Generating finite groups with conjugates of a subgroup

Paul Flavell

The School of Mathematics and Statistics The University of Birmingham Birmingham B15 2TT United Kingdom

1 Introduction

Suppose that H is a subgroup of a finite group G and that G is generated by the conjugates of H. In this paper we consider the question:

how many conjugates of H are needed to generate G?

In order to answer this question we must study chains of subgroups that start with H and end with G. The *chain length of* H *in* G is defined by

 $\operatorname{cl}_G(H) = \max \{ n \in \mathbb{N} \mid \text{ there is a chain } H = M_0 < M_1 < \ldots < M_n = G \}.$

We are using the notation A < B to mean that A is a proper subgroup of B. It is almost trivial to see that G can be generated by a set consisting of at most $cl_G(H) + 1$ conjugates of H. Indeed, suppose that every set consisting of at most $cl_G(H)$ generates a proper subgroup of G. Then using the fact that G is generated by the conjugates of H we can construct a chain

$$H = H_0 < \langle H_0, H_1 \rangle < \langle H_0, H_1, H_2 \rangle < \ldots < \langle H_0, \ldots, H_{\mathrm{cl}_G(H)} \rangle \le G$$

where each H_i is a conjugate of H. This chain has length $cl_G(H) + 1$ so the last inclusion cannot be proper. Thus G can be generated by $cl_G(H) + 1$ conjugates of H.

If H is a maximal subgroup of G then $cl_G(H) = 1$ and $cl_G(H) + 1$ conjugates of H are needed to generate G. However, if H is not maximal in G the situation is different. We will prove that fewer than $cl_G(H) + 1$ conjugates of H are required to generate G unless the structure of G is very restricted. Our main theorem is:

Theorem A Let H be a subgroup of a finite group G such that $G = \langle H^G \rangle$ and $cl_G(H) \geq 2$. Then every set consisting of at most $cl_G(H)$ conjugates of H generates a proper subgroup of G if and only if G/H_G has the following structure.

- (i) G/H_G is a Frobenius group with cyclic complement H/H_G ;
- (ii) There is a prime p such that the Frobenius kernel of G/H_G is an elementary abelian p-group;
- (iii) Considered as a GF(p)H-module, the kernel of G/H_G is the direct sum of $cl_G(H)$ irreducible, nontrivial isomorphic GF(p)H-modules.

Theorem A has two immediate corollaries, the latter of which is reminiscent of Baer's Criterion for a group to have a nontrivial normal *p*-subgroup.

Corollary B Let H be a subgroup of a finite group G such that $G = \langle H^G \rangle$, $cl_G(H) \geq 2$ and G/H_G is insoluble. Then G can be generated by a set consisting of at most $cl_G(H)$ conjugates of H.

Corollary C Let H be a subgroup of a finite group G such that $cl_G(H) \ge 2$ and G/H_G is insoluble. Suppose that every set consisting of at most $cl_G(H)$ conjugates of H generates a proper subgroup of G. Then $G \ne \langle H^G \rangle$.

Corollary B raises the following question for further study:

suppose that H is a subgroup of a finite group G such that $G = \langle H^G \rangle$, $cl_G(H) \geq 3$, G/H_G is insoluble and every set consisting of at most $cl_G(H) - 1$ conjugates of H generates a proper subgroup of G. What can be said about the structure of G?

This situation can happen if $H \cong \mathbb{Z}_2$ and $cl_G(H) = 3$. This occurs in A_5 .

The proof of Theorem A uses ideas similar to those used by the author in [2] and [3].

2 Notation and Quoted Results

Throughout this paper, group means finite group, $A \leq B$ means A is a subgroup of B, A < B means A is a proper subgroup of B and $A \leq B$ means A is a normal subgroup of B. If A and B are subgroups of a group G then

$$A^B = \{A^b \mid b \in B\}.$$

Note that A^B is a set of conjugates of A, not the subgroup generated by those conjugates, which we shall denote by

 $\langle A^B \rangle$.

