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1 Introduction

Suppose that H is a subgroup of a finite group G and that G is generated
by the conjugates of H. In this paper we consider the question:

how many conjugates of H are needed to generate G ¢

In order to answer this question we must study chains of subgroups that start
with H and end with G. The chain length of H in G is defined by

clg(H) =max{n € N | thereis a chain H = My < M; < ... < M, = G}.

We are using the notation A < B to mean that A is a proper subgroup of B.
It is almost trivial to see that G can be generated by a set consisting of at
most clg(H) 4+ 1 conjugates of H. Indeed, suppose that every set consisting
of at most clg(H) generates a proper subgroup of G. Then using the fact
that G is generated by the conjugates of H we can construct a chain

H=H,< <H0,H1> < <H0,H1,H2> < ... < <H0"”’HCIG'(H)> <@



where each H; is a conjugate of H. This chain has length clg(H) + 1 so the
last inclusion cannot be proper. Thus G can be generated by clg(H) + 1
conjugates of H.

If H is a maximal subgroup of G then clg(H) = 1 and clg(H) + 1 conju-
gates of H are needed to generate G. However, if H is not maximal in G the
situation is different. We will prove that fewer than clg(H) + 1 conjugates
of H are required to generate G unless the structure of GG is very restricted.
Our main theorem is:

Theorem A Let H be a subgroup of a finite group G such that G = (HY)
and clg(H) > 2. Then every set consisting of at most clg(H) conjugates of
H generates a proper subgroup of G if and only if G/Hg has the following
structure.

(i) G/Hg is a Frobenius group with cyclic complement H/Hg;

(ii) There is a prime p such that the Frobenius kernel of G/Hg is an ele-
mentary abelian p-group;

(iii) Considered as a GF(p)H-module, the kernel of G/Hg is the direct sum
of clg(H) irreducible, nontrivial isomorphic GF(p)H -modules.

Theorem A has two immediate corollaries, the latter of which is reminis-
cent of Baer’s Criterion for a group to have a nontrivial normal p-subgroup.

Corollary B Let H be a subgroup of a finite group G such that G =
(HS),clg(H) > 2 and G/Hg is insoluble. Then G can be generated by a
set consisting of at most clg(H) conjugates of H.

Corollary C Let H be a subgroup of a finite group G such that clg(H) > 2

and G/Hg is insoluble. Suppose that every set consisting of at most clg(H)
conjugates of H generates a proper subgroup of G. Then G # (H®).

Corollary B raises the following question for further study:

suppose that H is a subgroup of a finite group G such that G =
(HY) clg(H) > 3,G/Hg is insoluble and every set consisting of
at most clg(H) — 1 conjugates of H generates a proper subgroup
of G. What can be said about the structure of G?



This situation can happen if H = Z, and clg(H) = 3. This occurs in As.
The proof of Theorem A uses ideas similar to those used by the author
in [2] and [3].

2 Notation and Quoted Results

Throughout this paper, group means finite group, A < B means A is a
subgroup of B, A < B means A is a proper subgroup of B and A < B means
A is a normal subgroup of B. If A and B are subgroups of a group G then

AP = {A" | be B}

Note that A? is a set of conjugates of A, not the subgroup generated by
those conjugates, which we shall denote by

(A7),
If H < G then
He=({HY | g € G} = the core of H in G.

Notice that Hg is the largest subgroup of H that is normal in G. If H < G
then H* = H — {1} and

clg(H) =max{n € N | thereis a chain H = Hy< H, <...< H, = G}.

A subgroup H of a group G is a Frobenius complementin Gif1 < H < G
and HNHY = 1forall g € G—H. G is a Frobenius group if it has a Frobenius
complement. If H is a Frobenius complement in a group G then the set

K=G-U{H"Y|geG}
is called the Frobenius kernel of G.

Frobenius’ Theorem Let G be a Frobenius group with complement H. Then
the Frobenius kernel K of G is a normal subgroup of G with order coprime
to the order of H, G = HK and HN K = 1.

