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1 Introduction

We will prove the following result.

Theorem Let G be a finite group in which every two elements generate a
soluble subgroup. Then G is soluble.

This result was first obtained by John Thompson as a by-product of his
classification of N -groups [7]. The proof we present is short and direct. It
does not use any classification theorem.

The possibility of obtaining results of this type by direct means was first
realized by Martin Powell who proved that a finite group in which every three
elements generate a soluble subgroup is soluble. An account of his work can
be found in [2, pages 473-476]. Powell’s argument uses the Hall-Higman
Theorem B. We use a different strategy that we shall now describe.

Let G be a soluble group and p an odd prime divisor of |G|. If G contains
an abelian p-subgroup that normalizes no nontrivial p′-subgroup of G then
Op′(G) = 1 so as G is soluble we must have Op(G) 6= 1. If every abelian
p-subgroup of G normalizes a nontrivial p′-subgroup then a result of Thomp-
son [3, Theorem 1.12, page 19] implies that Op′(G) 6= 1. The point of these
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observations is that they enable us to draw conclusions concerning the nor-
mal structure of G without explicitly mentioning normal subgroups in their
hypotheses.

Now suppose that G is a minimal counterexample to our theorem. Then
G is a simple group in which every proper subgroup is soluble. Let p be a
prime divisor of |G| with p > 3. If G contains an abelian p-subgroup that
normalizes no nontrivial p′-subgroup then we try to force Op(G) 6= 1. If every
abelian p-subgroup of G normalizes a nontrivial p′-subgroup then we try to
force Op′(G) 6= 1.

The implementation of this strategy uses the theory of soluble groups
that was developed in the 1960’s together with some ideas developed by the
author in [4].

2 Preliminaries

See [5] for any undefined notation. Throughout this paper, group means
finite group. If A is a subgroup of the group G, define

� G(A) = {Q ≤ G | Q is normalized by A and has order coprime to |A|}.

The set � G(A) is partially ordered by inclusion and we let �
*
G(A) be the

set of maximal members of � G(A).

Glauberman’s ZJ-Theorem Let H be a soluble group, P a Sylow
p-subgroup of H, p > 3, then H = NH(ZJ(P ))Op′(H).
For the proof and the definition of ZJ(P ) see [5, Theorem 8.2.11, page 279]
or [3, Cor. 3.9,page 26]. See also Stellmacher[6].

Theorem 2.1 (Thompson-Bender) Let p be an odd prime, H a soluble
group and A an abelian p-subgroup of H that contains every p-element of
its centralizer. If Q is a p′-subgroup of H that is normalized by A then
Q ≤ Op′(H).
[3, Theorem 1.12, page 19]

Lemma 2.2 Let p be a prime and A a p-subgroup of a group G acting non-
trivially on a p′-subgroup Q. Then g ∈ 〈A, Ag〉 for some g ∈ Q].
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Proof. Let Q be a minimal counterexample. Then [[g, A], A] = 1 for all
g ∈ Q so 1 = [Q,A, A] = [Q,A], a contradiction.

Theorem 2.3 Let H be a soluble group that admits a fixed point free auto-
morphism of prime order. Then H is nilpotent.
[5, Theorem 10.2.1, page 337]

Lemma 2.4 (Powell) Let G be a group, p a prime, D a p′-subgroup of G
and suppose that D ≤ Op′(〈D, g〉) for all g ∈ G. Then D ≤ Op′(G).

Proof. We show that if d1, . . . , dm ∈ D and g1, . . . , gm ∈ G then dg1
1 . . . dgm

m is
a p′-element. If m = 1 this is clear, so suppose that m ≥ 2. Conjugating by
g−1
1 we may suppose that g1 = 1. By induction h = dg2

2 . . . dgm
m is a p′-element

and as dg1
1 ∈ Op′(〈D, h〉) we see that dg1

1 . . . dgm
m is an element of the p′-group

Op′(〈D, h〉)〈h〉. It follows that the normal closure of D in G is a p′-group.
Hence D ≤ Op′(G).

3 Normal p-subgroups

We begin this section with a general result on minimal simple groups, which
is based on ideas of Bender[1].