If H < G then

$$H_G = \bigcap \{ H^g \mid g \in G \} = \text{ the core of } H \text{ in } G.$$

Notice that H_G is the largest subgroup of H that is normal in G. If $H \leq G$ then $H^{\sharp} = H - \{1\}$ and

 $\operatorname{cl}_G(H) = \max \{ n \in \mathbb{N} \mid \text{ there is a chain } H = H_0 < H_1 < \ldots < H_n = G \}.$

A subgroup H of a group G is a Frobenius complement in G if 1 < H < Gand $H \cap H^g = 1$ for all $g \in G - H$. G is a Frobenius group if it has a Frobenius complement. If H is a Frobenius complement in a group G then the set

$$K = G - \cup \{ H^{\sharp g} \mid g \in G \}$$

is called the *Frobenius kernel* of G.

Frobenius' Theorem Let G be a Frobenius group with complement H. Then the Frobenius kernel K of G is a normal subgroup of G with order coprime to the order of H, G = HK and $H \cap K = 1$. [1, (35.24) page 191]

Thompson's Theorem Frobenius kernels are nilpotent. [1, (40.8) page 207]

3 Preliminary Lemmas

Lemma 3.1 Let $1 < V \leq G$, $H \leq G$ and suppose that $V \cap H = 1$. Set $G^* = G/V$. Then.

- (i) $cl_{G^*}(H^*) \le cl_G(H) 1;$
- (ii) If H does not normalize any nontrivial proper subgroups of V then $\operatorname{cl}_{G^*}(H^*) = \operatorname{cl}_G(H) - 1.$

Proof Suppose $H^* = H_0^* < H_1^* < \ldots < H_r^* = G^*$ is a chain of subgroups in G^* . Let H_i be the inverse image of H_i^* in G. Then $H < HV = H_0 < H_1 < \ldots < H_r = G$ is a chain of subgroups in G of length r + 1. Thus $r + 1 \leq \operatorname{cl}_G(H)$ and hence $\operatorname{cl}_{G^*}(H^*) \leq \operatorname{cl}_G(H) - 1$.

Now suppose that H does not normalize any nontrivial proper subgroups of V. Let $c = cl_G(H)$. Then there exists a chain $H = H_0 < H_1 < \ldots < H_c =$ G of length c in G. Thus we have

$$H^* = H_0^* \le H_1^* \le \dots \le H_c^* = G^* \tag{1}$$

and since $cl_{G^*}(H^*) \leq c-1$, there exists *i* such that $H_i^* = H_{i+1}^*$. Choose *i* minimal with this property. Then $H_iV = H_{i+1}V$ so $H_i < H_{i+1} \leq H_iV$ whence $H_{i+1} = H_i(H_{i+1} \cap V)$. Now $H_i \neq H_{i+1}$ so $H_{i+1} \cap V \neq 1$ and as $H \leq H_{i+1}$, we have that $H_{i+1} \cap V = V$ so $V \leq H_{i+1}$. Since $H_{i+1} < \ldots < H_c$ this implies that $H_{i+1}^* < H_{i+2}^* < \ldots < H_c^*$ so all except one of the containments in (1) is strict. We deduce that $cl_{G^*}(H^*) = c - 1$.

Lemma 3.2 Let 1 < H < G and suppose that $N_G(P) \leq H$ whenever $1 < P \leq H$. Then H is a Frobenius complement in G.

Proof This is well known.

Lemma 3.3 Let H be a Frobenius complement in a group G. Let $g \in G$. Then $\langle H, g \rangle = \langle H, H^g \rangle = H \langle g^H \rangle$. **Proof** We may assume that $g \notin H$. Let $M = \langle H, H^g \rangle$. Then 1 < H < M so H is a Frobenius complement in M, as is H^g . Let K be the Frobenius kernel of M. Then K is a nilpotent Hall subgroup of M and H and H^g are complements to K in M. The Schur-Zassenhaus Theorem implies that there exists $m \in M$ such that $H^g = H^m$. Then $H^{gm^{-1}} = H$ forcing $gm^{-1} \in H \leq M$ whence $g \in M$. We deduce that $\langle H, g \rangle = \langle H, H^g \rangle$. Clearly $\langle H, g \rangle = H \langle g^H \rangle$.