[1, (35.24) page 191]

Thompson’s Theorem Frobenius kernels are nilpotent.
[1, (40.8) page 207]



3 Preliminary Lemmas

Lemma 3.1 Let 1 < V IG,H < G and suppose that V N H = 1. Set
G*=G/V. Then.

(i) cle<(H") < clg(H) — 1;

(ii) If H does not normalize any nontrivial proper subgroups of V then

clg«(H*) = clg(H) — 1.

Proof Suppose H* = Hj < Hf < ... < H} = G* is a chain of subgroups
in G*. Let H; be the inverse image of H in G. Then H < HV = H, <
H, < ... < H. = (G is a chain of subgroups in G of length r + 1. Thus
r+ 1 <clg(H) and hence clg-(H*) < clg(H) — 1.

Now suppose that H does not normalize any nontrivial proper subgroups
of V. Let ¢ = clg(H). Then there exists a chain H = Hy < H; < ... < H. =
G of length ¢ in G. Thus we have

H*=H;<H<. . <H' =G (1)

and since clg- (H*) < c—1, there exists ¢ such that H = H/, ;. Choose ¢ min-
imal with this property. Then H;V = H,; 1V so H; < H;11 < H;V whence
Hiyy = Hi(Hi;1NV). Now H; # Hiyq so HiyyNV # 1 and as H < H;q,
we have that H;, 1NV =V soV < H;,q. Since H; 1 < ... < H, this implies
that HY | < H , < ... < H} so all except one of the containments in (1) is
strict. We deduce that clg«(H*) = ¢ — 1.

Lemma 3.2 Let 1 < H < G and suppose that Ng(P) < H whenever
1< P < H. Then H is a Frobenius complement in G.

Proof This is well known.

Lemma 3.3 Let H be a Frobenius complement in a group G. Let g € G.
Then (H, g) = (H, H%) = H{g").



Proof We may assume that g ¢ H. Let M = (H, H9). Then 1 < H < M so
H is a Frobenius complement in M, as is H9. Let K be the Frobenius kernel
of M. Then K is a nilpotent Hall subgroup of M and H and HY are comple-
ments to K in M. The Schur-Zassenhaus Theorem implies that there exists
m € M such that HY = H™. Then H = H forcing gm™* € H < M
whence g € M. We deduce that (H, g) = (H, HY). Clearly (H,g) = H{g").

Lemma 3.4 Let p be a prime; H a cyclic p'-group; X a faithful irreducible
GF(p)H-module; n a natural number; V. a GF(p)H-module that is the di-
rect sum of n submodules each isomorphic to X and let G = HV, the
semidirect product of V' considered as an abelian group with H. Then G =
(HY) clg(H) = n and every set consisting of at most n conjugates of H
generates a proper subgroup of G.

Proof Let V =U; & ... ® U, where each U; is a submodule isomorphic to
X. Since each U; is nontrivial and irreducible we have U; = [U;, H] and so
V =[V,H] < (HY). Now H < (H®) hence G = (HY).

Since X is irreducible, we know that Endgy(X) is a field. This field
contains H since H is abelian. Let F' be the subfield of Endy(X) generated
by H. Then X is an F-vectorspace. The irreducibility of X implies that
dimp(X) = 1. Also, V and each U; are F-vectorspaces, dimp(U;) = 1 and
dimp (V) = n.

Suppose that H = Hy < H; < ... < H, = G is a chain of subgroups.
Since G = HV, for each ¢ we have H; = HW; where W; = H; N V. Each
W; is H-invariant and hence an F-vectorspace. Moreover, 0 = Wy < W; <
... < W, =V soas dimp(V) = n we deduce that r < n. Thus clg(H) < n.
The chain H < HU; < HU, & Uy) < ... < H{U;®...®U,) = G has length
n so clg(H) = n.

Let g1,...,9, € G. We will show that (H%,..., H9) # G. By conjugat-
ing by gy * there is no loss of generality in supposing that g, = 1. For each i,
choose h; € H and v; € V such that g; = h;v;. Then

(H9,... H») = (H,H"”, ..., H") < (H,vy,...,v,) = HW

where



Now W is a subgroup of V' that is H-invariant. Hence it is F-invariant and
therefore an F-subspace of V. Considered as an F-subspace, we see that
every member of W can be written as a linear combination of the v; with
coefficients in H. Thus {wv,...,v,} is an F-spanning set for W. Hence
dimp(W) < n —1 < dimp(V). We deduce that W # V and finally that
(H9, ... H%) #QG.

