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Abstract

We study how the fixed point subgroup of an automorphism influences the structure of a group.

1. Introduction

We investigate how the fixed point subgroup of an automorphism influences the
structure of a group. We shall prove:

Theorem A. Let R be a group of prime order r that acts on the r′-group G.
Let p be an odd prime and choose S ∈ Sylp(G). Assume that CG(R) is a p′-group.
Then NG(S) controls strong fusion in S with respect to G.

Theorem A is a generalization of Thompson’s Thesis, which asserts that if R
is fixed point free then G is nilpotent. Indeed, Thompson’s result follows from
Theorem A and Frobenius’ Normal p-Complement Theorem. Many authors have
extended Thompson’s work, notably Glauberman [5].

Collins [2, 3] studied groups that admit an automorphism of prime order whose
fixed point subgroup also has prime order. He realized that Glauberman’s arguments
could be modified to obtain the conclusion of Theorem A in his situation. We follow
a similar path by proving:

Theorem B. Let G be a group, p an odd prime, S ∈ Sylp(G) and T ≤ Z(S).
Suppose that T E NG(J(S)). Then at least one of the following holds:

(a) T is weakly closed in S with respect to G.
(b) There exists a cyclic p′-subgroup X ≤ NG(T ) such that X acts nontrivially

on T and transitively on [T, X]#.

Notice the similarity with the result of Collins [3, p.26], [6, Theorem 14.14, p.46].
If r is not a Fermat prime then Theorem A follows without much difficulty from

Theorem B and a result of Shult on modules [7, Theorem 3.1,p.702], [1, (36.2),
p.193]. However, if r is a Fermat prime there is an unavoidable and considerable
obstacle. Perhaps this explains why Theorem A was not proved during the 1970s
when there was much activity in this area. The author’s recent result [4] is invoked
to complete the proof of Theorem A.
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2. Preliminaries

Henceforth, group will mean finite group. Suppose that G, N and S are groups
with S ≤ N ≤ G. We say N controls strong fusion in S with respect to G if for
all X ⊆ S and g ∈ G satisfying Xg ⊆ S we have g = cn for some c ∈ CG(X) and
n ∈ N . We say S is weakly closed in N with respect to G if for all g ∈ G, Sg ≤ N
implies Sg = S.

Lemma 2.1. Let G be a group, p a prime and S ∈ Sylp(G). Suppose that T is a
subgroup of Z(S) that is weakly closed in S with respect to G. Then NG(T ) controls
strong fusion in S with respect to G.

Proof. This is an elementary consequence of Sylow’s Theorem.

Lemma 2.2. Let G be a group, p a prime, S ∈ Sylp(G) and N ≤ G with S ≤ N .
Suppose that:

whenever W ≤ S and g ∈ G satisfy W g ≤ S, Op(G) ≤ W and
NS(W ) ∈ Sylp(NG(W )) then g = cn for some c ∈ CG(W ) and n ∈ N .

}
(∗)

Then N controls strong fusion in S with respect to G.

Proof. Suppose that W ≤ S and g ∈ G satisfy W g ≤ S. We must show that
g = cn for some c ∈ CG(W ) and n ∈ N . Without loss, Op(G) ≤ W . By Sy-
low’s Theorem, there exists a conjugate Wh of W with Wh ≤ S and NS(Wh) ∈
Sylp(NG(Wh)). Note that (Wh)h−1

= W ≤ S and (Wh)h−1g = W g ≤ S. Applying
(∗) twice, with Wh in place of W , we have

h−1 = ax and h−1g = by

for some a, b ∈ CG(Wh) and x, y ∈ N . Then g = hby = x−1a−1by = (a−1b)x(x−1y).
Now Whx = Wha−1h−1

= Whh−1
= W so as a−1b ∈ CG(Wh) we have (a−1b)x ∈

CG(W ). Put c = (a−1b)x and n = x−1y.

Lemma 2.3. Let G be a group, p a prime and S ∈ Sylp(G). Then any of the
following imply that NG(S) controls strong fusion in S with respect to G.

(a) NG(S) ≤ M ≤ G, M controls strong fusion in S with respect to G and
NG(S) controls strong fusion in S with respect to M .

