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Let a ⊕ b = max(a, b) anda ⊗ b = a + b for a, b ∈ R. Extend this pair of operations to matrices and
vectors in the same way as in linear algebra. Being motivated by scheduling of multiprocessor interactive
systems, we introduce max-linear programs of the formf T ⊗ x → min (or max) subject toA⊗ x ⊕ c =
B ⊗ x ⊕ d and develop solution methods for both of them. We prove that these methods are pseudo-
polynomial if all entries are integers. This result is based on an existing pseudo-polynomial algorithm for
solving the systems of the formA ⊗ x = B ⊗ y.
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1. Problem formulation

Consider the following ‘multiprocessor interactive system’ (MPIS).
ProductsP1, . . . , Pm are prepared usingn processors, every processor contributing to the completion

of each product by producing a partial product. It is assumed that every processor can work on all prod-
ucts simultaneously and that all these actions on a processor start as soon as the processor starts to work.
Let ai j be the duration of the work of thej th processor needed to complete the partial product forPi

(i = 1, . . . , m; j = 1, . . . , n). Let us denote byxj the starting time of thej th processor( j = 1, . . . , n).
Then, all partial products forPi (i = 1, . . . , m) will be ready at time max(x1 +ai 1, . . . , xn +ain). Now,
suppose that independentlyk other processors prepare partial products for productsQ1, . . . , Qm and
the duration and starting times arebi j and yj , respectively. Then, the ‘synchronization problem’ is to
find starting times of alln + k processors so that each pair(Pi , Qi ) (i = 1, . . . , m) is completed at the
same time. This task is equivalent to solving the system of equations

max(x1 + ai 1, . . . , xn + ain) = max(y1 + bi 1, . . . , yk + bik) (i = 1, . . . , m).

It may also be required thatPi is not completed before a particular timeci and similarlyQi not before
timedi . Then, the equations are

max(x1 + ai 1, . . . , xn + ain, ci ) = max(y1 + bi 1, . . . , yk + bik, di ) (i = 1, . . . , m). (1)
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If we denotea ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R, then this system gets the
form

∑

j =1,...,n

⊕
ai j ⊗ xj ⊕ ci =

∑

j =1,...,k

⊕
bi j ⊗ yj ⊕ di (i = 1, . . . , m). (2)

Therefore, (1) (and also (2)) is called a ‘two-sided system of max-linear equations’ (or briefly a ‘two-
sided max-linear system’ or just ‘max-linear system’).

LEMMA 1.1 (Cancellation law) Letv,w, a, b ∈ R, a > b. Then, for any realx, we have

v ⊕ a ⊗ x = w ⊕ b ⊗ x (3)

if and only if

v ⊕ a ⊗ x = w. (4)

Proof. If x satisfies (3), then left-hand side> a ⊗ x > b ⊗ x. Hence, right-hand side= w and (4)
follows. If (4) holds, thenw > a ⊗ x > b ⊗ x and thusw = w ⊕ b ⊗ x. �

Lemma1.1shows that in a two-sided max-linear system, variables missing on one side of an equa-
tion may be artificially introduced using suitably taken small coefficients. We may therefore assume
without loss of generality that (2) has the same variables on both sides, i.e. in the matrix–vector notation,
it has the form

A ⊗ x ⊕ c = B ⊗ x ⊕ d,

where the pair of operations(⊕, ⊗) is extended to matrices and vectors in the same way as in linear
algebra.

In applications, it may be required that the starting times are optimized with respect to a given
criterion. In this paper, we consider the case when the objective function is also ‘max-linear’, i.e.

f (x) = f T ⊗ x = max( f1 + x1, . . . , fn + xn)

and it has to be either minimized or maximized. For instance, it may required that all processors in an
MPIS are in motion as soon/as late as possible, i.e. the latest starting time of a processor is as small/big
as possible. In this case, we would setf (x) = max(x1, . . . , xn), i.e. all f j = 0.

Thus, the problems we will study are

f T ⊗ x → min or max

s.t.

A ⊗ x ⊕ c = B ⊗ x ⊕ d.

Optimization problems of this type will be called ‘max-linear programming problems’ or, briefly, ‘max-
linear programs (MLPs)’.

Systems of max-linear equations were investigated already in the first publications dealing with
the algebraic structure called max-algebra (sometimes also extremal algebra, path algebra or tropi-
cal algebra). In these publications, systems of equations with all variables on one side were consid-
ered (Cuninghame-Green, 1979; Vorobyov, 1967; Zimmermann, 1976; Butkovic, 2003). Other systems
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with a special structure were studied in the context of solving the eigenvalue problems in the corre-
sponding algebraic structures or synchronization in discrete event systems (Baccelliet al., 1992). Using
the (⊕, ⊗)-notation, the studied systems had one of the following forms:A ⊗ x = b, A ⊗ x = x or
A ⊗ x = x ⊕ b, whereA is a given matrix andb is a given vector. Infinite-dimensional generalizations
can be found, e.g. inAkian et al. (2005).

