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1 Introduction

Let G be a finite group and let

Λ = {H | H 6= G and H is not a maximal subgroup of G}.

The second maximal subgroups of G are the maximal members of Λ. We see
that if H is a second maximal subgroup of G and if H < M < G (proper
inclusions) then H is maximal in M and M is maximal in G. The obvious
question to ask is:

Given a second maximal subgroup H, how many maximal
subgroups is H contained in?

This question has been studied by Feit [2], Köhler [3], Lucchini[4, 5, 6],Pálfy
[7], and Pálfy and Pudlák [8] in the context of determining which lattices
can arise as interval lattices of subgroups in finite groups. In particular
Pálfy and Pudlák [8] have shown that if G is soluble then H is contained
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in 1 + q maximal subgroups for some prime power q. Feit [2] and Lucchini
[6] have constructed examples which show this result to be false without the
solubility assumption on G. In this paper we will obtain an upper bound for
the number of maximal subgroups containing H and classify the extremal
examples. We shall prove.

Theorem A Let H be a second maximal subgroup of a finite group G.
Then

the number of maximal subgroups containing H
≤

1 + max {|G : M | | M is a maximal subgroup containing H}.
Moreover, equality holds if and only if G has one of the following structures,
modulo HG.

1. There exist primes p and q such that p|q−1, G is the nonabelian group
of order pq and H = 1;

2. There exists a prime p such that G ∼= Zp × Zp and H = 1;

3. G is a Frobenius group with cyclic Frobenius complement H. The
Frobenius kernel of G is the direct product of two H-invariant ele-
mentary abelian p-groups which are irreducible and isomorphic when
considered as H-modules.

Theorem A raises the following questions.

1. The extremal examples are soluble modulo HG. This leaves the problem
of finding a better inequality in the case that G/HG is insoluble.

2. Define a weak second maximal subgroup to be a maximal subgroup of a
maximal subgroup. It is certainly true that a second maximal subgroup
is a weak second maximal subgroup. However, the converse is false. For
instance 〈(1 2)〉 is maximal in S3 which is maximal in S4 so 〈(1 2)〉 is a
weak second maximal subgroup of S4. However, 〈(1 2)〉 is not a second
maximal subgroup of S4 since it is not maximal in a Sylow 2-subgroup
of S4. Does the inequality proved in Theorem A still hold if second
maximal is replaced by weak second maximal?

The author is indebted to Dr. Christopher Parker for a suggestion that short-
ened the original proof of Theorem A.
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2 Preliminaries

Throughout this paper, the word group means finite group, A ≤ B means
A is a subgroup of B and A < B means A is a proper subgroup of B. If
H ≤ M we let

HM =
⋂
{Hm | m ∈ M} = the core of H in M

and note that HM is the largest subgroup of H that is normal in M . The
following lemma is elementary and will be quoted without reference.

Lemma 2.1 Suppose that H ≤ G, that P is a Sylow p-subgroup of H and
that NG(P ) ≤ H. Then P is a Sylow p-subgroup of G.

Frobenius’ Theorem Suppose that 1 < H < G and that H ∩ Hg = 1 for
all g ∈ G −H. Then G contains a normal subgroup K such that G = HK
and H ∩K = 1.

[1, (35.24) page 191]

Groups satisfying the Hypotheses of Frobenius’ theorem are called Frobenius
groups, H being the Frobenius complement and K the Frobenius kernel. The
following well known lemma provides a useful characterization of Frobenius
groups.

Lemma 2.2 Suppose that 1 < H < G and that NG(P ) ≤ H whenever P is
a nontrivial subgroup of H with prime power order. Then G is a Frobenius
group with complement H.

Proof Let g ∈ G and suppose H∩Hg 6= 1. Let D = H∩Hg, let p be a prime
divisor of |D| and let P be a Sylow p-subgroup of D. Then by hypothesis
NHg(P ) ≤ H ∩ Hg = D so P is a Sylow p-subgroup of Hg and hence P g−1

is a Sylow p-subgroup of H. Now P is also a Sylow p-subgroup of H since it
has the same order as P g−1

so by Sylow’s Theorem, there exists h ∈ H such
that P h = P g−1

. Then hg ∈ NG(P ) ≤ H whence g ∈ H. We deduce that
H ∩Hg = 1 for all g ∈ G−H.