Lemma 3.4 Let p be a prime; H a cyclic p'-group; X a faithful irreducible GF(p)H-module; n a natural number; V a GF(p)H-module that is the direct sum of n submodules each isomorphic to X and let G = HV, the semidirect product of V considered as an abelian group with H. Then $G = \langle H^G \rangle$, $cl_G(H) = n$ and every set consisting of at most n conjugates of H generates a proper subgroup of G.

Proof Let $V = U_1 \oplus \ldots \oplus U_n$ where each U_i is a submodule isomorphic to X. Since each U_i is nontrivial and irreducible we have $U_i = [U_i, H]$ and so $V = [V, H] \leq \langle H^G \rangle$. Now $H \leq \langle H^G \rangle$ hence $G = \langle H^G \rangle$.

Since X is irreducible, we know that $\operatorname{End}_H(X)$ is a field. This field contains H since H is abelian. Let F be the subfield of $\operatorname{End}_H(X)$ generated by H. Then X is an F-vectorspace. The irreducibility of X implies that $\dim_F(X) = 1$. Also, V and each U_i are F-vectorspaces, $\dim_F(U_i) = 1$ and $\dim_F(V) = n$.

Suppose that $H = H_0 < H_1 < \ldots < H_r = G$ is a chain of subgroups. Since G = HV, for each *i* we have $H_i = HW_i$ where $W_i = H_i \cap V$. Each W_i is *H*-invariant and hence an *F*-vectorspace. Moreover, $0 = W_0 < W_1 < \ldots < W_r = V$ so as $\dim_F(V) = n$ we deduce that $r \leq n$. Thus $\operatorname{cl}_G(H) \leq n$. The chain $H < HU_1 < H(U_1 \oplus U_2) < \ldots < H(U_1 \oplus \ldots \oplus U_n) = G$ has length n so $\operatorname{cl}_G(H) = n$.

Let $g_1, \ldots, g_n \in G$. We will show that $\langle H^{g_1}, \ldots, H^{g_n} \rangle \neq G$. By conjugating by g_1^{-1} there is no loss of generality in supposing that $g_1 = 1$. For each *i*, choose $h_i \in H$ and $v_i \in V$ such that $g_i = h_i v_i$. Then

$$\langle H^{g_1}, \dots, H^{g_n} \rangle = \langle H, H^{v_2}, \dots, H^{v_n} \rangle \le \langle H, v_2, \dots, v_n \rangle = HW$$

where

$$W = \langle \langle v_2, \dots, v_n \rangle^H \rangle.$$

Now W is a subgroup of V that is H-invariant. Hence it is F-invariant and therefore an F-subspace of V. Considered as an F-subspace, we see that every member of W can be written as a linear combination of the v_i with coefficients in H. Thus $\{v_2, \ldots, v_n\}$ is an F-spanning set for W. Hence $\dim_F(W) \leq n-1 < \dim_F(V)$. We deduce that $W \neq V$ and finally that $\langle H^{g_1}, \ldots, H^{g_n} \rangle \neq G$.

4 The Minimal Counterexample

Throughout the remainder of this paper, we assume the following hypothesis, which is satisfied by a minimal counterexample to Theorem A.

Hypothesis

- (i) H is a subgroup of G and $n = cl_G(H)$;
- (ii) $G = \langle H^G \rangle$ and $n \ge 2$;
- (iii) Every set consisting of at most n conjugates of H generates a proper subgroup of G;
- (iv) $H_G = 1;$
- (v) If Y < X with $|X| < |G|, X = \langle Y^X \rangle$, $cl_X(Y) \ge 2$ and if every set consisting of at most $cl_X(Y)$ conjugates of Y generates a proper subgroup of X then X has the structure given in the conclusion of Theorem A.

We will eventually prove that G has the structure given in the conclusion of Theorem A. This, together with Lemma 3.4 will prove Theorem A.

