Wi is H-invariant and hence an F -vectorspace. Moreover, 0 = W0 < W1 <
. . . < Wr = V so as dimF (V ) = n we deduce that r ≤ n. Thus clG(H) ≤ n.
The chain H < HU1 < H(U1⊕U2) < . . . < H(U1⊕ . . .⊕Un) = G has length
n so clG(H) = n.

Let g1, . . . , gn ∈ G. We will show that 〈Hg1 , . . . , Hgn〉 6= G. By conjugat-
ing by g−1

1 there is no loss of generality in supposing that g1 = 1. For each i,
choose hi ∈ H and vi ∈ V such that gi = hivi. Then

〈Hg1 , . . . , Hgn〉 = 〈H, Hv2 , . . . , Hvn〉 ≤ 〈H, v2, . . . , vn〉 = HW

where
W = 〈〈v2, . . . , vn〉H〉.
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Now W is a subgroup of V that is H-invariant. Hence it is F -invariant and
therefore an F -subspace of V . Considered as an F -subspace, we see that
every member of W can be written as a linear combination of the vi with
coefficients in H. Thus {v2, . . . , vn} is an F -spanning set for W . Hence
dimF (W ) ≤ n − 1 < dimF (V ). We deduce that W 6= V and finally that
〈Hg1 , . . . , Hgn〉 6= G.

4 The Minimal Counterexample

Throughout the remainder of this paper, we assume the following hypothesis,
which is satisfied by a minimal counterexample to Theorem A.

Hypothesis

(i) H is a subgroup of G and n = clG(H);

(ii) G = 〈HG〉 and n ≥ 2;

(iii) Every set consisting of at most n conjugates of H generates a proper
subgroup of G;

(iv) HG = 1;

(v) If Y < X with |X| < |G|, X = 〈Y X〉, clX(Y ) ≥ 2 and if every set con-
sisting of at most clX(Y ) conjugates of Y generates a proper subgroup
of X then X has the structure given in the conclusion of Theorem A.

We will eventually prove that G has the structure given in the conclusion of
Theorem A. This, together with Lemma 3.4 will prove Theorem A.

Definition An r-tuple (H1, . . . , Hr) of conjugates of H is good if

Hi 6≤ NG(H1) for all i, 2 ≤ i ≤ r

and

H1 < 〈H1, H2〉 < 〈H1, H2, H3〉 < . . . < 〈H1, H2, H3, . . . , Hr〉.

Notice that the above chain has length r − 1.
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Lemma 4.1 Let (H1, . . . , Hr) be a good r-tuple of conjugates of H, with
r < n + 1. Then there exist Hr+1, . . . , Hn+1 ∈ HG such that (H1, . . . , Hn+1)
is good.

Proof Since r ≤ n we have H1 ≤ 〈H1, . . . , Hr〉 < G = 〈HG
1 〉 so there exists

a conjugate D of H1 that does not normalize 〈H1, . . . , Hr〉. In particular,
D 6≤ 〈H1, . . . , Hr〉. In the case that D does not normalize H1, let Hr+1 = D.
In the case that D does normalize H1 we observe that since D does not
normalize 〈H1, . . . , Hr〉, there exists i, 2 ≤ i ≤ r and d ∈ D such that
Hd

i 6≤ 〈H1, . . . , Hr〉. Since (H1, . . . , Hr) is good it follows that Hi does not
normalize H1, but as d does normalize H1 we see that Hd

i cannot normalize
H1. Let Hr+1 = Hd

i . In both cases (H1, . . . , Hr+1) is good.
Repeated application of the above procedure completes the proof of this

lemma.

Lemma 4.2 Let (H1, . . . , Hn+1) be a good (n + 1)-tuple of conjugates of H.
Then the following hold.