(b) S ≤ K E G and NK(S) controls strong fusion in S with respect to K.
(c) There is a subgroup Z ≤ Z(S)∩Z(G) such that NG/Z(S/Z) controls strong

fusion in S/Z with respect to G/Z.

Proof. (a) is trivial and (b) follows from the Frattini Argument. To prove (c),
set G = G/Z. Assume the hypothesis of (∗) in Lemma 2.2. Then Z ≤ W so
NG(W ) = NG(W ). Let C be the inverse image of CG(W ) in G. Then C E NG(W )
and S ∩ C ∈ Sylp(C). Now C acts trivially on each factor of the chain

1 ≤ Z ≤ W

so C/CG(W ) is a p-group. It follows that C = CG(W )(S ∩ C). Also Z ≤ S so
NG(S) = NG(S). By hypothesis, there exist c ∈ C and n ∈ NG(S) with g = cn.
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Then
g = zcn

for some z ∈ Z. Now C = CG(W )(S∩C) so c = ds with d ∈ CG(W ) and s ∈ S∩C.
Then g = (zd)(sn), zd ∈ CG(W ) and sn ∈ NG(S). This verifies (∗) and completes
the proof.

The following is well known, see for instance [1]

Theorem 2.4 (Coprime Action). Let the r-group R act on the r′-group G.
(a) If p is a prime then G possesses an R-invariant Sylow p-subgroup.
(b) G = CG(R)[G,R], in particular, [G,R] = [G,R, R].
(c) If G is abelian then G = CG(R)× [G,R].
(d) If R is abelian and noncyclic then G = 〈CG(x) | x ∈ R# 〉.

If S is a p-group then d(S) is the largest of the orders of the abelian subgroups
of S and A(S) is the set of abelian subgroups of S with order d(S). The Thompson
subgroup of S is defined by J(S) = 〈A(S) 〉. The following is a slight re-statement
of a result of Glauberman [5, Theorem 5, p.10].

Theorem 2.5. Suppose that G is a group and p is a prime. Assume:
(i) M < G.
(ii) S ∈ Sylp(G).
(iii) NG(J(S)) ≤ M and CG(Op(G)) ≤ M .
(iv) Whenever H satisfies

Op(G) ≤ H < G, S ∩H ∈ Sylp(H) and NH(J(S ∩H)) ≤ M (∗)
then H ≤ M .

Let P = Op(G), C = CG(Z(P )) and W = Z(P )/(Z(P )∩Z(G)). Then C/P is a p′-
group, W is an elementary abelian group and G/C acts faithfully on W . Moreover:

(a) There exists A ∈ A(S) such that A 6≤ Op(G).
(b) There exists a field K of endomorphisms of W such that W is a vector space

of dimension 2 over K and the group of automorphisms of W induced by G
is SL(W,K).

(c) If p is odd or |K| = 2 then Z(P ) = (Z(P ) ∩ Z(G))× [Z(P ), G].
(d) If A satisfies (a) and K satisfies (b) then |K| = |AC/C| and S = PA.

3. Modules

Throughout this section we assume:
– R is a group of prime order r that acts on the r′-group G.
– V is an RG-module over a field of characteristic p.

Theorem 3.1. Suppose that RG is faithful and irreducible on V and that
CV (R) = 0. Then:

(a) Either [G,R] = 1 or r is a Fermat prime and [G,R] is a nonabelian special
2-group.

(b) If [G,R] is extraspecial then G = CG(R) ∗ [G,R], where ∗ denotes a central
product.
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Proof. (a) is [4, Theorem A] and (b) follows from Coprime Action and [4,
Lemma 3.2(e)].

Theorem 3.2. Suppose that G contains a cyclic p′-subgroup X that acts non-
trivially on V and transitively [V, X]#. Then CV (R) 6= 0.

Proof. Assume false and consider a counterexample with |G|+ dim V minimal.
Then RG is faithful on V and CV (R) = 0. In particular, r 6= p. Set

T = [G,R].

Claim 1.
(a) RG is irreducible on V .
(b) [V,X] and X are not R-invariant.
(c) G = XT and T is a nonabelian special 2-group.
(d) p and r are both odd.