4 The Minimal Counterexample

Throughout the remainder of this paper, we assume the following hypothesis,
which is satisfied by a minimal counterexample to Theorem A.

Hypothesis
(i) H is a subgroup of G and n = clg(H);
(i) G = (H®) and n > 2;

(iii) Ewvery set consisting of at most n conjugates of H generates a proper
subgroup of G;

(lV) HG = 1,‘

(v) If Y < X with | X| < |G|, X = (YX),clx(Y) > 2 and if every set con-
sisting of at most clx(Y') conjugates of Y generates a proper subgroup
of X then X has the structure given in the conclusion of Theorem A.

We will eventually prove that G has the structure given in the conclusion of
Theorem A. This, together with Lemma 3.4 will prove Theorem A.

Definition An r-tuple (Hy, ..., H,) of conjugates of H is good if
H; £ No(Hy) foralli,2<i<r
and

H, < <H1,H2> < <H1,H2,H3> <. < <H17H2,H3,. . .,H7->.

Notice that the above chain has length r» — 1.
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Lemma 4.1 Let (Hy,...,H,) be a good r-tuple of conjugates of H, with
r <mn+ 1. Then there exist H,,y,...,H,.1 € HY such that (Hy,..., Hyy1)
s good.

Proof Since r < n we have H; < (Hy,..., H,) < G = (HF) so there exists
a conjugate D of H; that does not normalize (Hy,..., H,). In particular,
D £ (Hq,...,H,). In the case that D does not normalize Hy, let H,.; = D.
In the case that D does normalize H; we observe that since D does not
normalize (Hy,..., H,), there exists 7,2 < ¢ < r and d € D such that
H¢ £ (Hy,..., H,). Since (Hy,...,H,) is good it follows that H; does not
normalize H;, but as d does normalize H; we see that H? cannot normalize
H,. Let H,., = HZ. In both cases (Hy, ..., H,;1) is good.

Repeated application of the above procedure completes the proof of this
lemma.

Lemma 4.2 Let (Hy,...,H,.1) be a good (n+ 1)-tuple of conjugates of H.
Then the following hold.

(1) G = <H1, . 7Hn+1>;

(ii) If o is any permutation of {2,...,n+1} then (Hy, Hyo, ..., Hiny1)o) 05
good;

(i) (Hy,..., H;) is a mazimal subgroup of (Hy, ..., H;y1) for each i,
1< <ny;

(iv) If Y = (Hy,...,H,) then cly(Hy) =n— 1.

Proof Trivial.

Lemma 4.3 Let (Hy,...,H,) be a good r-tuple of conjugates of H, then

Hy,... H)

<le--aHr>:<H1< >

Proof Let 2 < i < r. Then (H, H;) is a good 2-tuple. Using Lem-
mas 4.1 and 4.2(ii),(iii) we see that H; is a maximal subgroup of (Hy, H;).
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Since H; does not normalize H,, we have (H, H;) = <H1<H1’Hi>> hence

(H,,... H)

H, < (H, ) and the result follows.

For the remainder of this paper we fix the following notation:

Let Hy = H and let Hs,..., H,11 be chosen in accordance with
Lemma 4.1, so that (Hy, ..., H,+1) is good.

Let
M = (Hy,...,H, 1, Hy),
L = <H17 Hn 17Hn+1>
D = <H1,... n— 1> and
N = Ng(H).

Lemma 4.4 (i) (Hiy,...,H, 1, H,) and (Hy,...,H, 1, H,.1) are good;
(ii) M and L are distinct maximal subgroups of G;
(iii) D =M N L and D is a mazimal subgroup of M and of L.

Proof Trivial.

5 The Case n =2

In this section we assume that n = 2. In particular, we have D = H.