(i) G = 〈H1, . . . , Hn+1〉;

(ii) If σ is any permutation of {2, . . . , n+1} then (H1, H2σ, . . . , H(n+1)σ) is
good;

(iii) 〈H1, . . . , Hi〉 is a maximal subgroup of 〈H1, . . . , Hi+1〉 for each i,
1 ≤ i ≤ n;

(iv) If Y = 〈H1, . . . , Hn〉 then clY (H1) = n− 1.

Proof Trivial.

Lemma 4.3 Let (H1, . . . , Hr) be a good r-tuple of conjugates of H, then

〈H1, . . . , Hr〉 = 〈H〈H1, . . . , Hr〉
1 〉.

Proof Let 2 ≤ i ≤ r. Then (H1, Hi) is a good 2-tuple. Using Lem-
mas 4.1 and 4.2(ii),(iii) we see that H1 is a maximal subgroup of 〈H1, Hi〉.
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Since Hi does not normalize H1, we have 〈H1, Hi〉 = 〈H〈H1, Hi〉
1 〉 hence

Hi ≤ 〈H〈H1, . . . , Hr〉
1 〉 and the result follows.

For the remainder of this paper we fix the following notation:

Let H1 = H and let H2, . . . , Hn+1 be chosen in accordance with
Lemma 4.1, so that (H1, . . . , Hn+1) is good.

Let

M = 〈H1, . . . , Hn−1, Hn〉,
L = 〈H1, . . . , Hn−1, Hn+1〉,
D = 〈H1, . . . , Hn−1〉, and

N = NG(H).

Lemma 4.4 (i) (H1, . . . , Hn−1, Hn) and (H1, . . . , Hn−1, Hn+1) are good;

(ii) M and L are distinct maximal subgroups of G;

(iii) D = M ∩ L and D is a maximal subgroup of M and of L.

Proof Trivial.

5 The Case n = 2

In this section we assume that n = 2. In particular, we have D = H.

Lemma 5.1 Let k ∈ G be such that Hk 6= H. Let K = 〈H, Hk〉. Let g ∈ G.
Then Hg ≤ K or Hg ∩K ≤ HK .

Proof Since G cannot be generated by two conjugates of H we have H <
K < G. Since n = 2 it follows that H is maximal in K and that K is
maximal in G.

Let x ∈ G be such that Hx 6≤ K. Let E = Hx ∩ K. If E 6≤ H
then K = 〈H, E〉 whence K ≤ 〈H, Hx〉. Since G cannot be generated by
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two conjugates of H, and as K is a maximal subgroup of G, we see that
K = 〈H, Hx〉 hence Hx ≤ K, a contradiction. Thus Hx ∩K ≤ H.

Now suppose that Hg 6≤ K. Then Hgk 6≤ K for all k ∈ K so the pre-
vious paragraph implies Hgk ∩ K ≤ H for all k ∈ K. Thus Hg ∩ K ≤⋂ {Hk−1 | k ∈ K} = HK .

Lemma 5.2 HM = HL = 1.

Proof Since M = 〈H, H2〉 6≤ N , we may choose m ∈ M such that Hm 6= H.
By Lemma 4.4(iii) we have M ∩ L = H so Hm 6≤ L. Now L = 〈H, H3〉 so
Lemma 5.1 implies that Hm ∩ L ≤ HL. Then HM = Hm

M ≤ Hm ∩ H ≤
Hm ∩ L ≤ HL so HM ≤ HL.

The preceding argument with L in place of M implies that HL ≤ HM ,
hence HM = HL � 〈M, L〉. Lemma 4.4(ii) implies that 〈M, L〉 = G so HM is
a normal subgroup of G contained in H. Thus HM ≤ HG = 1. Hence result.

Lemma 5.3 Let 1 < P ≤ H. Then NG(P ) ≤ N .

Proof Let g ∈ NG(P ). Then 1 < P ≤ Hg ∩ M and as M = 〈H, H2〉,
Lemmas 5.1 and 5.2 imply that Hg ≤ M . Similarly Hg ≤ L whence
Hg ≤ M ∩ L = H. We deduce that NG(P ) ≤ N .