Thompson’s Theorem Frobenius kernels are nilpotent.
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[1, (40.8) page 207]

Burnside’s Normal p-Complement Theorem If P is a Sylow p-subgroup
of a group G and if P ≤ Z(NG(P )), then G has a normal p-complement.

[1, (39.1) page 202]

3 Proof of Theorem A

Throughout this section we assume the following hypothesis.

1. H is a second maximal subgroup of a finite group G;

2. M1, M2, . . . ,Mr is a complete list of the maximal subgroups of G that
contain H ordered so that |M1| ≤ |M2| ≤ . . . ≤ |Mr|;

3. Ω = {1, 2, . . . , r};

4. Γ =
⋃ {Mi | i ∈ Ω};

5. HG = 1;

6. r ≥ 1 + |G : M1|.

We note that in proving Theorem A that there is no loss in assuming HG = 1.
In the following sequence of lemmas we will prove that r = 1 + |G : M1| and
that G has one of the structures listed in the conclusion of Theorem A.
Observe that r ≥ 3 and that Mi ∩Mj = H whenever i 6= j.

Lemma 3.1 |Γ| ≥ |G|+ |M1| − (r − 1)|H|.

Proof We have

|Γ| = |H|+ ∑r
i=1(|Mi| − |H|)

=
∑r

i=1 |Mi| − (r − 1)|H|

≥ (1 + |G : M1|)|M1| − (r − 1)|H|

= |G|+ |M1| − (r − 1)|H|.
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Lemma 3.2 If P is a nontrivial subgroup of H then

NG(P ) ≤ H.

Proof Assume false and let P be a maximal counterexample. Choose
n ∈ NG(P )−H. Let

Σ = {i ∈ Ω | P 6≤ HMi
and n 6∈ Mi} and ∆ = {i ∈ Ω | P ≤ HMi

}.

For each i ∈ Σ choose mi ∈ Mi such that Pmi 6≤ H. We will show that the
sets nmiH, i ∈ Σ are pairwise disjoint and disjoint from Γ. Let i, j ∈ Σ.
Suppose that nmiH ∩ nmjH 6= ∅, then nmiH = nmjH so mi ∈ mjH ⊆ Mj

whence Pmj ≤ Mi ∩Mj. Since Pmj 6≤ H we must have i = j. Now suppose
that nmiH ∩ Γ 6= ∅, so there exists k ∈ Ω such that nmi ∈ Mk. Then
Pmi = P nmi ≤ Mi ∩Mk which again forces i = k. Since mi ∈ Mi it follows
that n ∈ Mi, contradicting i ∈ Σ. Thus nmi ∩ Γ = ∅.

What we have just done implies that

|G| ≥ |Γ|+
∑
i∈Σ

|nmiH| = |Γ|+ |Σ||H|.

Using Lemma 3.1 we obtain

|G| ≥ |G|+ |M1| − (r − 1)|H|+ |Σ||H|

and then
r − 1− |Σ| ≥ |M1 : H| ≥ 2.

Since n 6∈ H it follows that n is contained in at most one maximal subgroup
containing H. Thus

|Σ|+ |∆|+ 1 ≥ r.

The previous two inequalities imply that

|∆| ≥ 2.

Let i and j be distinct members of ∆. Then P ≤ HMi
so HMi

6= 1. Since
HMi

� Mi we see that NG(HMi
) 6≤ H so the maximality of P implies that

P = HMi
. In particular P � Mi. Similarly P � Mj. Now Mi and Mj are

distinct maximal subgroups of G so P �G and it follows that P ≤ HG. This
is a contradiction since by hypothesis, HG = 1.
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Lemma 3.3 Assume that H = 1. Then

r = 1 + |G : M1|

and one of the following holds.

1. There exist primes p and q such that p|q − 1 and G is the nonabelian
group of order pq;

2. There exists a prime p such that G ∼= Zp × Zp.

Proof Since H = 1 it follows that 1 is a maximal subgroup of every non-
trivial proper subgroup of G. Thus every such subgroup is cyclic of prime
order.