Lemma 3.1 Assume G is a minimal simple group, p > 3 is a prime divisor
of |G|, P ∈ Sylp(G), and A ≤ P is abelian with � G(A) = {1}. Then:

(i) NG(ZJ(P )) is the unique maximal subgroup containing A, and

(ii) If 1 6= B ≤ A is contained in two maximal subgroups then B is cyclic
and there is a nontrivial p′-subgroup that is normalized but not central-
ized by B.

Proof. Let M = NG(ZJ(P )). Let B be a nontrivial subgroup of A that is
contained in a maximal subgroup distinct from M . Choose such a maximal
subgroup H with |H∩M |p as large as possible. Let Q be a Sylow p-subgroup
of H ∩M that contains B. Let Q̃ be a Sylow p-subgroup of M that contains
Q. Since P and Q̃ are conjugate in M we see that M = NG(ZJ(Q̃)).
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Suppose Q = Q̃. Then as Q̃ is conjugate to P , it is a Sylow p-subgroup of
G and hence of H. Now Q̃ contains a conjugate of A and since A normalizes
no nontrivial p′-subgroup it follows that Op′(H) = 1. The ZJ-Theorem
implies that ZJ(Q̃) � H. Then H = M , a contradiction. Thus Q < Q̃.

Now Q < NQ̃(Q) hence

|H ∩ M |p = |Q| < |NQ̃(Q)| ≤ |NG(Q) ∩ M |p

so the maximal choice of |H ∩ M |p implies that NG(Q) ≤ M . Similarly, as
NQ̃(Q) ≤ NG(ZJ(Q)) we also have NG(ZJ(Q)) ≤ M . Now NH(Q) ≤ H∩M
so as Q is a Sylow p-subgroup of H ∩ M , it follows that Q is a Sylow p-
subgroup of H. The ZJ-Theorem implies that

H = NH(ZJ(Q))Op′(H),

so as NG(ZJ(Q)) ≤ M we deduce that

1 6= Op′(H) 6≤ M.

Since A normalizes no nontrivial p′-subgroups it follows that B 6= A.
Thus M is the unique maximal subgroup that contains A. This proves (i).
Now A is abelian so this implies CG(b) ≤ M for all b ∈ B]. Hence B does
not centralize Op′(H) and Theorem 6.2.4 of [5] implies B is cyclic.

Theorem 3.2 Let G be a minimal simple group, p > 3 a prime divisor of
|G| and let A be an abelian p-subgroup of G. Suppose that A normalizes no
nontrivial p′-subgroup of G. Then G = 〈x, y〉 for some x, y ∈ G.

Proof. Assume false. Let P be a Sylow p-subgroup of G that contains A and
let M = NG(ZJ(P )). We may suppose that Z(P ) ≤ A. Let b be an element
of order p in Z(P ). If A is cyclic then let a be a generator for A, otherwise let
a be a member of A such that 〈b, a〉 is noncyclic. In either case, the previous
lemma implies that M is the unique maximal subgroup that contains 〈b, a〉.

Choose g ∈ G−M . By assumption, 〈b, g〉 is a proper subgroup of G so as
g 6∈ M we see that 〈b〉 is contained in a maximal subgroup distinct from M .
Let B = 〈b〉. The previous lemma implies that there exists a p′-subgroup R
that is normalized but not centralized by B. Lemma 2.2 implies that there
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exists h ∈ R] such that h ∈ 〈B, Bh〉. Using the fact that a centralizes B we
have

h ∈ 〈B, Bh〉 = 〈B, Bah〉 ≤ 〈b, ah〉.

Then a = (ah)h−1 ∈ 〈b, ah〉 whence 〈b, a〉 ≤ 〈b, ah〉. By assumption, 〈b, ah〉
is a proper subgroup. Since M is the unique maximal subgroup that contains
〈b, a〉 we deduce that 〈b, ah〉 ≤ M . In particular, h ∈ M .

Since A normalizes no nontrivial p′-subgroup, it follows that Op′(M) = 1.
By Theorem 6.1.3 of [5] we have Z(P ) ≤ Op(M). In particular, B ≤ Op(M).
Now h ∈ M so

h ∈ 〈B, Bh〉 ≤ Op(M).