General two-sided max-linear systems have also been studied (Butkovic & Hegedus, 1984;
Cuninghame-Green & Butkovic, 2003; Cuninghame-Green & Zimmermann, 2001; Walkup & Boriello,
1988). A general solution method was presented inWalkup & Boriello (1988), however, no complex-
ity bound was given. InCuninghame-Green & Butkovic(2003), a pseudo-polynomial algorithm, called
the alternating method, has been developed. InButkovic & Hegedus(1984), it was shown that the
solution set is generated by a finite number of vectors and an elimination method was suggested. A
general iterative approach suggested inCuninghame-Green & Zimmermann(2001) assumes that fi-
nite upper and lower bounds for all variables are given. We make a substantial use of the alternating
method for solving the two-sided max-linear systems in this paper and derive a bisection method
for the MLP that repeatedly checks solvability of systems of the formA ⊗ x = B ⊗ x. To our
knowledge, this problem has not been studied before. We prove that the number of calls of a sub-
routine for checking the feasibility is polynomial when applied to MLPs with integer entries, yielding
a pseudo-polynomial computational complexity overall. Note that the problem of minimizing the func-
tion 2x1 + 2x2 + ∙ ∙ ∙ + 2xn subject to one-sided max-linear constraints isNP-complete. This result is
motivated by a similar result presented inCechlarova(2004) and details are presented at the end of the
paper.

2. Max-algebraic prerequisites

Let a ⊕ b = max(a, b) anda ⊗ b = a + b for a, b ∈ R. If a ∈ R, then the symbola−1 stands in this
paper for−a.

By ‘max-algebra’, we understand the analogue of linear algebra developed for the pair of operations
(⊕, ⊗), extended to matrices and vectors in the same way as in linear algebra. That is, ifA = (ai j ), B =
(bi j ) andC = (ci j ) are matrices of compatible sizes with entries fromR, we write C = A ⊕ B if
ci j = ai j ⊕ bi j for all i, j andC = A ⊗ B if ci j =

∑⊕
k aik ⊗ bkj = maxk(aik + bkj ) for all i, j . If

α ∈ R, thenα ⊗ A = A ⊗ α = (α ⊗ ai j ). The main advantage of using max-algebra is the possibility
of dealing with a class of non-linear problems in a linear-like way. This is due to the fact that basic rules
(commutative, associative and distributive laws) hold in max-algebra to the same extent as in linear
algebra.

Max-algebra has been studied by many authors and the reader is referred toCuninghame-Green
(1979, 1995), Heidergottet al. (2005), Baccelliet al. (1992) or Butkovic (2003) for more information,
see alsoCuninghame-Green(1962), Vorobyov(1967) andZimmermann(1976). A chapter inHogben
et al. (2006) provides an excellent state of the art overview of the field.

We will now summarize some standard properties that will be used later on. The following holds for
a, b, c ∈ R:

a ⊕ b > a,

a > b ⇒ a ⊕ c > b ⊕ c,

a > b ⇔ a ⊗ c > b ⊗ c.
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For matrices (including vectors)A, B andC of compatible sizes overR anda ∈ R, we have

A ⊕ B > A,

A > B ⇒ A ⊕ C > B ⊕ C,

A > B ⇒ A ⊗ C > B ⊗ C,

A > B ⇒ C ⊗ A > C ⊗ B,

A > B ⇒ c ⊗ A > c ⊗ B,

(c ⊗ A) ⊗ B = A ⊗ (c ⊗ B).

The next statement readily follows from the above-mentioned relations.

LEMMA 2.1 Supposef ∈ Rn and let f (x) = f T ⊗ x be defined onRn. Then,

(a) f (x) is max-linear, i.e.f (λ ⊗ x ⊕ μ ⊗ y) = λ ⊗ f (x) ⊕ μ ⊗ f (y) for everyx, y ∈ Rn and
λ,μ ∈ R.

(b) f (x) is isotone, i.e.f (x) 6 f (y) for everyx, y ∈ Rn, x 6 y.

3. Max-linear programming problem and its basic properties

The aim of this paper is to develop methods for finding anx ∈ Rn that minimizes [maximizes] the
function f (x) = f T ⊗ x subject to

A ⊗ x ⊕ c = B ⊗ x ⊕ d, (5)

where f = ( f1, . . . , fn)T ∈ Rn, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ Rm, A = (ai j ) and B =
(bi j ) ∈ Rm×n are given matrices and vectors. These problems will be denoted by MLPmin [MLPmax]
and we also denote everywhereM = {1, . . . , m} and N = {1, . . . , n}. Note that it is not possible to
convert MLPmin to MLPmax or vice versa.

Any system of the form(5) is called a ‘non-homogenous max-linear system’ and the set of solutions
of this system will be denoted byS. The set of optimal solutions for MLPmin [MLPmax] will be denoted
by Smin [Smax]. Any system of the form

E ⊗ z = F ⊗ z (6)

is called a ‘homogenous max-linear system’ and the solution set to this system will be denoted bySh. In
the next proposition, we show that any non-homogenous max-linear system can easily be converted to
a homogenous one. Here and elsewhere, the symbol 0 will be used to denote both the real number zero
and the zero vector of an appropriate dimension.

PROPOSITION3.1 Let E = (A|0) andF = (B|0) be matrices arising fromA andB, respectively, by
adding a zero column. Ifx ∈ S, then(x|0) ∈ Sh and conversely, ifz = (z1, . . . , zn+1)

T ∈ Sh, then
z−1

n+1 ⊗ (z1, . . . , zn)
T ∈ S.

Proof. The statement follows straightforwardly from the definitions. �
Given MLPmin [MLPmax], we denote

K = max{|ai j |, |bi j |, |ci |, |dj |, | f j |; i ∈ M, j ∈ N}. (7)
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THEOREM3.1 (Cuninghame-Green & Butkovic, 2003) Let E = (ei j ), F = ( fi j ) ∈ Zm×n andK ′ be the
greatest of the values|ei j |, | fi j |, i ∈ M, j ∈ N. There is an algorithm of complexity O(mn(m + n)K ′)
that finds anx satisfying(6) or decides that no suchx exists.