Definition An r-tuple (H_1, \ldots, H_r) of conjugates of H is good if

$$H_i \not\leq N_G(H_1)$$
 for all $i, 2 \leq i \leq r$

and

$$H_1 < \langle H_1, H_2 \rangle < \langle H_1, H_2, H_3 \rangle < \ldots < \langle H_1, H_2, H_3, \ldots, H_r \rangle$$

Notice that the above chain has length r - 1.

Lemma 4.1 Let (H_1, \ldots, H_r) be a good r-tuple of conjugates of H, with r < n + 1. Then there exist $H_{r+1}, \ldots, H_{n+1} \in H^G$ such that (H_1, \ldots, H_{n+1}) is good.

Proof Since $r \leq n$ we have $H_1 \leq \langle H_1, \ldots, H_r \rangle < G = \langle H_1^G \rangle$ so there exists a conjugate D of H_1 that does not normalize $\langle H_1, \ldots, H_r \rangle$. In particular, $D \not\leq \langle H_1, \ldots, H_r \rangle$. In the case that D does not normalize H_1 , let $H_{r+1} = D$. In the case that D does normalize H_1 we observe that since D does not normalize $\langle H_1, \ldots, H_r \rangle$, there exists $i, 2 \leq i \leq r$ and $d \in D$ such that $H_i^d \not\leq \langle H_1, \ldots, H_r \rangle$. Since (H_1, \ldots, H_r) is good it follows that H_i does not normalize H_1 , but as d does normalize H_1 we see that H_i^d cannot normalize H_1 . Let $H_{r+1} = H_i^d$. In both cases (H_1, \ldots, H_{r+1}) is good.

Repeated application of the above procedure completes the proof of this lemma.

Lemma 4.2 Let (H_1, \ldots, H_{n+1}) be a good (n+1)-tuple of conjugates of H. Then the following hold.

- (i) $G = \langle H_1, \ldots, H_{n+1} \rangle;$
- (ii) If σ is any permutation of $\{2, \ldots, n+1\}$ then $(H_1, H_{2\sigma}, \ldots, H_{(n+1)\sigma})$ is good;
- (iii) $\langle H_1, \ldots, H_i \rangle$ is a maximal subgroup of $\langle H_1, \ldots, H_{i+1} \rangle$ for each i, $1 \leq i \leq n$;
- (iv) If $Y = \langle H_1, \ldots, H_n \rangle$ then $\operatorname{cl}_Y(H_1) = n 1$.

Proof Trivial.

Lemma 4.3 Let (H_1, \ldots, H_r) be a good r-tuple of conjugates of H, then

$$\langle H_1, \ldots, H_r \rangle = \langle H_1^{\langle H_1, \ldots, H_r \rangle} \rangle.$$

Proof Let $2 \leq i \leq r$. Then (H_1, H_i) is a good 2-tuple. Using Lemmas 4.1 and 4.2(ii),(iii) we see that H_1 is a maximal subgroup of $\langle H_1, H_i \rangle$.

Since H_i does not normalize H_1 , we have $\langle H_1, H_i \rangle = \langle H_1^{\langle H_1, H_i \rangle} \rangle$ hence $H_i \leq \langle H_1^{\langle H_1, \ldots, H_r \rangle} \rangle$ and the result follows.

For the remainder of this paper we fix the following notation:

Let $H_1 = H$ and let H_2, \ldots, H_{n+1} be chosen in accordance with Lemma 4.1, so that (H_1, \ldots, H_{n+1}) is good.

Let

$$M = \langle H_1, \dots, H_{n-1}, H_n \rangle,$$

$$L = \langle H_1, \dots, H_{n-1}, H_{n+1} \rangle,$$

$$D = \langle H_1, \dots, H_{n-1} \rangle, \text{ and }$$

$$N = N_G(H).$$

Lemma 4.4 (i) $(H_1, \ldots, H_{n-1}, H_n)$ and $(H_1, \ldots, H_{n-1}, H_{n+1})$ are good;

- (ii) M and L are distinct maximal subgroups of G;
- (iii) $D = M \cap L$ and D is a maximal subgroup of M and of L.

Proof Trivial.