This is a contradiction since h is a nonidentity element of the p′-subgroup R.
Thus there exist x, y ∈ G such that G = 〈x, y〉.

4 Normal p′-subgroups

The aim of this section is to prove:

Theorem 4.1 Let G be a minimal simple group and p an odd prime divisor
of |G|. Suppose that every abelian p-subgroup of G normalizes a nontrivial
p′-subgroup of G. Then G = 〈x, y〉 for some x, y ∈ G.

Throughout the remainder of this section we assume the hypothesis of
Theorem 4.1 but that

G 6= 〈x, y〉 for all x, y ∈ G.

We will analyze this situation in the following sequence of lemmas and even-
tually derive a contradiction.

Lemma 4.2 Let A be an abelian p-subgroup of G that contains every
p-element of its centralizer. If R ∈ � G(A) and a ∈ A] then CR(a) = 1.

Proof. By Theorem 2.1, CR(a) ≤ Op′(CG(a)). Let D be a cyclic subgroup of
CR(a) and let W = 〈D, a〉. Since D and a have coprime orders, W is cyclic.
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Let g ∈ G and set H = 〈W, g〉. By assumption H 6= G so H is soluble.
Using Lemma X.1.6 of [3] we have

D ≤ Op′(CG(a)) ∩ H ≤ Op′(CH(a)) ≤ Op′(H).

But 〈D, g〉 ≤ H so D ≤ Op′(〈D, g〉). Lemma 2.4 forces D ≤ Op′(G) = 1. We
deduce that CR(a) = 1.

Throughout the remainder of this section we let P be a Sylow p-subgroup
of G.

Lemma 4.3 P is cyclic so � G(P ) 6= {1}.

Proof. Let A be a maximal abelian p-subgroup of G. Then A contains every
p-element of its centralizer. By hypothesis there is 1 6= R ∈ � G(A). Then
Theorem 6.2.4 of [5] and Lemma 4.2 imply that A is cyclic. Then every
abelian p-subgroup of G is cyclic and Theorem 5.4.10 of [5] implies that P is
cyclic.

Lemma 4.4

(i) If Q, R ∈ �
*
G(P ) and if Q ∩ R 6= 1 then Q = R.

(ii) If H is a maximal subgroup that contains P and if Op′(H) 6= 1 then

Op′(H) ∈ �
*
G(P ).

Proof. Since P is a Sylow p-subgroup of G it contains every p-element of its
centralizer. Now P is abelian so using Lemma 4.2 and Theorem 2.3 we see
that every member of � G(P ) is nilpotent.

(i) Assume false and let Q, R be a counterexample in which D = Q ∩ R
is maximal. Let N = NG(D). Note that P ≤ N so Op′(N) ∈ � G(P ). Let

T be a member of �
*
G(P ) that contains Op′(N). Now NQ(D) is a subgroup

of N that is normalized by P so Theorem 2.1 implies that NQ(D) ≤ Op′(N).
Since Q,R is a counterexample it follows that D < Q, so as Q is nilpotent
we have D < NQ(D). Then D < Q ∩ T so the maximal choice of Q ∩ R
implies that Q = T . Similarly R = T whence Q = R, a contradiction.
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(ii) Let T be a member of �
*
G(P ) that contains Op′(H). Since H is a

maximal subgroup of the simple group G and as Op′(H) 6= 1 we have that
H = NG(Op′(H)). In particular NT (Op′(H)) is a P -invariant subgroup of H
so Theorem 2.1 implies that NT (Op′(H)) ≤ Op′(H). But T is nilpotent so

we see that Op′(H) = T . Hence Op′(H) ∈ �
*
G(P ).

The following lemma will enable us to determine the structure of the maximal
subgroups that contain P .

Lemma 4.5 NG(P ) normalizes every member of �
*
G(P ).

Proof. Let R ∈ �
*
G(P ) and let n ∈ NG(P ). Then R 6= 1 and Lemma 4.2

implies that P does not centralize R. By Lemma 2.2 there exists g ∈ R] such
that g ∈ 〈P, P g〉. We have

g ∈ 〈P, P g〉 = 〈P, P ng〉 ≤ 〈P, ng〉.