Proposition3.1 and Theorem3.1 show that the feasibility question for MLPmax and MLPmin can
be solved in pseudo-polynomial time. We will use this result to develop bisection methods for solving
MLPmin and MLPmax. We will prove that these methods need a polynomial number of feasibility checks
if all entries are integers and hence are also of pseudo-polynomial complexity.

The algorithm inCuninghame-Green & Butkovic(2003) is an iterative procedure that starts with an
arbitrary vector and then only uses the operations of+, −, max and min applied to the starting vector
and the entries ofE andF . Hence, using Proposition3.1, we deduce the following theorem.

THEOREM 3.2 If all entries in a homogenous max-linear system are integers and the system has a
solution, then this system has an integer solution. The same is true for non-homogenous max-linear
systems.

As a corollary to Lemma1.1, we have the following lemma.

LEMMA 3.1 Letα, α′ ∈ R, α′ < α, and f (x) = f T ⊗ x, f ′(x) = f ′T ⊗ x, where f ′
j < f j for every

j ∈ N. Then, the following holds for everyx ∈ R: f (x) = α if and only if f (x) ⊕ α′ = f ′(x) ⊕ α.

The following proposition shows that the problem of attainment of a value for a MLP can be con-
verted to a feasibility question.

PROPOSITION3.2 f (x) = α for somex ∈ S if and only if the following non-homogenous max-linear
system has a solution:

A ⊗ x ⊕ c = B ⊗ x ⊕ d,

f (x) ⊕ α′ = f ′(x) ⊕ α,

whereα′ < α and f ′(x) = f ′T ⊗ x, where f ′
j < f j for every j ∈ N.

Proof. The statement follows from Lemmas1.1and3.1. �

COROLLARY 3.1 If all entries in MLPmax or MLPmin are integers, then an integer objective function
value is attained by a real feasible solution if and only if it is attained by an integer feasible solution.

Proof. It follows immediately from Theorem3.2and Proposition3.2. �

COROLLARY 3.2 If all entries in MLPmax or MLPmin andα are integers, then the decision problem
whether f (x) = α for somex ∈ S∩ Zn can be solved by using O(mn(m + n)K ′) operations where
K ′ = max(K + 1, |α|).

Proof.Forα′ and f ′
j in Proposition3.2, we can takeα − 1 and f j − 1, respectively. Using Theorem3.1

and Proposition3.2, the computational complexity then is

O((m + 1)(n + 1)(m + n + 2)K ′) = O(mn(m + n)K ′). �

A setC ⊆ Rn is said to be ‘max-convex’ ifλ ⊗ x ⊕ μ ⊗ y ∈ C for everyx, y ∈ C, λ, μ ∈ R with
λ ⊕ μ = 0.
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PROPOSITION3.3 SandSh are max-convex.

Proof.

A ⊗ (λ ⊗ x ⊕ μ ⊗ y) ⊕ c

= A ⊗ (λ ⊗ x ⊕ μ ⊗ y) ⊕ λ ⊗ c ⊕ μ ⊗ c

= λ ⊗ (A ⊗ x ⊕ c) ⊕ μ ⊗ (A ⊗ y ⊕ c)

= λ ⊗ (B ⊗ x ⊕ d) ⊕ μ ⊗ (B ⊗ y ⊕ d)

= B ⊗ (λ ⊗ x ⊕ μ ⊗ y) ⊕ λ ⊗ d ⊕ μ ⊗ d

= B ⊗ (λ ⊗ x ⊕ μ ⊗ y) ⊕ d.

Hence,S is max-convex andSh is max-convex for similar reasons. �

PROPOSITION3.4 If x, y ∈ S, f (x) = α < β = f (y), then for everyγ ∈ (α, β), there is az ∈ S
satisfying f (z) = γ.

Proof.Let λ = 0, μ = β−1 ⊗ γ andz = λ ⊗ x ⊕ μ ⊗ y. Then,λ ⊕ μ = 0 andz ∈ Sby Proposition3.3
and by Lemma2.1, we have

f (z) = λ ⊗ f (x) ⊕ μ ⊗ f (y) = α ⊕ β−1 ⊗ γ ⊗ β = γ. �

Before we develop solutions methods for solving the optimization problems MLPmin and MLPmax,
we need to find and prove criteria for the existence of optimal solutions. For simplicity, we denote
inf x∈S f (x) by f min and similarly supx∈S f (x) by f max.

We start with the lower bound. We may assume without loss of generality that in (5) we havec > d.
Let M> = {i ∈ M; ci > di }. For r ∈ M>, we denote

Lr = min
k∈N

fk ⊗ cr ⊗ b−1
rk

and

L = max
r ∈M>

Lr .

As usual max∅ = −∞ by definition.

LEMMA 3.2 If c > d, then f (x) > L for everyx ∈ S.

Proof. If M> = ∅, then the statement follows trivially sinceL = −∞. Let x ∈ Sandr ∈ M>. Then,

(B ⊗ x)r > cr

and so

xk > cr ⊗ b−1
rk

for somek ∈ N. Hence, f (x) > fk ⊗ xk > fk ⊗ cr ⊗ b−1
rk > Lr and the statement now follows. �
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THEOREM 3.3 f min = −∞ if and only if c = d.

Proof. If c = d, thenα ⊗ x ∈ S for any x ∈ Rn and everyα ∈ R small enough. Hence, by letting
α → −∞, we havef (α ⊗ x) = α ⊗ f (x) → −∞.

If c 6= d, then without loss of generalityc > d and the statement now follows by Lemma3.2since
L > −∞. �

Now, we discuss the upper bound.