5 The Case n = 2

In this section we assume that n = 2. In particular, we have D = H.

Lemma 5.1 Let $k \in G$ be such that $H^k \neq H$. Let $K = \langle H, H^k \rangle$. Let $g \in G$. Then $H^g \leq K$ or $H^g \cap K \leq H_K$.

Proof Since G cannot be generated by two conjugates of H we have H < K < G. Since n = 2 it follows that H is maximal in K and that K is maximal in G.

Let $x \in G$ be such that $H^x \not\leq K$. Let $E = H^x \cap K$. If $E \not\leq H$ then $K = \langle H, E \rangle$ whence $K \leq \langle H, H^x \rangle$. Since G cannot be generated by two conjugates of H, and as K is a maximal subgroup of G, we see that $K = \langle H, H^x \rangle$ hence $H^x \leq K$, a contradiction. Thus $H^x \cap K \leq H$.

Now suppose that $H^g \not\leq K$. Then $H^{gk} \not\leq K$ for all $k \in K$ so the previous paragraph implies $H^{gk} \cap K \leq H$ for all $k \in K$. Thus $H^g \cap K \leq$ $\cap \{H^{k^{-1}} \mid k \in K\} = H_K.$

Lemma 5.2 $H_M = H_L = 1$.

Proof Since $M = \langle H, H_2 \rangle \not\leq N$, we may choose $m \in M$ such that $H^m \neq H$. By Lemma 4.4(iii) we have $M \cap L = H$ so $H^m \not\leq L$. Now $L = \langle H, H_3 \rangle$ so Lemma 5.1 implies that $H^m \cap L \leq H_L$. Then $H_M = H_M^m \leq H^m \cap H \leq H^m \cap L \leq H_L$ so $H_M \leq H_L$.

The preceding argument with L in place of M implies that $H_L \leq H_M$, hence $H_M = H_L \leq \langle M, L \rangle$. Lemma 4.4(ii) implies that $\langle M, L \rangle = G$ so H_M is a normal subgroup of G contained in H. Thus $H_M \leq H_G = 1$. Hence result.

Lemma 5.3 Let $1 < P \leq H$. Then $N_G(P) \leq N$.

Proof Let $g \in N_G(P)$. Then $1 < P \leq H^g \cap M$ and as $M = \langle H, H_2 \rangle$, Lemmas 5.1 and 5.2 imply that $H^g \leq M$. Similarly $H^g \leq L$ whence $H^g \leq M \cap L = H$. We deduce that $N_G(P) \leq N$.

Lemma 5.4 Let $g \in G$ and suppose that $H^g \leq N$. Then $g \in N$.

Proof Assume false. Then $H^g \neq H$ so H < N < G and since $cl_G(H) = 2$ we see that H is a maximal subgroup of N and that N is a maximal subgroup of G. Since $H \leq N$ it follows that $N = HH^g$ and as $g \notin N$ we also have $G = \langle N, g \rangle$.

Next we consider the subgroup $N^{g^{-1}}$. The factorization $N^{g^{-1}} = H^{g^{-1}}H$ implies that H is not a Hall subgroup of $N^{g^{-1}}$. Thus there exists a Sylow subgroup P of H such that $N_{N^{g^{-1}}}(P) \not\leq H$. Using the previous lemma, we see that $H < \langle H, N_{N^{g^{-1}}}(P) \rangle \leq N \cap N^{g^{-1}} \leq N$. The maximality of H in N forces $N = N^{g^{-1}}$. Since $G = \langle N, g \rangle$ we have that $H \leq N \leq G$ whence $G = \langle H^G \rangle \leq N < G$, a contradiction. We deduce that $g \in N$.

Lemma 5.5 G is a Frobenius group with complement H

Proof First we prove that N is a Frobenius complement in G. Suppose not. Then by Lemma 3.2 there exists P such that $1 < P \leq N$ and $N_G(P) \not\leq N$. Choose $g \in N_G(P) - N$ and set $T = \langle H, H^g \rangle$. Then H < T < G so as $cl_G(H) = 2$, we see that H is maximal in T and that T is maximal in G.