Lemma 5.1 Let k € G be such that H* # H. Let K = (H, H*). Let g € G.
Then H9 < K or HHN K < Hg.

Proof Since GG cannot be generated by two conjugates of H we have H <
K < G. Since n = 2 it follows that H is maximal in K and that K is
maximal in G.

Let x € G be such that H* £ K. Let E = H*NK. If E L H
then K = (H, E) whence K < (H,H"). Since G cannot be generated by



two conjugates of H, and as K is a maximal subgroup of GG, we see that
K = (H, H") hence H* < K, a contradiction. Thus H* N K < H.

Now suppose that H9 £ K. Then H% £ K for all k € K so the pre-
vious paragraph implies H%* N K < H for all k € K. Thus HY N K <
N{H*" | ke K} = Hg.

Lemma 5.2 Hy; = H; = 1.

Proof Since M = (H, Hy) £ N, we may choose m € M such that H™ # H.
By Lemma 4.4(iii) we have M N L = H so H™ £ L. Now L = (H, H3) so
Lemma 5.1 implies that H™ N L < Hy. Then Hy = Hyy < H"NH <
HmﬂLSHL SO HM SHL

The preceding argument with L in place of M implies that H;, < H)yy,
hence Hy = Hp < (M, L). Lemma 4.4(ii) implies that (M, L) = G so Hy, is
a normal subgroup of G contained in H. Thus Hy; < Hgs = 1. Hence result.

Lemma 5.3 Let 1 < P < H. Then Ng(P) < N.

Proof Let g € Ng(P). Then 1 < P < HYNM and as M = (H, Hy),
Lemmas 5.1 and 5.2 imply that H9 < M. Similarly H9 < L whence
HY < M NL=H. We deduce that Ng(P) < N.

Lemma 5.4 Let g € G and suppose that H9 < N. Then g € N.

Proof Assume false. Then H9 # H so H < N < G and since clg(H) = 2 we
see that H is a maximal subgroup of N and that N is a maximal subgroup
of G. Since H < N it follows that N = HHY and as g ¢ N we also have
G - <N’ g> —1 —1 —1

Next we consider the subgroup NY9 . The factorization N9 = HY H
implies that H is not a Hall subgroup of N9 '. Thus there exists a Sylow
subgroup P of H such that Ny,-1(P) £ H. Using the previous lemma, we
see that H < (H,Ny,1(P)) < NN N9 < N. The maximality of H in
N forces N = N9 . Since G = (N, g) we have that H < N < G whence
G = (HY) < N < G, a contradiction. We deduce that g € N.



Lemma 5.5 G is a Frobenius group with complement H

Proof First we prove that N is a Frobenius complement in G. Suppose not.
Then by Lemma 3.2 there exists P such that 1 < P < N and Ng(P) £ N.
Choose g € Ng(P) — N and set T = (H,HY9). Then H < T < G so as
cle(H) = 2, we see that H is maximal in 7" and that 7 is maximal in G.

Observe that P normalizes both H and HY so P < Ng(T'). Since H is
not contained in any proper normal subgroup of G, we have that Ng(T') = T,
whence P <T. Wehave H <TNN <Tsoeither H=TNNorTNN =T.
Lemma 5.4 and the fact that ¢ € N imply that H9 £ N so as HY < T, we
see that TNN #T. Thus H = TN N, and in particular, P < H. Lemma 5.3
implies that Ng(P) < N, a contradiction. We deduce that N is a Frobenius
complement in G.

Frobenius’ Theorem implies that G contains a normal subgroup K such
that G = NK and NNK = 1. But H<N whence HK <G. So as G = (H®),
we have NK = HK. Since N N K =1, we see that N = H, hence result.

The previous lemmas together with Frobenius’ Theorem imply that G
contains a normal subgroup K, the Frobenius kernel of G, such that

G=HKad HNK = 1.

Lemma 5.6 There is a prime p such that K is an elementary abelian
p-group. Considered as a GF(p)H-module, K is the direct sum of two
irreducible, nontrivial isomorphic GF(p)H -modules. Moreover, H is cyclic.