Lemma 5.4 Let g ∈ G and suppose that Hg ≤ N . Then g ∈ N .

Proof Assume false. Then Hg 6= H so H < N < G and since clG(H) = 2 we
see that H is a maximal subgroup of N and that N is a maximal subgroup
of G. Since H � N it follows that N = HHg and as g 6∈ N we also have
G = 〈N, g〉.

Next we consider the subgroup N g−1
. The factorization N g−1

= Hg−1
H

implies that H is not a Hall subgroup of N g−1
. Thus there exists a Sylow

subgroup P of H such that NNg−1 (P ) 6≤ H. Using the previous lemma, we

see that H < 〈H, NNg−1 (P )〉 ≤ N ∩ N g−1 ≤ N . The maximality of H in

N forces N = N g−1
. Since G = 〈N, g〉 we have that H � N � G whence

G = 〈HG〉 ≤ N < G, a contradiction. We deduce that g ∈ N .
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Lemma 5.5 G is a Frobenius group with complement H

Proof First we prove that N is a Frobenius complement in G. Suppose not.
Then by Lemma 3.2 there exists P such that 1 < P ≤ N and NG(P ) 6≤ N .
Choose g ∈ NG(P ) − N and set T = 〈H, Hg〉. Then H < T < G so as
clG(H) = 2, we see that H is maximal in T and that T is maximal in G.

Observe that P normalizes both H and Hg so P ≤ NG(T ). Since H is
not contained in any proper normal subgroup of G, we have that NG(T ) = T ,
whence P ≤ T . We have H ≤ T ∩N ≤ T so either H = T ∩N or T ∩N = T .
Lemma 5.4 and the fact that g 6∈ N imply that Hg 6≤ N so as Hg ≤ T , we
see that T ∩N 6= T . Thus H = T ∩N , and in particular, P ≤ H. Lemma 5.3
implies that NG(P ) ≤ N , a contradiction. We deduce that N is a Frobenius
complement in G.

Frobenius’ Theorem implies that G contains a normal subgroup K such
that G = NK and N∩K = 1. But H�N whence HK�G. So as G = 〈HG〉,
we have NK = HK. Since N ∩K = 1, we see that N = H, hence result.

The previous lemmas together with Frobenius’ Theorem imply that G
contains a normal subgroup K, the Frobenius kernel of G, such that

G = HK and H ∩K = 1.

Lemma 5.6 There is a prime p such that K is an elementary abelian
p-group. Considered as a GF(p)H-module, K is the direct sum of two
irreducible, nontrivial isomorphic GF(p)H-modules. Moreover, H is cyclic.

Proof Let a ∈ K] and let U = 〈aH〉. Lemma 3.3 implies that 〈H, Ha〉 = HU
so using the hypothesis that G cannot be generated by two conjugates of H
we see that H < HU < G. Since clG(H) = 2 it follows that H is maximal in
HU and that HU is maximal in G. In particular, U is both a maximal and
a minimal H-invariant subgroup of K.

Thompson’s Theorem implies that K is nilpotent, hence NK(U) > U and
it follows that U � K. Now U is nilpotent and is a minimal H-invariant
subgroup of K so we see that U is an elementary abelian p-group for some
prime p on which H acts irreducibly.

Now choose b ∈ K −U and let W = 〈bH〉. Then again, W � K and W is
an elementary abelian q-group for some prime q on which H acts irreducibly.
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If p 6= q then as K is nilpotent we have [a, b] = 1 so ab is an element with
order pq. However, the previous argument shows that every element of K]

has prime order, a contradiction. Thus p = q. Since U and W are minimal
H-invariant subgroups of K we have U ∩ W = 1 and as they are maximal
H-invariant subgroups of K we have 〈U,W 〉 = K. It follows that K = U×W .
Thus K is an elementary abelian p-group.