Proof. (a). Since X is a p′-group there is an RG-composition factor W = W/U
on which X acts nontrivially. Then [W,X] 6= 0, so as X is transitive on [V,X]# it
follows that [V,X] = [W,X], that [W,X] ∩ U = 0 and then that X is transitive on
[W, X]#. Since r 6= p and CV (R) = 0 we have CW (R) = 0. Apply the minimality
of dim V .

(b). Suppose that [V, X] is R-invariant. Then R normalizes NG([V, X]), which
is an r′-group. Also X ≤ NG([V,X]) so NG([V,X]) is transitive on [V, X]#. A
Frattini Argument implies that C[V,X](R) 6= 0, a contradiction. Thus [V, X] is not
R-invariant. Then neither is X.

(c). The minimality of |G| implies G = 〈XR 〉. Then G = XT . By (b), T 6= 1.
Theorem 3.1 implies that T is a nonabelian special 2-group.

(d). By Theorem 3.1, r is a Fermat prime so r is odd. Since 1 6= T ≤ O2(G) and
RG is irreducible on V it follows that p is odd.

Claim 2. T is homogeneous on V .

Proof. Assume false and let V1, . . . , Vm be the homogeneous components for T
on V . Then

V = V1 ⊕ · · · ⊕ Vm

and m ≥ 2. Note that R normalizes each Vi because CV (R) = 0. As G = XT we
see that X permutes {V1, . . . , Vm } transitively.

Suppose that V1x = V1 for some x ∈ X#. Since X is cyclic it follows that Vix = Vi

for all i and then that x is nontrivial on V1. Choose v1 ∈ V #
1 with v1x 6= v1 and

choose y ∈ X with V1y = V2. But then v1x− v1 and v1y − v1 are not in the same
X-orbit, a contradiction. We deduce that X is regular on {V1, . . . , Vm } and then
that |X| = m ≥ 2.

Suppose that m ≥ 3. Choose x, y ∈ X with V1x = V2 and V1y = V3. Choose
v1 ∈ V #

1 . Then v1x− v1, v1y− v1, v1x + v1y− 2v1 ∈ [V,X]#. By Claim 1(d), p 6= 2.
Thus v1x− v1 and v1x + v1y− 2v1 are not in the same X-orbit. This contradiction
forces |X| = m = 2, V = V1 ⊕ V2, |X| = |[V, X]#| = |[V1, X]#| and |V1| = 3. But R
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normalizes V1 and CV (R) = 0 so r = 2. This contradicts Claim 1(d) and completes
the proof of Claim 2.

By Claim 2, Z(T ) is cyclic so T is extraspecial. Theorem 3.1(b) implies that
G = CG(R) ∗ T . Then CG(T ) = CG(R) and G/CG(R) is an elementary abelian
2-group.

Let x be a generator for X. Then x2 ∈ CG(R) = CG(T ) so as G = XT we obtain
x2 ∈ Z(RG). Suppose that x2 6= 1. The irreducibility of RG forces CV (x2) = 0.
Then V = [V, x2] = [V, X], contrary to Claim 1(b). We deduce that x2 = 1 so
|X| = 2 and |[V, X]| = 3.

Let Z = Z(T ). Now [X, T ] ≤ [G,T ] = Z so XZ E G. If X ≤ Z(G) then X ≤
CG(T ) = CG(R), contrary to Claim 1(b). Thus X 6≤ Z(G). Let z be a generator
for Z. Now XZ ∼= Z2×Z2 so x is conjugate to xz. By Coprime Action and the fact
that CV (Z) = 0 we have

V = CV (x)⊕ CV (xz).

Then dimCV (x) = 1
2 dim V . Now V/CV (x) ∼= [V, X] and |[V,X]| = 3 so dim V =

2, p = 3 and |V | = 9. But CV (R) = 0 so r divides |V | − 1 = 8. This contradicts
Claim 1(d) and completes the proof.