Observe that P normalizes both H and H^g so $P \leq N_G(T)$. Since H is not contained in any proper normal subgroup of G, we have that $N_G(T) = T$, whence $P \leq T$. We have $H \leq T \cap N \leq T$ so either $H = T \cap N$ or $T \cap N = T$. Lemma 5.4 and the fact that $g \notin N$ imply that $H^g \nleq N$ so as $H^g \leq T$, we see that $T \cap N \neq T$. Thus $H = T \cap N$, and in particular, $P \leq H$. Lemma 5.3 implies that $N_G(P) \leq N$, a contradiction. We deduce that N is a Frobenius complement in G.

Frobenius' Theorem implies that G contains a normal subgroup K such that G = NK and $N \cap K = 1$. But $H \leq N$ whence $HK \leq G$. So as $G = \langle H^G \rangle$, we have NK = HK. Since $N \cap K = 1$, we see that N = H, hence result.

The previous lemmas together with Frobenius' Theorem imply that G contains a normal subgroup K, the Frobenius kernel of G, such that

$$G = HK$$
 and $H \cap K = 1$.

Lemma 5.6 There is a prime p such that K is an elementary abelian p-group. Considered as a GF(p)H-module, K is the direct sum of two irreducible, nontrivial isomorphic GF(p)H-modules. Moreover, H is cyclic.

Proof Let $a \in K^{\sharp}$ and let $U = \langle a^H \rangle$. Lemma 3.3 implies that $\langle H, H^a \rangle = HU$ so using the hypothesis that G cannot be generated by two conjugates of Hwe see that H < HU < G. Since $cl_G(H) = 2$ it follows that H is maximal in HU and that HU is maximal in G. In particular, U is both a maximal and a minimal H-invariant subgroup of K.

Thompson's Theorem implies that K is nilpotent, hence $N_K(U) > U$ and it follows that $U \leq K$. Now U is nilpotent and is a minimal H-invariant subgroup of K so we see that U is an elementary abelian p-group for some prime p on which H acts irreducibly.

Now choose $b \in K - U$ and let $W = \langle b^H \rangle$. Then again, $W \leq K$ and W is an elementary abelian q-group for some prime q on which H acts irreducibly.

If $p \neq q$ then as K is nilpotent we have [a, b] = 1 so ab is an element with order pq. However, the previous argument shows that every element of K^{\sharp} has prime order, a contradiction. Thus p = q. Since U and W are minimal H-invariant subgroups of K we have $U \cap W = 1$ and as they are maximal H-invariant subgroups of K we have $\langle U, W \rangle = K$. It follows that $K = U \times W$. Thus K is an elementary abelian p-group.

We are left with the task of proving that U is isomorphic to W as an H-module and that H is cyclic. Choose $u \in U^{\sharp}$ and $w \in W^{\sharp}$. Set t = uw and $T = \langle t^H \rangle$. The projection maps

$$\pi_U: T \longrightarrow U$$
 and $\pi_W: T \longrightarrow W$

are *H*-module homomorphisms. Since $t\pi_U = u$ and $t\pi_W = w$ it follows that π_U and π_W are nontrivial. As previously we have that *T* is an irreducible *H*-module, as are *U* and *W*. It follows that π_U and π_W are *H*-module isomorphisms. Also, $\pi_U^{-1}\pi_W$ is an *H*-module isomorphism $U \to W$ that maps *u* to *w*.

By keeping w fixed and letting u range over U^{\sharp} we see that $\operatorname{End}_{H}(U)$ acts transitively on U^{\sharp} . Let $E = \operatorname{End}_{H}(U)$. Then U is an irreducible E-module and so $\operatorname{End}_{E}(U)$ is a field. Now $H \subseteq \operatorname{End}_{E}(U)$ and as the multiplicative group of a finite field is cyclic, we deduce that H is cyclic.

6 The Case $n \ge 3$

In this section we assume that $n \geq 3$.

Lemma 6.1 (i) *M* and *L* are Frobenius groups with cyclic complement *H*.