We are left with the task of proving that U is isomorphic to W as an
H-module and that H is cyclic. Choose u ∈ U ] and w ∈ W ]. Set t = uw
and T = 〈tH〉. The projection maps

πU : T −→ U and πW : T −→ W

are H-module homomorphisms. Since tπU = u and tπW = w it follows that
πU and πW are nontrivial. As previously we have that T is an irreducible
H-module, as are U and W . It follows that πU and πW are H-module iso-
morphisms. Also, π−1

U πW is an H-module isomorphism U → W that maps u
to w.

By keeping w fixed and letting u range over U ] we see that EndH(U) acts
transitively on U ]. Let E = EndH(U). Then U is an irreducible E-module
and so EndE(U) is a field. Now H ⊆ EndE(U) and as the multiplicative
group of a finite field is cyclic, we deduce that H is cyclic.

6 The Case n ≥ 3

In this section we assume that n ≥ 3.

Lemma 6.1 (i) M and L are Frobenius groups with cyclic complement H.

(ii) There is a prime p such that the Frobenius kernels of M and L are
elementary abelian p-groups.

(iii) Considered as a GF(p)H-module, the kernel of M is the direct sum of
n− 1 nontrivial, irreducible isomorphic GF(p)H-modules.

(iv) The kernel of L satisfies (iii) also.
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Proof Lemma 4.3 implies that M = 〈HM〉 and Lemma 4.2(iv) implies that
clH(M) = n− 1. Since G = 〈M, Hn+1〉 and since G cannot be generated by
n conjugates of H, we see that M cannot be generated by n− 1 conjugates
of H. Then M/HM is a Frobenius group with complement H/HM . Let
M = M/HM . Since n ≥ 3 we have that D > H so D is a Frobenius group
with complement H. In particular, the only subgroup of H that is normal
in D is 1. Now HL � D, whence HL = 1 forcing HL ≤ HM . A similar
argument with the roles of M and L interchanged proves HM ≤ HL. Thus
HL = HM � 〈M, L〉 = G and as HG = 1, we deduce that HL = HM = 1.

We have that M is a Frobenius group with cyclic complement H and
whose kernel is an elementary abelian p-group, which considered as a
GF(p)H-module is the direct sum of n− 1 irreducible, nontrivial isomorphic
GF(p)H-modules. Similarly, there is a prime q such that L is a Frobenius
group with complement H whose kernel is an elementary abelian q-group
etc. Since n ≥ 3, we have M ∩ L = D > H whence p = q.

Lemma 6.2 G is a Frobenius group with complement H and kernel Op(G).
Moreover, Op(G) = 〈Op(M), Op(L)〉.

Proof Lemma 6.1 implies that M = HOp(M). Since H ≤ D we have
D = H(D∩Op(M)) and as H has order coprime to p we see that D∩Op(M) =
Op(D). By Lemma 6.1, Op(M) is abelian so Op(D) � Op(M) and hence
Op(D) � M . Similarly, Op(D) � L and it follows that Op(D) � G. As n ≥ 3,
we have H < D, but as D = HOp(D) it follows that Op(D) 6= 1.

Let V be a minimal normal subgroup of G that is contained in Op(D)
and set G∗ = G/V . Since Op(M) and Op(L) centralize Op(D), we have the
factorization G = HCG(V ) so H normalizes no nontrivial proper subgroup
of V . Moreover, H ∩ V = 1 so Lemma 3.1 implies that clG∗(H

∗) = n − 1.
Since G = 〈HG〉 we also have G∗ = 〈H∗G∗〉.