LEMMA 3.3 Letc > d. If x ∈ Sand(A⊗x)i > ci for all i ∈ M , thenx′ = α⊗x ∈ Sand(A⊗x′)i = ci

for somei ∈ M , where

α = max
i ∈M

(ci ⊗ (A ⊗ x)−1
i ). (8)

Proof. Let x ∈ S. If

(A ⊗ x)i > ci

for everyi ∈ M , thenA ⊗ x = B ⊗ x. For everyα ∈ R, we also have

A ⊗ (α ⊗ x) = B ⊗ (α ⊗ x).

It follows from the choice ofα that also

(A ⊗ (α ⊗ x))i = α ⊗ (A ⊗ x)i > ci

for everyi ∈ M with equality for at least onei ∈ M. Hence,x′ ∈ Sand the lemma follows. �
Let us denote

U = max
r ∈M

max
j ∈N

f j ⊗ a−1
r j ⊗ cr .

LEMMA 3.4 If c > d, then the following holds:

(a) if x ∈ Sand(A ⊗ x)r 6 cr for somer ∈ M , then f (x) 6 U ;

(b) if A ⊗ x = B ⊗ x has no solution, thenf (x) 6 U for everyx ∈ S.

Proof. (a) Since

ar j ⊗ xj 6 cr

for all j ∈ N, we have

f (x) 6 max
j ∈N

f j ⊗ a−1
r j ⊗ cr 6 U.

(b) If S = ∅, then the statement holds trivially. Letx ∈ S. Then,

(A ⊗ x)r 6 cr

for somer ∈ M since otherwiseA ⊗ x = B ⊗ x, and the statement now follows from (a). �
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THEOREM 3.4 f max = +∞ if and only if A ⊗ x = B ⊗ x has a solution.

Proof. We may assume without loss of generality thatc > d. If A ⊗ x = B ⊗ x has no solution, then
the statement follows from Lemma3.4. If it has a solution, sayz, then for all sufficiently bigα ∈ R,
we have

A ⊗ (α ⊗ z) = B ⊗ (α ⊗ z) > c ⊕ d

and henceα ⊗ z ∈ S. The statement now follows by lettingα −→ +∞. �
We also need to show that the maximal [minimal] value is attained ifS 6= ∅ and f max < +∞

[ f min > −∞]. Due to continuity of f , this will be proved by showing that both for minimization and
maximization the setScan be reduced to a compact subset. To achieve this, we denote the following for
j ∈ N:

h j = min

(
min
r ∈M

a−1
r j ⊗ cj , min

r ∈M
b−1

r j ⊗ dj , f −1
j ⊗ L

)
, (9)

h′
j = min

(
min
r ∈M

a−1
r j ⊗ cj , min

r ∈M
b−1

r j ⊗ dj

)
(10)

andh = (h1, . . . , hn)
T , h′ = (h′

1, . . . , h′
n)

T . Note thath is finite if and only if f min > −∞.

PROPOSITION3.5 For anyx ∈ S, there is anx′ ∈ Ssuch thatx′ > h and f (x) = f (x′).

Proof. Let x ∈ S. It is sufficient to setx′ = x ⊕ h since ifxj < h j , j ∈ N, thenxj is not active on any
side of any equation or in the objective function and therefore, changingxj to h j will not affect any of
the equations or the objective function value. �

COROLLARY 3.3 If f min > −∞ andS 6= ∅, then there is a compactsetSsuch that

f min = min
x∈S

f (x).

Proof. Note thath is finite sincef min > −∞. Let x̃ ∈ S, x̃ > h, then

S = S∩ {x ∈ Rn; h j 6 xj 6 f −1
j ⊗ f (x̃), j ∈ N}

is a compact subset ofS and x̃ ∈ S. If there was ay ∈ S, f (y) < minx∈S f (x) 6 f (x̃), then by
Proposition3.5, there is ay′ > h, y′ ∈ S, f (y′) = f (y). Hence,

f j ⊗ y′
j 6 f (y′) = f (y) 6 f (x̃)

for every j ∈ N and thusy′ ∈ S, f (y′) < minx∈S f (x), a contradiction. �

PROPOSITION3.6 For anyx ∈ S, there is anx′ ∈ Ssuch thatx′ > h′ and f (x) 6 f (x′).

Proof. Let x ∈ Sand j ∈ N. It is sufficient to setx′ = x ⊕ h′ since ifxj < h′
j , thenxj is not active on

any side of any equation and therefore changingxj to h′
j does not violate any of the equations. The rest

follows from isotonicity of f (x). �
Let S

′
= S∩ {x ∈ Rn; h′

j 6 xj 6 f −1
j ⊗ U, j ∈ N}.
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COROLLARY 3.4 If f max < +∞, then

f max = max
x∈S

′
f (x).

Proof. The statement follows immediately from Lemma3.4, Theorem3.4and Proposition3.6. �

COROLLARY 3.5 If S 6= ∅ and f min > −∞ [ f max < +∞], thenSmin 6= ∅ [Smax 6= ∅].

It follows from Lemma3.2 that f max > L . However, this information is not useful ifc = d since
thenL = −∞. Since we will need a lower bound forf max even whenc = d, we defineL ′ = f (h′) and
formulate the following.

COROLLARY 3.6 If x ∈ S, thenx′ = x ⊕ h′ satisfiesf (x′) > L ′ and thusf max> L ′.