- (ii) There is a prime p such that the Frobenius kernels of M and L are elementary abelian p-groups.
- (iii) Considered as a GF(p)H-module, the kernel of M is the direct sum of n-1 nontrivial, irreducible isomorphic GF(p)H-modules.
- (iv) The kernel of L satisfies (iii) also.

Proof Lemma 4.3 implies that $M = \langle H^M \rangle$ and Lemma 4.2(iv) implies that $\operatorname{cl}_H(M) = n - 1$. Since $G = \langle M, H_{n+1} \rangle$ and since G cannot be generated by n conjugates of H, we see that M cannot be generated by n - 1 conjugates of H. Then M/H_M is a Frobenius group with complement H/H_M . Let $\overline{M} = M/H_M$. Since $n \geq 3$ we have that D > H so \overline{D} is a Frobenius group with complement \overline{H} . In particular, the only subgroup of \overline{H} that is normal in \overline{D} is 1. Now $\overline{H_L} \leq \overline{D}$, whence $\overline{H_L} = 1$ forcing $H_L \leq H_M$. A similar argument with the roles of M and L interchanged proves $H_M \leq H_L$. Thus $H_L = H_M \leq \langle M, L \rangle = G$ and as $H_G = 1$, we deduce that $H_L = H_M = 1$.

We have that M is a Frobenius group with cyclic complement H and whose kernel is an elementary abelian p-group, which considered as a GF(p)H-module is the direct sum of n-1 irreducible, nontrivial isomorphic GF(p)H-modules. Similarly, there is a prime q such that L is a Frobenius group with complement H whose kernel is an elementary abelian q-group etc. Since $n \geq 3$, we have $M \cap L = D > H$ whence p = q.

Lemma 6.2 G is a Frobenius group with complement H and kernel $O_p(G)$. Moreover, $O_p(G) = \langle O_p(M), O_p(L) \rangle$.

Proof Lemma 6.1 implies that $M = HO_p(M)$. Since $H \leq D$ we have $D = H(D \cap O_p(M))$ and as H has order coprime to p we see that $D \cap O_p(M) = O_p(D)$. By Lemma 6.1, $O_p(M)$ is abelian so $O_p(D) \leq O_p(M)$ and hence $O_p(D) \leq M$. Similarly, $O_p(D) \leq L$ and it follows that $O_p(D) \leq G$. As $n \geq 3$, we have H < D, but as $D = HO_p(D)$ it follows that $O_p(D) \neq 1$.

Let V be a minimal normal subgroup of G that is contained in $O_p(D)$ and set $G^* = G/V$. Since $O_p(M)$ and $O_p(L)$ centralize $O_p(D)$, we have the factorization $G = HC_G(V)$ so H normalizes no nontrivial proper subgroup of V. Moreover, $H \cap V = 1$ so Lemma 3.1 implies that $cl_{G^*}(H^*) = n - 1$. Since $G = \langle H^G \rangle$ we also have $G^* = \langle H^{*G^*} \rangle$.

Suppose that G^* can be generated by n-1 conjugates of H^* . Then there exist $A_1, \ldots, A_{n-1} \in H^G$ such that $G = V\langle A_1, \ldots, A_{n-1} \rangle$. Since V is an abelian minimal normal subgroup of G we see that $\langle A_1, \ldots, A_{n-1} \rangle$ is a maximal subgroup of G. Since $G = \langle H^G \rangle$, there exists $A_n \in H^G$ such that $A_n \not\leq \langle A_1, \ldots, A_{n-1} \rangle$. Then $G = \langle A_1, \ldots, A_n \rangle$, contrary to hypothesis. Thus G^* cannot be generated by n-1 conjugates of H^* . Next we show that $H_{G^*}^* = 1$. Let E be the inverse image of $H_{G^*}^*$ in G. Then $V \leq E = V(H \cap E) \leq G$ and $E \leq M$. Using a Frattini Argument and the Schur-Zassenhaus Theorem, we have that $M = EN_M(H \cap E)$ and then $M = VN_M(H \cap E)$. But $VH \leq D < M$ so as H is a Frobenius complement in M we must have $H \cap E = 1$. Then E = V and $H_{G^*}^* = 1$.