4. Proofs of Theorems

Proof of Theorem B. Assume false and let G be a minimal counterexample.
[6, Theorem 5.6, p.14], which is a consequence of the Alperin-Gorenstein Fusion
Theorem, implies there exists Q ≤ S such that

– T ≤ Q,
– T E NG(J(NS(Q))),
– NS(Q) ∈ Sylp(NG(Q)),
– T ≤ Z(NS(Q)) and
– T is not weakly closed in NS(Q) with respect to NG(Q).

The minimality of G yields G = NG(Q). Thus T ≤ Op(G) and then T ≤ Z(Op(G))
because T ≤ Z(S). Alternatively, this conclusion can be reached using the reduction
in [5].

Let M = NG(T ). We claim the assumptions of Theorem 2.5 are satisfied. Now
M < G because T is not normal in G and CG(Op(G)) ≤ M because T ≤ Op(G).
Suppose that H satisfies (∗) in assumption (iv). Then T E NH(J(S ∩ H)) so the
minimality of G implies that T is weakly closed in S ∩H with respect to H; since
otherwise, NH(T ) and hence NG(T ) would possess a subgroup X satisfying (b). As
T ≤ Op(G) ≤ S ∩H this implies T E H so H ≤ M . Thus assumption (iv) holds.
Adopt the notation defined in the conclusion of Theorem 2.5.

Let G = G/C. By Theorem 2.5(b), G acts faithfully on W , dimK W = 2 and G
induces SL(W,K) on W . Note that S ∈ Sylp(G). Let X be a complement to S in
NG(S). Then

CW (S) ∼= K

and X ∼= K× acts regularly in CW (S)#.
Recall that T ≤ Z(P ) and that W = Z(P )/(Z(P ) ∩ Z(G)). Let T̃ be the image

of T in W . Then T̃ 6= 1 because T is not normal in G. We have X ≤ NG(S) =
NG(S) ≤ NG(J(S)) ≤ M so X normalizes T̃ . Now T ≤ Z(S) so T̃ ≤ CW (S). Since
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X acts regularly on CW (S)# it follows that

T̃ = CW (S) ∼= K

and that X is regular on T̃#. Since p > 2 we have |T̃ | > 2 so X acts nontrivially
on T̃ .

Let X be a cyclic p′-subgroup of M that maps onto X. Then X acts nontrivially
on T and transitively on T̃#. Now T is abelian, so by Coprime Action,

T = CT (X)× [T,X].

Let T0 = T ∩Z(G), so that T̃ ∼= T/T0. Clearly T0 ≤ CT (X). Moreover CT (X) ≤ T0

because CT̃ (X) = 1. Thus CT (X) = T0. We deduce that T̃ is X-isomorphic to
[T, X]. Consequently X acts transitively on [T, X]#. Then (b) is satisfied, contrary
to the fact that G is a counterexample. The proof is complete.

Proof of Theorem A. Assume false and let G be a minimal counterexample. By
Coprime Action we may suppose that S is R-invariant.

Suppose that Op(G) 6= 1. Let V be a minimal normal subgroup of RG contained
in Op(G) and set G = G/CG(V ). Now CV (R) = 1 so Theorem 3.1 implies that
[G,R] is a 2-group. Since CS(R) = 1 we have S = [S, R]. As p is odd, this forces
S ≤ CG(V ). Lemma 2.3(b) and the minimality of G force G = CG(V ). Using
Lemma 2.3(c) we obtain a contradiction. Hence Op(G) = 1.

Let T = Ω1(Z(S)). If T is weakly closed in S with respect to G then Lemma 2.1
implies that NG(T ) controls strong fusion in S with respect to G. Now NG(S) ≤
NG(T ) < G so Lemma 2.3(a) and the minimality of G supply a contradiction. We
deduce that T is not weakly closed in S.

Now NG(S) ≤ NG(J(S)) < G so the minimality of G implies

NG(J(S)) = CG(J(S))NG(S).

As T = Ω1(Z(S)) ≤ J(S) we have

T E NG(J(S)).

Theorem B implies there exists a cyclic p′-subgroup X ≤ NG(T ) such that X acts
nontrivially on T and transitively on [T, X]#. Now T is an RNG(T )-module over
GF (p) so Theorem 3.2 implies that CT (R) 6= 1. This contradicts the fact that
CG(R) is a p′-group and completes the proof of Theorem A.
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