Arch. Math. 82 (2004) 1–3 0003–889X/04/010001–03 DOI 10.1007/s00013-003-0835-8 © Birkhäuser Verlag, Basel, 2004

Archiv der Mathematik

A characterization of \mathcal{N} -constrained groups

By

PAUL FLAVELL and JUAN MEDINA

Abstract. We prove that a finite group *G* is \mathcal{N} -constrained if and only if it contains a nilpotent subgroup *I* satisfying $C_G(I \cap I^g) \leq I \cap I^g$ for all $g \in G$.

A group G is said to be \mathcal{N} -constrained if $C_G(F(G)) \leq F(G)$. It is well known that finite soluble groups are \mathcal{N} -constrained, see for example [1, Theorem 6.1.3, p. 218]. An \mathcal{N} -constrained group possesses a nilpotent subgroup I with the property

$$C_G(I \cap I^g) \leq I \cap I^g$$
 for all $g \in G$

For example, put I = F(G).

We shall prove the converse, namely that if a finite group G possesses a nilpotent subgroup I with the above property then G must be N-constrained. Throughout, all groups are finite.

Lemma 1. Suppose that I is a maximal nilpotent subgroup of G satisfying $C_G(I \cap I^g) \leq I \cap I^g$ for all $g \in G$. If K is a subgroup of G that is normalized by I and if $I \cap K \leq Z(K)$ then $K \leq I$.

Proof. Assume false and minimize |G| + |K|. Then G = IK and as $I \cap K \leq Z(K)$ we have that $I \cap K \leq G$.

Let $\overline{G} = G/(\overline{I} \cap K)$. The minimal choice of K implies that if K_0 is any I-invariant subgroup of K then either $K_0 \leq I \cap K$ or $K_0 = K$. Then 1 and \overline{K} are the only \overline{I} -invariant subgroups of \overline{K} . Let $\pi = \pi(\overline{K})$ and choose $p \in \pi$. Extending $O_p(\overline{I})$ to a Sylow p-subgroup of \overline{G} we see that $O_p(\overline{I})$ normalizes a Sylow p-subgroup of \overline{K} and then that

Mathematics Subject Classification (1991): 20D99.

This research was undertaken whilst the first author was a guest of the Departamento de Algebra, Universitat de València. The authors wish to express their thanks to Professors M. J. Iranzo and F. Pérez-Monasor for their hospitality and for suggesting this problem.

The research of the second author is supported by DGICYT, MEC of Spain. Proyecto PB-97-0674-C02-02.

 $O_p(\overline{I})$ centralizes some nontrivial *p*-elements of \overline{K} . Thus $C_{\overline{K}}(O_p(\overline{I})) \neq 1$ so $C_{\overline{K}}(O_p(\overline{I})) = \overline{K}$. We deduce that $[O_{\pi}(\overline{I}), \overline{K}] = 1$.

Now $O_{\pi'}(\overline{I})$ is nilpotent and has order coprime to \overline{K} so by Sylow's Theorem for groups with operators [1, Theorem 6.2.2, p. 224], there exists a Sylow *p*-subgroup \overline{P} of \overline{K} that is normalized by $O_{\pi'}(\overline{I})$. Since $[O_{\pi}(\overline{I}), \overline{K}] = 1$ we see that \overline{I} normalizes \overline{P} . Consequently $\overline{K} = \overline{P}$. Since $I \cap K \leq Z(K)$ we deduce that K is nilpotent. Then K is the direct product of its Sylow subgroups so the minimal choice of K implies that K is a *p*-group.

Next we argue that $O_{p'}(I)$ centralizes K. Suppose that $k \in C_K(O_p(I))$. Now

$$[O_{p'}(I) \cap O_{p'}(I)^k, k^{-1}] \leq O_{p'}(I) \cap K = 1$$

and since *I* is nilpotent we have that $I \cap I^k = O_p(I)(O_{p'}(I) \cap O_{p'}(I)^k)$. Then $k^{-1} \in C_G(I \cap I^k)$ and we obtain that $k \in I$. We deduce that $C_K(O_p(I)) \leq I \cap K \leq O_p(I)$.

Now $I = O_p(I) \times O_{p'}(I)$ acts on K and $O_{p'}(I)$ acts trivially on $C_K(O_p(I))$. The $P \times Q$ -Lemma [1, Theorem 5.3.4, p. 179] implies that $O_{p'}(I)$ also acts trivially on K. Then IK is nilpotent so as I is a maximal nilpotent subgroup of G, it follows that $K \leq I$, a contradiction. \Box

Theorem 2. Suppose that I is a maximal nilpotent subgroup of G satisfying $C_G(I \cap I^g) \leq I \cap I^g$ for all $g \in G$. If K is a nilpotent subgroup of G that is normalized by I then $K \leq I$.