The previous two paragraphs together with the hypothesis on G imply that G^* is a Frobenius group with complement H^* and kernel $O_q(G^*)$ for some prime q. Now $M = HO_p(M)$ and as $O_p(M) > V$, we see that $|M^* : H^*|$ is divisible by p, so as $G^* = H^*O_q(G^*)$ we have p = q. Thus $G = HO_p(G)$ and as H has order coprime to p, it follows that $\langle O_p(M), O_p(L) \rangle \leq O_p(G)$. Since M is a maximal subgroup of G, we see that $O_p(M)$ is a maximal H-invariant subgroup of $O_p(G)$, whence $\langle O_p(M), O_p(L) \rangle = O_p(G)$.

Let $g \in G$ and suppose that $H \cap H^g \neq 1$. Now $H \cap V = 1$ hence $H^* \cap H^{*g^*} \neq 1$ so the fact that H^* is a Frobenius complement in G^* forces $g^* \in H^*$. Then $g \in HV \leq M$ and since H is a Frobenius complement in M, we have $g \in H$. We deduce that G is a Frobenius group with complement H. Since $H \cap O_p(G) = 1$ and as $G = HO_p(G)$, it follows that $O_p(G)$ is the Frobenius kernel of G.

Lemma 6.3 $O_p(G)$ is an elementary abelian p-group that, considered as a GF(p)H-module is, the direct sum of n nontrivial, irreducible isomorphic GF(p)H-submodules.

Proof Let $m \in O_p(M) - O_p(D)$ and $l \in O_p(L) - O_p(D)$. Then $H \neq H^m, m \in \langle H, H^m \rangle \leq M, H \neq H^l$ and $l \in \langle H, H^l \rangle \leq L$. Now $O_p(D) = O_p(M) \cap O_p(L)$ so as $l \notin M$ and $l \in \langle H, H^l \rangle$, it follows that $H^l \nleq \langle H, H^m \rangle$. Since $N_G(H) = H$, the 3-tuple (H, H^m, H^l) is good. By Lemma 4.1, there exist $B_4, \ldots, B_{n+1} \in H^G$ such that $(H, H^m, H^l, B_4, \ldots, B_{n+1})$ is a good (n+1)-tuple. All the preceding arguments can be carried out using this (n+1)-tuple in place of (H_1, \ldots, H_{n+1}) . Thus $T = \langle H, H^m, H^l, B_4, \ldots, B_n \rangle$ is a Frobenius group with complement H and abelian kernel $O_p(T) = T \cap O_p(G)$. Since $m, l \in T \cap O_p(G)$, it follows that m and l commute. Since $O_p(M)$ and $O_p(L)$ are elementary abelian, we deduce that $O_p(G)$ is elementary abelian.

Now we regard $O_p(G)$ as a GF(p)H-module. Maschke's Theorem, Lemma 6.1(iii) and the fact that D is maximal in M imply that there exist nontrivial isomorphic irreducible GF(p)H-modules V_1, \ldots, V_{n-1} such that $O_p(M) = V_1 \oplus \ldots \oplus V_{n-1}$ and $O_p(D) = V_1 \oplus \ldots \oplus V_{n-2}$. Since $O_p(M) \not\leq O_p(L)$, there exists an irreducible GF(p)H-submodule W of $O_p(L)$ such that $W \not\leq O_p(M)$. Since $O_p(M)$ is a maximal GF(p)H-submodule of $O_p(G)$, we have $O_p(G) = O_p(M) \oplus W$. Lemma 6.1(iv) and the fact that $n \geq 3$ imply $W \cong V_1$. This completes the proof of Lemma 6.3.

References

- M. Aschbacher, *Finite group theory*, Cambridge University Press, Cambridge, 1986.
- [2] P.J. Flavell, *Generating finite groups with maximal subgroups of maximal subgroups*, to appear, Journal of Algebra.
- [3] P.J. Flavell, Overgroups of second maximal subgroups, to appear, Archiv der Math.