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A characterization of N-constrained groups

By

Paul Flavell and Juan Medina

Abstract. We prove that a finite group G is N -constrained if and only if it contains a nilpotent
subgroup I satisfying CG(I ∩ Ig) � I ∩ Ig for all g ∈ G.

A group G is said to be N -constrained if CG(F(G)) � F(G). It is well known that
finite soluble groups are N -constrained, see for example [1, Theorem 6.1.3, p. 218]. An
N -constrained group possesses a nilpotent subgroup I with the property

CG(I ∩ Ig) � I ∩ Ig for all g ∈ G.

For example, put I = F(G).
We shall prove the converse, namely that if a finite group G possesses a nilpotent subgroup

I with the above property then G must be N -constrained. Throughout, all groups are finite.

Lemma 1. Suppose that I is a maximal nilpotent subgroup of G satisfying CG(I ∩
Ig) � I ∩ Ig for all g ∈ G. If K is a subgroup of G that is normalized by I and if
I ∩ K � Z(K) then K � I .

P r o o f. Assume false and minimize |G| + |K|. Then G = IK and as I ∩K � Z(K) we
have that I ∩ K =� G.

Let G = G/(I ∩ K). The minimal choice of K implies that if K0 is any I -invariant
subgroup of K then either K0 � I ∩ K or K0 = K . Then 1 and K are the only
I -invariant subgroups of K . Let π = π(K) and choose p ∈ π . Extending Op(I) to a Sylow
p-subgroup of G we see that Op(I) normalizes a Sylow p-subgroup of K and then that
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Op(I) centralizes some nontrivialp-elements ofK . ThusCK(Op(I)) �= 1 soCK(Op(I)) =
K . We deduce that [Oπ(I), K] = 1.

Now Oπ ′(I ) is nilpotent and has order coprime to K so by Sylow’s Theorem for groups
with operators [1, Theorem 6.2.2, p. 224], there exists a Sylow p-subgroup P of K that is
normalized by Oπ ′(I ). Since [Oπ(I), K] = 1 we see that I normalizes P . Consequently
K = P . Since I ∩K � Z(K) we deduce that K is nilpotent. Then K is the direct product
of its Sylow subgroups so the minimal choice of K implies that K is a p-group.

Next we argue that Op′(I ) centralizes K . Suppose that k ∈ CK(Op(I)). Now

[Op′(I ) ∩ Op′(I )k, k−1] � Op′(I ) ∩ K = 1

and since I is nilpotent we have that I ∩ I k = Op(I)(Op′(I ) ∩ Op′(I )k). Then k−1 ∈
CG(I ∩ I k) and we obtain that k ∈ I . We deduce that CK(Op(I)) � I ∩ K � Op(I).

Now I = Op(I) × Op′(I ) acts on K and Op′(I ) acts trivially on CK(Op(I)). The
P × Q-Lemma [1, Theorem 5.3.4, p. 179] implies that Op′(I ) also acts trivially on K .
Then IK is nilpotent so as I is a maximal nilpotent subgroup of G, it follows that K � I ,
a contradiction. �

Theorem 2. Suppose that I is a maximal nilpotent subgroup of G satisfying CG(I ∩
Ig) � I ∩ Ig for all g ∈ G. If K is a nilpotent subgroup of G that is normalized by I then
K � I .

P r o o f. We may suppose that K is a p-group for some prime p. Since p-groups satisfy
the normalizer condition, we may also suppose that I ∩ K =� K .

Now Op′(I ) acts trivially on I ∩ K whence [K, Op′(I )] also acts trivially on I ∩ K . In
particular, [K, Op′(I )]∩ I � Z([K, Op′(I )]) so Lemma 1 yields [K, Op′(I )] � I . Since
K is a p-group and I is nilpotent we have [K, Op′(I ), Op′(I )] = 1. Then [1, Theorem 5.3.6,
p. 181] implies [K, Op′(I )] = 1 and hence KI is nilpotent. Since I is a maximal nilpotent
subgroup of G we have that K � I . �

Theorem 3. Let G be a group. Then G is N -constrained if and only if G possesses a
nilpotent subgroup I satisfying CG(I ∩ Ig) � I ∩ Ig for all g ∈ G.

P r o o f. If G is N -constrained then CG(F(G)) � F(G) so F(G) will do.
To prove the converse, suppose that G possesses a nilpotent subgroup I of G that satisfies

CG(I ∩Ig) � I ∩Ig for all g ∈ G. We may suppose that I is a maximal nilpotent subgroup
of G.

Let K = CG(F(G)) and G = G/Z(K). Then F(K) = 1. Let Z = Z(I) ∩ K .

Suppose that k ∈ K . Let C = CK(I ∩ I
k
) and let C be the inverse image of C in G.

Then [I ∩ I k, C] � Z(K) so as C � K we obtain [I ∩ I k, C, C] = 1. Also [C, I ∩
I k, C] = 1 so the Three Subgroups Lemma implies that [C, C, I ∩ I k] = 1. We deduce
that C′ � CG(I ∩ I k) � I ∩ I k and then that C

′ � Z(C). In particular, C is nilpotent.

Now 〈Z, Z
k〉 � C so since k was arbitrary, we may invoke the Baer-Suzuki Theorem [1,

Theorem 3.8.2, p. 105] to conclude that Z � F(K). But F(K) = 1 whence Z(I)∩K = 1.
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Now I ∩ K =� I and I is nilpotent so we have I ∩ K = 1. Consequently I ∩ K � Z(K)

and then Lemma 1 implies that K � I . Thus K is nilpotent and as K =� G we have
CG(F(G)) = K � F(G). Hence G is N -constrained. �

Corollary 4. Let G be a group, p a prime and P a Sylow p-subgroup of G. Then
CG(Op(G)) � Op(G) if and only if CG(P ∩ P g) � P ∩ P g for all g ∈ G.

P r o o f. Suppose that CG(P ∩ P g) � P ∩ P g for all g ∈ G. Putting g = 1 yields
CG(P ) � P . It follows that P is a maximal nilpotent subgroup of G. Theorem 2 implies
that F(G) � P , so that F(G) = Op(G). Theorem 3 implies that G is N -constrained,
whence CG(Op(G)) � Op(G).

The reverse implication is trivial. �
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