4. The algorithms

It follows from Proposition3.1 and Theorem3.1 that in pseudo-polynomial time either a feasible so-
lution to (5) can be found or it can be decided that no such solution exists. Due to Theorems3.3 and
3.4, we can also recognize the cases when the objective function is unbounded. We may therefore as-
sume that a feasible solution exists, the objective function is bounded (from below or above depending
on whether we wish to minimize or maximize) and hence an optimal solution exists (Corollary3.5). If
x0 ∈ S is found, then using the scaling (if necessary) proposed in Lemma3.3or Corollary3.6, we find
(another)x0 satisfyingL 6 f (x0) 6 U or L ′ 6 f (x0) 6 U (see Lemmas3.2 and3.4). The use of
the bisection method applied to either(L , f (x0)) or ( f (x0), U ) for finding a minimizer or maximizer
of f (x) is then justified by Proposition3.4. The algorithms are based on the fact that (see Proposition
3.2) checking the existence of anx ∈ S satisfying f (x) = α for a givenα ∈ R can be converted to a
feasibility problem. They stop when the interval of uncertainty is shorter than a given precisionε > 0.

ALGORITHM 4.1 MAXLINMIN (max-linear minimization)

Input: f = ( f1, . . . , fn)T ∈ Rn, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ Rm, c > d, c 6= d, A =
(ai j ), B = (bi j ) ∈ Rm×n, ε > 0.

Output:x ∈ Ssuch thatf (x) − f min 6 ε.

1. If L = f (x) for somex ∈ S, then stop (f min = L).

2. Find anx0 ∈ S. If (A ⊗ x0)i > ci for all i ∈ M , then scalex0 by α defined in(8).

3. L(0) := L ,U (0) := f (x0), r := 0.

4. α := 1
2(L(r ) + U (r )).

5. Check whetherf (x) = α is satisfied by somex ∈ Sand in the positive case find one.
If yes, thenU (r + 1) := α, L(r + 1) := L(r ).
If not, thenU (r + 1) := U (r ), L(r + 1) := α.

6. r := r + 1.

7. If U (r ) − L(r ) 6 ε, then stop else go to 4.

THEOREM 4.1 Algorithm MAXLINMIN is correct and the number of iterations before termination is

O

(
log2

U − L

ε

)
.



10 of 17 P. BUTKOVIC AND A. AMINU

Proof. Correctness follows from Proposition3.4 and Lemma3.2. Sincec 6= d, we have the following
at the end of Step 2:f (x0) > L > −∞ (Lemma3.2) andU (0) := f (x0) 6 U by Lemma3.4.
Thus, the number of iterations is O

(
log2

U−L
ε

)
since after every iteration the interval of uncertainty is

halved. �

ALGORITHM 4.2 MAXLINMAX (max-linear maximization)

Input: f = ( f1, . . . , fn)T ∈ Rn, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ Rm,
A = (ai j ), B = (bi j ) ∈ Rm×n, ε > 0.
Output:x ∈ Ssuch thatf max − f (x) 6 ε or an indication thatf max = +∞.

1. If U = f (x) for somex ∈ S, then stop (f max = U ).

2. Check whetherA ⊗ x = B ⊗ x has a solution. If yes, stop( f max = +∞).

3. Find anx0 ∈ Sand setx0 := x0 ⊕ h′, whereh′ is as defined in (10).

4. L(0) := f (x0), U (0) := U, r := 0.

5. α := 1
2(L(r ) + U (r )).

6. Check whetherf (x) = α is satisfied by somex ∈ Sand in the positive case find one.
If yes, thenU (r + 1) := U (r ), L(r + 1) := α.
If not, thenU (r + 1) := α, L(r + 1) := L(r ).

7. r := r + 1.

8. If U (r ) − L(r ) 6 ε, then stop else go to 5.

THEOREM 4.2 Algorithm MAXLINMAX is correct and the number of iterations before termination is

O

(
log2

U − L ′

ε

)
.

Proof. Correctness follows from Proposition3.4 and Lemma3.4. By Lemma3.4 and Corollary3.6,
U > f (x0) > L ′ and thus the number of iterations is O

(
log2

U−L ′

ε

)
since after every iteration the

interval of uncertainty is halved. �

5. The integer case

The algorithms of Section4 may immediately be applied to MLPmin or MLPmax when all input data are
integers. However, we show that in such a casef min and f max are integers and therefore, the algorithms
find an ‘exact’ solution once the interval of uncertainty is of length 1 since then eitherL(r ) or U (r ) is
the optimal value. Note thatL andU are now integers and we will show how integrality ofL(r ) and
U (r ) can be maintained during the run of the algorithms. This implies that the algorithms will find exact
optimal solutions in a finite number of steps and we will prove that their computational complexity is
pseudo-polynomial.

THEOREM 5.1 If A, B, c, d and f are integers,S 6= ∅ and f min > −∞, then f min ∈ Z (and therefore,
Smin ∩ Zn 6= ∅).

Proof. Supposef min /∈ Z and letz = (z1, . . . , zn)
T ∈ Smin. We assume again without loss of generality

thatc > d. For anyx ∈ Rn, denote

F(x) = { j ∈ N; f j ⊗ xj = f (x)}.
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Hence, we have

zj /∈ Z for every j ∈ F(z). (11)

We will now show that allzj , j ∈ F(z), can be reduced while maintaining feasibility which will be a
contradiction with optimality ofz. To prove this, we develop a special procedure called the reduction
algorithm. Let us first denote the following forx ∈ Rn:

Q(x) = {i ∈ M; (A ⊗ x)i > ci }

and fori ∈ M andx ∈ Rn,

Ti (x) = { j ∈ N; ai j ⊗ xj = (A ⊗ x)i },

Ri (x) = { j ∈ N; bi j ⊗ xj = (B ⊗ x)i }.