Proof. We may suppose that K is a p-group for some prime p. Since p-groups satisfy the normalizer condition, we may also suppose that $I \cap K \leq K$.

Now $O_{p'}(I)$ acts trivially on $I \cap K$ whence $[K, O_{p'}(I)]$ also acts trivially on $I \cap K$. In particular, $[K, O_{p'}(I)] \cap I \leq Z([K, O_{p'}(I)])$ so Lemma 1 yields $[K, O_{p'}(I)] \leq I$. Since K is a p-group and I is nilpotent we have $[K, O_{p'}(I), O_{p'}(I)] = 1$. Then [1, Theorem 5.3.6, p. 181] implies $[K, O_{p'}(I)] = 1$ and hence KI is nilpotent. Since I is a maximal nilpotent subgroup of G we have that $K \leq I$. \Box

Theorem 3. Let G be a group. Then G is \mathcal{N} -constrained if and only if G possesses a nilpotent subgroup I satisfying $C_G(I \cap I^g) \leq I \cap I^g$ for all $g \in G$.

Proof. If G is \mathcal{N} -constrained then $C_G(F(G)) \leq F(G)$ so F(G) will do.

To prove the converse, suppose that G possesses a nilpotent subgroup I of G that satisfies $C_G(I \cap I^g) \leq I \cap I^g$ for all $g \in G$. We may suppose that I is a maximal nilpotent subgroup of G.

Let $K = C_G(F(G))$ and $\overline{G} = G/Z(K)$. Then $F(\overline{K}) = 1$. Let $\overline{Z} = Z(\overline{I}) \cap \overline{K}$. Suppose that $k \in K$. Let $\overline{C} = C_{\overline{K}}(\overline{I} \cap \overline{I}^{\overline{k}})$ and let C be the inverse image of \overline{C} in G. Then $[I \cap I^k, C] \leq Z(K)$ so as $C \leq K$ we obtain $[I \cap I^k, C, C] = 1$. Also $[C, I \cap I^k, C] = 1$ so the Three Subgroups Lemma implies that $[C, C, I \cap I^k] = 1$. We deduce that $C' \leq C_G(I \cap I^k) \leq I \cap I^k$ and then that $\overline{C}' \leq Z(\overline{C})$. In particular, \overline{C} is nilpotent. Now $\langle \overline{Z}, \overline{Z}^{\overline{k}} \rangle \leq \overline{C}$ so since k was arbitrary, we may invoke the Baer-Suzuki Theorem [1, Theorem 3.8.2, p. 105] to conclude that $\overline{Z} \leq F(\overline{K})$. But $F(\overline{K}) = 1$ whence $Z(\overline{I}) \cap \overline{K} = 1$. Vol. 82, 2004

Now $\overline{I} \cap \overline{K} \leq \overline{I}$ and \overline{I} is nilpotent so we have $\overline{I} \cap \overline{K} = 1$. Consequently $I \cap K \leq Z(K)$ and then Lemma 1 implies that $K \leq I$. Thus K is nilpotent and as $K \leq G$ we have $C_G(F(G)) = K \leq F(G)$. Hence G is \mathcal{N} -constrained. \Box

Corollary 4. Let G be a group, p a prime and P a Sylow p-subgroup of G. Then $C_G(O_p(G)) \leq O_p(G)$ if and only if $C_G(P \cap P^g) \leq P \cap P^g$ for all $g \in G$.

Proof. Suppose that $C_G(P \cap P^g) \leq P \cap P^g$ for all $g \in G$. Putting g = 1 yields $C_G(P) \leq P$. It follows that P is a maximal nilpotent subgroup of G. Theorem 2 implies that $F(G) \leq P$, so that $F(G) = O_p(G)$. Theorem 3 implies that G is \mathcal{N} -constrained, whence $C_G(O_p(G)) \leq O_p(G)$.

The reverse implication is trivial. \Box

References

[1] D. GORENSTEIN, Finite groups, 2nd edn. New York 1980.

Received: 22 July 2002

Paul Flavell School of Mathematics and Statistics University of Birmingham Birmingham B15 2TT Great Britain P.J.Flavell@bham.ac.uk Juan Medina Departamento de Matemática Aplicada y Estadística Universidad Politécnica de Cartagena Paseo Alfonso XIII, 52 E-30203 Cartagena Spain juan.medina@upct.es