Suppose that G∗ can be generated by n − 1 conjugates of H∗. Then
there exist A1, . . . , An−1 ∈ HG such that G = V 〈A1, . . . , An−1〉. Since V is
an abelian minimal normal subgroup of G we see that 〈A1, . . . , An−1〉 is a
maximal subgroup of G. Since G = 〈HG〉, there exists An ∈ HG such that
An 6≤ 〈A1, . . . , An−1〉. Then G = 〈A1, . . . , An〉, contrary to hypothesis. Thus
G∗ cannot be generated by n− 1 conjugates of H∗.
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Next we show that H∗
G∗ = 1. Let E be the inverse image of H∗

G∗ in G.
Then V ≤ E = V (H ∩ E) � G and E � M . Using a Frattini Argument and
the Schur-Zassenhaus Theorem, we have that M = ENM(H ∩ E) and then
M = V NM(H ∩E). But V H ≤ D < M so as H is a Frobenius complement
in M we must have H ∩ E = 1. Then E = V and H∗

G∗ = 1.
The previous two paragraphs together with the hypothesis on G imply

that G∗ is a Frobenius group with complement H∗ and kernel Oq(G
∗) for some

prime q. Now M = HOp(M) and as Op(M) > V , we see that |M∗ : H∗| is
divisible by p, so as G∗ = H∗Oq(G

∗) we have p = q. Thus G = HOp(G) and
as H has order coprime to p, it follows that 〈Op(M), Op(L)〉 ≤ Op(G). Since
M is a maximal subgroup of G, we see that Op(M) is a maximal H-invariant
subgroup of Op(G), whence 〈Op(M), Op(L)〉 = Op(G).

Let g ∈ G and suppose that H ∩ Hg 6= 1. Now H ∩ V = 1 hence
H∗ ∩ H∗g∗ 6= 1 so the fact that H∗ is a Frobenius complement in G∗ forces
g∗ ∈ H∗. Then g ∈ HV ≤ M and since H is a Frobenius complement in M ,
we have g ∈ H. We deduce that G is a Frobenius group with complement
H. Since H ∩ Op(G) = 1 and as G = HOp(G), it follows that Op(G) is the
Frobenius kernel of G.

Lemma 6.3 Op(G) is an elementary abelian p-group that, considered as a
GF(p)H-module is, the direct sum of n nontrivial, irreducible isomorphic
GF(p)H-submodules.

Proof Let m ∈ Op(M) − Op(D) and l ∈ Op(L) − Op(D). Then H 6=
Hm, m ∈ 〈H, Hm〉 ≤ M, H 6= H l and l ∈ 〈H, H l〉 ≤ L. Now Op(D) =
Op(M) ∩ Op(L) so as l 6∈ M and l ∈ 〈H, H l〉, it follows that H l 6≤ 〈H, Hm〉.
Since NG(H) = H, the 3-tuple (H, Hm, H l) is good. By Lemma 4.1, there
exist B4, . . . , Bn+1 ∈ HG such that (H, Hm, H l, B4, . . . , Bn+1) is a good
(n + 1)-tuple. All the preceding arguments can be carried out using this
(n+1)-tuple in place of (H1, . . . , Hn+1). Thus T = 〈H, Hm, H l, B4, . . . , Bn〉 is
a Frobenius group with complement H and abelian kernel Op(T ) = T∩Op(G).
Since m, l ∈ T ∩Op(G), it follows that m and l commute. Since Op(M) and
Op(L) are elementary abelian, we deduce that Op(G) is elementary abelian.

Now we regard Op(G) as a GF(p)H-module. Maschke’s Theorem,
Lemma 6.1(iii) and the fact that D is maximal in M imply that there ex-
ist nontrivial isomorphic irreducible GF(p)H-modules V1, . . . , Vn−1 such that
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Op(M) = V1 ⊕ . . . ⊕ Vn−1 and Op(D) = V1 ⊕ . . . ⊕ Vn−2. Since Op(M) 6≤
Op(L), there exists an irreducible GF(p)H-submodule W of Op(L) such that
W 6≤ Op(M). Since Op(M) is a maximal GF(p)H-submodule of Op(G), we
have Op(G) = Op(M) ⊕ W . Lemma 6.1(iv) and the fact that n ≥ 3 imply
W ∼= V1. This completes the proof of Lemma 6.3.
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