Since all entries are integers,ai j ⊗ zj = ci cannot hold for anyi ∈ M and j ∈ F(z) and ifai j ⊗ zj < ci

for everyi ∈ M and j ∈ F(z), then allzj , j ∈ F(x), could be reduced without violating any equation
which contradicts the optimality ofz. Hence,Q(z) 6= ∅.

Reduction algorithm

1. P(z) := F(z).

2. E1 := {i ∈ Q(z); Ti (z) ⊆ P(z) andRi (z) * P(z)},
E2 := {i ∈ Q(z); Ti (z) * P(z) andRi (z) ⊆ P(z)}.

3. If E1 ∪ E2 = ∅, thenP(z) is the set of indices of variables to be reduced, STOP.

4. P(z) := P(z) ∪ ∪i ∈E1 (Ri (z) \ P(z)) ∪ ∪i ∈E2 (Ti (z) \ P(z)).

5. Go to 2.

Claim: Reduction algorithm terminates after a finite number of steps and at termination,

zj /∈ Z for j ∈ P(z). (12)

Proof of claim: Finiteness follows from the fact that the setP(z) strictly increases in size at every
iteration andP(z) ⊆ N. For the remaining part of the claim, it is sufficient to prove the following
for any iteration of this algorithm: if (12) holds at Step 2, then it is also true at Step 5. The statement
then follows from the fact that (12) is true when Step 2 is reached for the first time due to Step 1 and
assumption (11). Consider therefore a fixed iteration at the beginning of which (12) holds. Suppose
without loss of generality thatE1 ∪ E2 6= ∅ and take anyi ∈ E1. Hence,zj /∈ Z for j ∈ Ti (z), thus
(A ⊗ z)i /∈ Z. But i ∈ Q(z), implying (B ⊗ z)i = (A ⊗ z)i and so(B ⊗ z)i /∈ Z too. Sincebi j are
also integers, this yields thatzj /∈ Z for j ∈ Ri (z). Therefore,zj /∈ Z for j ∈ ∪i ∈E1 (Ri (z) \ P(z)).
Similarly, zj /∈ Z for j ∈ ∪i ∈E2 (Ti (z) \ P(z)) and the claim follows.

If i ∈ M \ Q(z), then by integrality of the entries, bothai j ⊗ zj < ci and bi j ⊗ zj < ci for
j ∈ P(z). We conclude that allzj for j ∈ P(z) can be reduced without violating any of the equations,
a contradiction with optimality ofz.

Hence, f min ∈ Z. The existence of an integer optimal solution now follows from Corollary3.1. �

THEOREM 5.2 If A, B, c, d and f are integers,S 6= ∅ and f max < +∞, then f max ∈ Z (and therefore,
Smax ∩ Zn 6= ∅).
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Proof. (Sketch) The proof follows the ideas of the proof of Theorem5.1. We supposec > d, f max /∈ Z
and letz = (z1, . . . , zn)

T ∈ Smax. We take one fixedj ∈ F(z) (hencezj /∈ Z) and show that it is
possible to increasezj without violating equality in any of the equations. Similarly as in the proof of
Theorem5.1, it is shown that the increase ofzj only forces the non-integer components ofz to increase.
Due to integrality of all entries, it is not possible that the equality in an equation is achieved by both
integer and non-integer components ofz. At the same time, an equality of the form(A ⊗ z)i = ci (if
any) cannot be attained by non-integer components, thusai j ⊗ zj < ci andbi j ⊗ zj < ci whenever
zj /∈ Z and hence there is always scope for an increase ofzj /∈ Z. The rest of the argument is the same
as in the proof of Theorem5.1. �

Integer modifications of the algorithms are now straightforward sinceL , L ′ andU are also integers:
we only need to ensure that the algorithms start from an integer vector (see Theorem3.2) and that the
integrality of both ends of the intervals of uncertainty is maintained, for instance, by taking one of the
integer parts of the middle of the interval.

We start with the minimization. Note that

L , L ′,U ∈ [−3K , 3K ], (13)

whereK is defined by (7).

ALGORITHM 5.1 INTEGER MAXLINMIN (integer max-linear minimization)

Input: f = ( f1, . . . , fn)T ∈ Zn, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ Zm, c > d, c 6= d,
A = (ai j ), B = (bi j ) ∈ Zm×n.
Output:x ∈ Smin ∩ Zn.

1. If L = f (x) for somex ∈ S∩ Zn, then stop (f min = L).

2. Findx0 ∈ S∩ Zn. If (A ⊗ x0)i > ci for all i ∈ M , then scalex0 by α defined in(8).

3. L(0) := L ,U (0) := f (x0), r := 0.

4. α :=
⌈1

2(L(r ) + U (r ))
⌉
.

5. Check whetherf (x) = α is satisfied by somex ∈ S∩ Zn and in the positive case find one.
If x exists, thenU (r + 1) := α, L(r + 1) := L(r ).
If it does not, thenU (r + 1) := U (r ), L(r + 1) := α.

6. r := r + 1.

7. If U (r ) − L(r ) = 1, then stop (U (r ) = f min) else go to 4.

THEOREM 5.3 Algorithm INTEGER MAXLINMIN is correct and terminates after using O(mn(m +
n)K log K ) operations.