Case 1 Assume that there exists i ∈ Ω such that NG(Mi) = Mi. Let p
be the prime such that Mi

∼= Zp. Then Mi is a Sylow p-subgroup of G
and Burnside’s Normal p-Complement Theorem implies that G has a normal
p-complement K. Then K ∼= Zq for some prime q 6= p and G = MiK. Thus
|G| = pq and as NG(Mi) = Mi we see that G is nonabelian. It follows that
p|q − 1 and that r = 1 + |G : M1|.
Case 2 Assume that Mi � G for all i ∈ Ω. Now M1 ∩ M2 = 1 so we have
G ∼= M1 × M2. Let q ≥ p be primes such that M1

∼= Zp and M2
∼= Zq. If

p 6= q then the maximal subgroups of G are M1 and M2 contrary to the fact
that r ≥ 3. Thus p = q and G ∼= Zp × Zp. Then G has p + 1 maximal
subgroups and as |G : M1| = p we are done.

Lemma 3.4 Assume that H 6= 1. Then G is a Frobenius group with com-
plement H. Let K be the kernel of G. Then K is an elementary abelian
p-group which when considered as an H-module is the direct product of two
irreducible isomorphic submodules. Moreover

r = 1 + |G : M1|

and H is cyclic.

Proof Lemmas 3.2 and 2.2 imply that G is a Frobenius group with comple-
ment H. By Frobenius’ Theorem, G contains a normal subgroup K such that
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G = HK and H ∩K = 1. Let i be any member of Ω. Define Ki = K ∩Mi

so that Mi = HKi and K 6= Ki 6= 1. Thompson’s Theorem implies that K
is nilpotent whence NK(Ki) > Ki. However, Mi is a maximal subgroup of G
so Ki is a maximal H-invariant subgroup of K. Thus Ki � K. Moreover, if
i 6= j then Ki ∩Kj = 1 since Mi ∩Mj = H.

Let i, j, k be distinct members of Ω. The previous paragraph implies
that K = Ki × Kj = Ki × Kk = Kj × Kk. Thus Kj is H-isomorphic to
K/Ki which is H-isomorphic to Kk. Hence K is the direct product of two
H-invariant H-isomorphic subgroups. Now Kj � Mj = HKj, H ∩ Kj = 1
and H is maximal in Mj. Thus Kj is characteristically simple. Since Kj

is nilpotent, this implies that Kj is an elementary abelian p-group for some
prime p, on which H acts irreducibly. As Kj

∼= Kk it follows that K is an
elementary abelian p-group. In particular, the action of H by conjugation
on K makes K into an H-module over GF(p).

Now
r ≥ 1 + |G : M1| = 1 + |K : K1|

and as K = K1 ×K2 and K1
∼= K2 we have

r ≥ 1 + |K1|.

It follows that

|K| ≥ |Γ ∩K|
= |

⋃
{Ki | i ∈ Ω}|

≥ r(|K1| − 1) + 1

≥ (1 + |K1|)(|K1| − 1) + 1

= |K1|2 = |K|.

We deduce that

r = |K1|+ 1 = 1 + |G : M1| and that K ⊆ Γ.

It remains to prove that H is cyclic. Let E = EndH(K1) and suppose
that E acts transitively on K]

1. Then E is irreducible on K1 so EndE(K1) is
a field. Now H is a subgroup of the multiplicative group of EndE(K1) so H
is cyclic. Thus it is sufficient to prove that E is transitive on K]

1.
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Consider the decomposition K = K1 × K2. Let a ∈ K]
1, b ∈ K]

2 and let
c = ab. Now c ∈ K ⊆ Γ so there exists l ∈ Ω such that c ∈ Kl. the projection
maps

π1 : Kl −→ K1 and π2 : Kl −→ K2

are both H-homomorphisms. Since a 6= 1 and b 6= 1, they are both nontrivial
and as K1, K2 and Kl are irreducible, they are in fact H-isomorphisms. Thus
π−1

1 π2 is an H-isomorphism K1 → K2 that maps a to b. By keeping b fixed
and letting a range over the members of K]

1 we see that E is transitive on K]
1.

The preceding lemmas complete the proof of Theorem A except for show-
ing that a group with the structure described in the last possibility of Theo-
rem A must necessarily satisfy r = 1 + |G : M1|. This is proved by reversing
the proof of the previous lemma.
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