Since P is cyclic, 〈P, ng〉 is a proper subgroup of G. Let H be a maximal
subgroup that contains 〈P, ng〉. Now R ∩ H is a P -invariant p′-subgroup
of H so Theorem 2.1 implies that R ∩ H ≤ Op′(H). But g ∈ R ∩ H so
Lemma 4.4 implies that R = Op′(H). Now g ∈ 〈P, ng〉 ≤ H so n ∈ H. Thus
n ∈ NG(Op′(H)). We deduce that NG(P ) ≤ NG(R).

Lemma 4.6 Let M be a maximal subgroup of G that contains P . Then:

(i) M = NG(P )Op′(M) and Op′(M) ∈ �
*
G(P ).

(ii) If K ≤ NG(P ) and K � M then K = 1.

(iii) If H is a maximal subgroup of G that contains P and if H 6= M then
H ∩ M = NG(P ).

Proof. (i) As P is abelian and M is soluble, M = NM(P )Op′(M). As

� G(P ) 6= {1}, Lemmas 4.2 and 4.5 imply NG(P ) is not maximal in G, so

Op′(M) 6= 1. Then by Lemma 4.4, Op′(M) ∈ �
*
G(P ) and NG(P ) ≤ M by

Lemma 4.5.
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(ii) Since Op′(M) 6= 1 it follows from Lemma 4.2 that Op(M) = 1. Then
Op(K) = 1 and K is a p′-group. Lemma 4.2 also implies Op′(NG(P )) = 1 so
K = 1.

(iii) From (i) we have that NG(P ) ≤ H ∩ M and since P is cyclic we
have H ∩M = NG(P )Op′(H ∩M). Theorem 2.1 implies that Op′(H ∩M) ≤
Op′(H) ∩ Op′(M). Using (i), Lemma 4.4(i) and the fact that H 6= M we see
that Op′(H) ∩ Op′(M) = 1. Thus H ∩ M = NG(P ).

Next we study the embedding of NG(P ) in G.

Lemma 4.7 Let 1 6= T ≤ NG(P ). Then NG(T ) ≤ NG(P ).

Proof. Let M be a maximal subgroup that contains P . First we show that
NG(T ) ≤ M . Assume false. Choose n ∈ NG(T )−M . Let m be any member
of M . Then nm 6∈ M . Since P is cyclic, 〈P, nm〉 is a proper subgroup of
G. Let H be a maximal subgroup that contains 〈P, nm〉. Since nm 6∈ M we
have H 6= M , so Lemma 4.6(iii) implies that H ∩ M = NG(P ). Then

Tm = T nm ≤ M ∩ H = NG(P ).

We deduce that
T ≤

⋂
{NG(P )m−1 | m ∈ M}.

Lemma 4.6(ii) now implies that T = 1, a contradiction. Thus NG(T ) ≤ M .
Now choose g ∈ G − M . Since P is cyclic, 〈P, g〉 is a proper subgroup

of G and hence is contained in a maximal subgroup L. Since g 6∈ M we
have M 6= L so Lemma 4.6(iii) implies that M ∩ L = NG(P ). The pre-
vious paragraph with L in place of M implies that NG(T ) ≤ L. Whence
NG(T ) ≤ M ∩ L = NG(P ) as claimed.

Proof of Theorem 4.1. Lemma 4.7 implies that NG(P ) is a Frobenius
complement in G. Frobenius’ Theorem, or a transfer argument, implies that
G is not simple, a contradiction.
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5 Proof of Main Theorem

Theorem Let G be a finite group in which every two elements generate a
soluble subgroup. Then G is soluble.

Proof. Assume false and let G be a minimal counterexample. Then G is
a minimal simple group in which every two elements generate a proper sub-
group. Burnside’s pαqβ-Theorem implies that |G| has a prime divisor p > 3.
Theorem 3.1 implies that every abelian p-subgroup of G normalizes a non-
trivial p′-subgroup. This contradicts Theorem 4.1.
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