Proof. Correctness follows from the correctness of MAXLINMIN and Theorem5.1. For computational
complexity, first note that the number of iterations is O(log(U − L)) 6 O(log 6K ) = O(log K ). The
computationally prevailing part of the algorithm is the checking whetherf (x) = α for somex ∈
S∩ Zn whenα is given. By Corollary3.2, this can be done using O(mn(m + n)K ′) operations, where
K ′ = max(K + 1, |α|). Sinceα ∈ [L ,U ], using (13), we haveK ′ = O(K ). Hence, the computational
complexity of checking whetherf (x) = α for somex ∈ S∩ Zn is O(mn(m + n)K ) and the statement
follows. �

ALGORITHM 5.2 INTEGER MAXLINMAX (integer max-linear maximization)

Input: f = ( f1, . . . , fn)T ∈ Zn, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ Zm,
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A = (ai j ), B = (bi j ) ∈ Zm×n.
Output:x ∈ Smax ∩ Zn or an indication thatf max = +∞.

1. If U = f (x) for somex ∈ S∩Zn, then stop (f max = U ).

2. Check whetherA ⊗ x = B ⊗ x has a solution. If yes, stop( f max = +∞).

3. Find anx0 ∈ S∩ Zn and setx0 := x0 ⊕ h′, whereh′ is as defined in (10).

4. L(0) := f (x0), U (0) := U, r := 0.

5. α :=
⌊1

2(L(r ) + U (r ))
⌋
.

6. Check whetherf (x) = α is satisfied by somex ∈ S∩ Zn and in the positive case find one.
If x exists, thenU (r + 1) := U (r ), L(r + 1) := α.
If not, thenU (r + 1) := α, L(r + 1) := L(r ).

7. r := r + 1.

8. If U (r ) − L(r ) = 1, then stop (L(r ) = f max) else go to 5.

THEOREM 5.4 Algorithm INTEGER MAXLINMAX is correct and terminates after using O(mn(m +
n)K log K ) operations.

Proof. Correctness follows from the correctness of MAXLINMAX and Theorem5.2. The computa-
tional complexity part follows the lines of the proof of Theorem5.3after replacingL by L ′. �

6. An example

Let us consider the MLP (minimization) in which

f = (3, 1, 4, −2, 0)T ,

A =






17 12 9 4 9

9 0 7 9 10

19 4 3 7 11




 ,

B =






2 11 8 10 9

11 0 12 20 3

2 13 5 16 4






c =






12

15

13




 , d =






12

12

3






and the starting vector is

x0 = (−6, 0, 3, −5, 2)T .

Clearly, f (x0) = 7, M> = {2, 3} and the lower bound is

L = max
r ∈M>

min
k∈N

fk ⊗ cr ⊗ b−1
rk

= max(min(7, 16, 7, −7, 12), min(14, 1, 12, −5, 9)) = −5.
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We now make a record of the run of INTEGER MAXLINMIN for this problem.
Iteration 1: Check whetherL = −5 is attained byf (x) for somex ∈ Sby solving the system









17 12 9 4 9 12

9 0 7 9 10 15

19 4 3 7 11 13

3 1 4 −2 0 −6









⊗ w =









2 11 8 10 9 12

11 0 12 20 3 12

2 13 5 16 4 3

2 0 3 −3 −1 −5









⊗ w.

There is no solution, henceL(0) := −5,U (0) := 7, r := 0 andα := 1.
Check whetherf (x) = 1 is satisfied by somex ∈ Sby solving









17 12 9 4 9 12

9 0 7 9 10 15

19 4 3 7 11 13

3 1 4 −2 0 0









⊗ w =









2 11 8 10 9 12

11 0 12 20 3 12

2 13 5 16 4 3

2 0 3 −3 −1 1









⊗ w.

There is a solutionx = (−6, 0, −3, −5, 1)T . Hence,U (1) := 1, L(1) := −5, r := 1 andU (1)
− L(1) > 1.

Iteration 2: Check whetherf (x) = −2 is satisfied by somex ∈ Sby solving









17 12 9 4 9 12

9 0 7 9 10 15

19 4 3 7 11 13

3 1 4 −2 0 −3









⊗ w =









2 11 8 10 9 12

11 0 12 20 3 12

2 13 5 16 4 3

2 0 3 −3 −1 −2









⊗ w.

There is no solution. Hence,U (2) := 1, L(2) := −2, r := 2 andU (2) − L(2) > 1.
Iteration 3: Check whetherf (x) = 0 is satisfied by somex ∈ Sby solving









17 12 9 4 9 12

9 0 7 9 10 15

19 4 3 7 11 13

3 1 4 −2 0 −1









⊗ w =









2 11 8 10 9 12

11 0 12 20 3 12

2 13 5 16 4 3

2 0 3 −3 −1 0









⊗ w.

There is no solution. Hence,U (3) := 1, L(3) := 0,U (1) − L(1) = 1, stop, f min = 1, an optimal
solution isx = (−6, 0, −3, −5, 1)T .

7. An easily solvable special case

One-sided systems of max-linear equations have been studied for many years and they are very well
understood (Cuninghame-Green, 1979, 1995; Zimmermann, 1976; Butkovic, 2003). Note that a one-
sided system is a special case of a two-sided system (5) whereai j > bi j andci < di for everyi and j .
Not surprisingly, MLPs with one-sided constraints have also been known for some time (Zimmermann,
1976). Here, we present this special case for the sake of completeness.
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Let us consider one-sided systems of the form

A ⊗ x = b, (14)

where A = (ai j ) ∈ Rm×n andb = (b1, . . . , bm)T ∈ Rm. These systems can be solved more easily
than their linear algebraic counterparts. One of the methods follows from the next theorem in which
S = {x ∈ Rn; A ⊗ x = b} .