Proof Leta € K* andlet U = (a”). Lemma 3.3 implies that (H, H*) = HU
so using the hypothesis that G cannot be generated by two conjugates of H
we see that H < HU < G. Since clg(H) = 2 it follows that H is maximal in
HU and that HU is maximal in GG. In particular, U is both a maximal and
a minimal H-invariant subgroup of K.

Thompson’s Theorem implies that K is nilpotent, hence Ng(U) > U and
it follows that U < K. Now U is nilpotent and is a minimal H-invariant
subgroup of K so we see that U is an elementary abelian p-group for some
prime p on which H acts irreducibly.

Now choose b € K — U and let W = (b"). Then again, W < K and W is
an elementary abelian g-group for some prime ¢ on which H acts irreducibly.
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If p # ¢ then as K is nilpotent we have [a,b] = 1 so ab is an element with
order pq. However, the previous argument shows that every element of K*
has prime order, a contradiction. Thus p = ¢. Since U and W are minimal
H-invariant subgroups of K we have U N W = 1 and as they are maximal
H-invariant subgroups of K we have (U, W) = K. It follows that K = UxW.
Thus K is an elementary abelian p-group.

We are left with the task of proving that U is isomorphic to W as an
H-module and that H is cyclic. Choose u € U* and w € W*. Set t = uw
and T' = (t1). The projection maps

gy T — U and 7wy : T — W

are H-module homomorphisms. Since tmy = v and tmy = w it follows that
7wy and my are nontrivial. As previously we have that T is an irreducible
H-module, as are U and W. It follows that ny and my are H-module iso-
morphisms. Also, 7, my is an H-module isomorphism U — W that maps u
to w.

By keeping w fixed and letting u range over U* we see that Endy (U) acts
transitively on U*. Let E = Endg(U). Then U is an irreducible E-module
and so Endg(U) is a field. Now H C Endg(U) and as the multiplicative
group of a finite field is cyclic, we deduce that H is cyclic.

6 The Case n >3

In this section we assume that n > 3.

Lemma 6.1 (i) M and L are Frobenius groups with cyclic complement H .

(ii) There is a prime p such that the Frobenius kernels of M and L are
elementary abelian p-groups.

(iii) Considered as a GF(p)H-module, the kernel of M is the direct sum of
n — 1 nontrivial, irreducible isomorphic GF(p)H -modules.

(iv) The kernel of L satisfies (iii) also.
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Proof Lemma 4.3 implies that M = (H™) and Lemma 4.2(iv) implies that
clgy(M) =n — 1. Since G = (M, H, ;1) and since G cannot be generated by
n conjugates of H, we see that M cannot be generated by n — 1 conjugates
of H. Then M/H); is a Frobenius group with complement H/H,;. Let
M = M/Hy. Since n > 3 we have that D > H so D is a Frobenius group
with complement H. In particular, the only subgroup of H that is normal
in D is 1. Now H; < D, whence H;, = 1 forcing H; < Hy. A similar
argument with the roles of M and L interchanged proves Hy; < H;. Thus
Hp=Hy <(M,L) =G and as Hg = 1, we deduce that H, = Hy; = 1.

We have that M is a Frobenius group with cyclic complement H and
whose kernel is an elementary abelian p-group, which considered as a
GF(p) H-module is the direct sum of n — 1 irreducible, nontrivial isomorphic
GF(p)H-modules. Similarly, there is a prime ¢ such that L is a Frobenius
group with complement H whose kernel is an elementary abelian ¢-group
etc. Since n > 3, we have M N L = D > H whence p = q.

Lemma 6.2 G is a Frobenius group with complement H and kernel O,(G).
Moreover, Oy(G) = (O,(M),O,(L)).

Proof Lemma 6.1 implies that M = HO,(M). Since H < D we have
D = H(DNO,(M)) and as H has order coprime to p we see that DNO,(M) =
O,(D). By Lemma 6.1, O,(M) is abelian so O,(D) < O,(M) and hence
O,(D) < M. Similarly, O,(D) < L and it follows that O,(D) <IG. Asn > 3,
we have H < D, but as D = HO,(D) it follows that O,(D) # 1.