THEOREM 7.1 Let x = (x1, . . . , xn)
>, wherex j = mini ∈M bi ⊗ a−1

i j for j ∈ N. Then,

(a) x 6 x for everyx ∈ Sand

(b) x ∈ S if and only if x 6 x and
⋃

j : x j =x j

M j = M,

where for j ∈ N,

M j = {i ∈ M; x j = bi ⊗ a−1
i j }.

Proof. Can be found in standard texts on max-algebra (Cuninghame-Green, 1979; Heidergottet al.,
2005; Zimmermann, 1976). �

Suppose thatf = ( f1, . . . , fn)T ∈ Rn is given. The task of minimizing [maximizing]f (x) = f T ⊗
x subject to (14) will be denoted by MLPmin

1 [MLPmax
1 ]. The sets of optimal solutions will be denoted

Smin
1 andSmax

1 , respectively. It follows from Theorem7.1and the isotonicity off (x) thatx ∈ Smax
1 . We

now present a simple algorithm which solves MLPmin
1 .

ALGORITHM 7.1 ONEMAXLINMIN (one-sided max-linear minimization)
Input: A ∈ Rm×n, b ∈ Rm andc ∈ Rn.
Output:x ∈ Smin

1 .

1. Find x andM j , j ∈ N.

2. Sort( f j ⊗ x j ; j ∈ N), without loss of generality let

f1 ⊗ x1 6 f2 ⊗ x2 6 ∙ ∙ ∙ 6 fn ⊗ xn.

3. J := {1}, r = 1.

4. If
⋃

j ∈J

M j = M,

then stop (xj = x j for j ∈ J andxj small enough forj /∈ J).

5. r := r + 1, J := J ∪ {r }.
6. Go to 4.

THEOREM 7.2 Algorithm ONEMAXLINMIN is correct and its computational complexity is O(mn2).

Proof. Correctness is obvious and computational complexity follows from the fact that the loop 4–6 is
repeated at mostn times and each run is O(mn). Step 1 is O(mn) and Step 2 is O(n logn). �
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Note that the problem of minimizing the function 2x1 + 2x2 + ∙ ∙ ∙ + 2xn subject to one-sided max-
linear constraints isNP-complete since the classical minimum set-covering problem (MSCP) can be
formulated as a special case of this problem with matrixA over {0, −1} andb = 0. Indeed, given a
finite setM = {v1, . . . , vm} and a collectionM1, . . . , Mn of its subsets, consider the ‘MSCP’ for this
system, i.e. the task of finding the smallestk such that

Mi1 ∪ ∙ ∙ ∙ ∪ Mik = M

for somei1, . . . , i k ∈ {1, . . . , n}. MSCP is known to beNP-complete (Rosenet al., 2000). Let Q be the
minimization problem

f (x) = 2x1 + ∙ ∙ ∙ + 2xn → min

subject to

A ⊗ x = b,

whereA = (ai j ) ∈ Rm×n, b = 0 ∈ Rm and

ai j =

{
0, if i ∈ M j ,

−1, otherwise.

It follows from Theorem7.1that at every local minimumx = (x1, . . . , xn)
>, everyxj is either 0 or

−∞ and
⋃

x j =0

M j = M.

Thus, every local minimumx corresponds to a covering ofM and the valuef (x) is the number of
subsets used in this covering. Therefore,Q is polynomially equivalent to MSCP.

Note also that some results of this paper may be extended to the case when the objective function
is ‘isotone’, i.e. f (x) 6 f (y) wheneverx 6 y. This generalization is beyond the scope of the present
paper.
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INTRODUCTION TO MAX-LINEAR PROGRAMMING 17 of 17

CUNINGHAME-GREEN, R. A. (1962) Describing industrial processes with interference and approximating their
steady-state behaviour.Oper. Res. Q., 13, 95–100.

CUNINGHAME-GREEN, R. A. (1979)Minimax Algebra. Lecture Notes in Economics and Mathematical Systems,
vol. 166. Berlin: Springer.

CUNINGHAME-GREEN, R. A. (1995)Minimax Algebra and Applications. Advances in Imaging and Electron
Physics, vol. 90. New York: Academic Press, pp. 1–121.

CUNINGHAME-GREEN, R. A. & BUTKOVIC, P. (2003) The equationAx = By over (max,+).Theor. Comput. Sci.,
293, 3–12.

CUNINGHAME-GREEN, R. A. & ZIMMERMANN , K. (2001) Equation with residual functions.Comment. Math.
Univ. Carol., 42, 729–740.

HEIDERGOTT, B., OLSDER, G.-J. & VAN DER WOUDE, J. (2005)Max Plus at Work: Modeling and Analysis of
Synchronized Systems, A Course on Max-Plus Algebra. Woodstock: Princeton University Press.

HOGBEN, L., BRUALDI , R., GREENBAUM, A. & M ATHIAS, R. (eds) (2006)Handbook of Linear Algebra. Discrete
Mathematics and Its Applications, vol. 39. Baton Rouge, LA: Chapman and Hall.

ROSEN, K. H., MICHAELS, J. G., GROSS, J. L., GROSSMAN, J. W. & SHIER, D. R. (2000)Handbook of Discrete
and Combinatorial Mathematics. Baton Rouge, LA: CRC Press.

VOROBYOV, N. N. (1967) Extremal algebra of positive matrices.Elektron. Informationsverarbeit. Kybernetik, 3,
39–71. (In Russian.)

WALKUP, E. A. & BORIELLO, G. (1988) A general linear max-plus solution technique.Idempotency(J. Gunawar-
dena, ed.). Cambridge: Cambridge University Press, pp. 406–415.
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