Let V' be a minimal normal subgroup of G that is contained in O,(D)
and set G* = G/V. Since O,(M) and O,(L) centralize O,(D), we have the
factorization G = HCg(V') so H normalizes no nontrivial proper subgroup
of V. Moreover, HNV =1 so Lemma 3.1 implies that clg«(H*) = n — 1.
Since G = (H%) we also have G* = (H*").

Suppose that G* can be generated by n — 1 conjugates of H*. Then
there exist A;,..., A,_1 € H such that G = V(Ay,...,An_1). Since V' is
an abelian minimal normal subgroup of G we see that (A;,..., A, 1) is a
maximal subgroup of G. Since G = (HY), there exists A, € H such that
A, £ (A1, ..., Ap—1). Then G = (Ay,..., A,), contrary to hypothesis. Thus
G* cannot be generated by n — 1 conjugates of H*.
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Next we show that Hf. = 1. Let E be the inverse image of H}. in G.
Then V < E=V(HNE)<LG and E < M. Using a Frattini Argument and
the Schur-Zassenhaus Theorem, we have that M = ENy/(H N E) and then
M =VNy(HNE). But VH < D < M so as H is a Frobenius complement
in M we must have H N £ =1. Then £ =V and Hf. = 1.

The previous two paragraphs together with the hypothesis on G imply
that G* is a Frobenius group with complement H* and kernel O,(G*) for some
prime q. Now M = HO,(M) and as O,(M) > V, we see that |M* : H*| is
divisible by p, so as G* = H*O,(G*) we have p = ¢q. Thus G = HO,(G) and
as H has order coprime to p, it follows that (O,(M),O,(L)) < O,(G). Since
M is a maximal subgroup of G, we see that O,(M) is a maximal H-invariant
subgroup of O,(G), whence (O,(M),0,(L)) = O,(G).

Let ¢ € G and suppose that H N HY # 1. Now H NV = 1 hence
H*N H* # 1 so the fact that H* is a Frobenius complement in G* forces
g* € H*. Then g € HV < M and since H is a Frobenius complement in M,
we have g € H. We deduce that G is a Frobenius group with complement
H. Since HN O,(G) =1 and as G = HO,(G), it follows that O,(G) is the
Frobenius kernel of G.

Lemma 6.3 O,(G) is an elementary abelian p-group that, considered as a
GF(p)H-module is, the direct sum of n nontrivial, irreducible isomorphic
GF(p)H -submodules.

Proof Let m € O,(M) — O,(D) and | € O,(L) — O,(D). Then H #
H™m e (HH" < M,H # H' and | € (H,H") < L. Now 0,(D) =
O,(M)NO,(L) soasl ¢ M and | € (H, H'), it follows that H' £ (H, H™).
Since Ng(H) = H, the 3-tuple (H, H™ H') is good. By Lemma 4.1, there
exist By,...,Bny1 € HY such that (H,H™ H! By,...,B,.1) is a good
(n + 1)-tuple. All the preceding arguments can be carried out using this
(n+1)-tuple in place of (Hy, ..., Hyy1). Thus T = (H, H™, H', By, ..., B,) is
a Frobenius group with complement H and abelian kernel O,(T') = TNO,(G).
Since m,l € T'N O,(G), it follows that m and | commute. Since O, (M) and
O,(L) are elementary abelian, we deduce that O,(G) is elementary abelian.

Now we regard O,(G) as a GF(p)H-module. Maschke’s Theorem,
Lemma 6.1(iii) and the fact that D is maximal in M imply that there ex-
ist nontrivial isomorphic irreducible GF(p) H-modules Vi, ..., V,_; such that
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O,(M)=Vi®d...0V,y and Oy(D) = V1 & ... B V5. Since Oy(M) £
O,(L), there exists an irreducible GF(p) H-submodule W of O,(L) such that
W £ Oy(M). Since O,(M) is a maximal GF(p)H-submodule of O,(G), we
have O,(G) = O,(M) & W. Lemma 6.1(iv) and the fact that n > 3 imply
W = V. This completes the proof of Lemma 6.3.
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