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ABSTRACT Max-algebra provides mathematical theory and techniques
for solving nonlinear problems that can be given the form of linear prob-
lems, when arithmetical addition is replaced by the operation of maximum
and arithmetical multiplication is replaced by addition. Problems of this
kind are sometimes of a managerial nature, arising in areas such as manufac-
turing, transportation, allocation of resources and information processing
technology. Max-algebra also provides the linear-algebraic background to
the rapidly developing �eld of tropical mathematics.
The aim of this book is two-fold: to provide an introductory text to max-
algebra and to present results on advanced topics. The theory in the �rst
�ve chapters is self-contained and may be used as a support for undergrad-
uate or postgraduate courses. Chapters 6-10 cover more advanced topics
with emphasis on feasibility and reachability.
The book is intended for a wide-ranging readership, from undergraduate
and postgraduate students to researchers and mathematicians working in
industry, commerce or management. No prior knowledge of max-algebra is
assumed. Most of the theory is illustrated by numerical examples and com-
plemented by exercises at the end of every chapter. A number of practical
and theoretical applications and a list of open problems are included.
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Preface

Max-algebra provides mathematical theory and techniques for solving non-
linear problems that can be given the form of linear problems, when arith-
metical addition is replaced by the operation of maximum and arithmetical
multiplication is replaced by addition. Problems of this kind are sometimes
of a managerial nature, arising in areas such as manufacturing, transporta-
tion, allocation of resources and information processing technology.
The aim of this book is to present max-algebra as a modern mod-

elling and solution tool. The �rst �ve chapters provide the fundamentals
of max-algebra, focusing on one-sided max-linear systems, the eigenvalue-
eigenvector problem and maxpolynomials. The theory is self-contained and
covers both irreducible and reducible matrices. Advanced material is pre-
sented from Chapter 6 onwards.
The book is intended for a wide-ranging readership, from undergraduate

and postgraduate students to researchers and mathematicians working in
industry, commerce or management. No prior knowledge of max-algebra
is assumed. We concentrate on linear-algebraic aspects presenting both
classical and new results. Most of the theory is illustrated by numerical
examples and complemented by exercises at the end of every chapter.
Chapter 1 presents essential de�nitions, examples and basic results used

throughout the book. It also introduces key max-algebraic tools: the maxi-
mum cycle mean, transitive closures, conjugation and the assignment prob-
lem, and presents their basic properties and corresponding algorithms. Sec-
tion 1.3 introduces applications which were the main motivation for this
book and towards which it is aimed: feasibility and reachability in multi-



x Contents

machine interactive processes. Many results in Chapters 6-10 �nd their use
in solving feasibility and reachability problems.
Chapter 2 has a speci�c aim: to explain two special features of max-

algebra particularly useful for its applications. The �rst is the possibility
of e¢ ciently describing the set of all solutions to a problem which may
otherwise be awkward or even impossible to do. This methodology may be
used to �nd solutions satisfying further requirements. The second feature
is the ability of max-algebra to describe a class of problems in combina-
torics or combinatorial optimization in algebraic terms. This chapter may
be skipped without loss of continuity whilst reading the book.
Most of Chapter 3 contains material on one-sided systems and geome-

try of subspaces. It is presented here in full generality with all the proofs.
The main results are: a straightforward way of solving one-sided systems
of equations and inequalities both algebraically and combinatorially, char-
acterization of bases of max-algebraic subspaces and a proof that �nitely
generated max-algebraic subspaces have an essentially unique basis. Linear
independence is a rather tricky concept in max-algebra and presented di-
mensional anomalies illustrate the di¢ culties. Advanced material on linear
independence can be found in Chapter 6.
Chapter 4 presents the max-algebraic eigenproblem. It contains probably

the �rst book publication of the complete solution to this problem, that
is, characterization and e¢ cient methods for �nding all eigenvalues and
describing all eigenvectors for any square matrix over R[f�1g with all
the necessary proofs.
The question of factorization of max-algebraic polynomials (brie�y, max-

polynomials) is easier than in conventional linear algebra, and it is studied
in Chapter 5. A related topic is that of characteristic maxpolynomials,
which are linked to the job rotation problem. A classical proof is presented
showing that similarly to conventional linear algebra the greatest corner is
equal to the principal eigenvalue. The complexity of �nding all coe¢ cients
of a characteristic maxpolynomial still seems to be an unresolved problem
but a polynomial algorithm is presented for �nding all essential coe¢ cients.
Chapter 6 provides a unifying overview of the results published in var-

ious research papers on linear independence and simple image sets. It is
proved that three types of regularity of matrices can be checked in O

�
n3
�

time. Two of them, strong regularity and Gondran-Minoux regularity, are
substantially linked to the assignment problem. The chapter includes an
application of Gondran-Minoux regularity to the minimal-dimensional re-
alization problem for discrete-event dynamic systems.
Unlike in conventional linear algebra, two-sided max-linear systems are

substantially harder to solve than their one-sided counterparts. An account
of the existing methodology for solving two-sided systems (homogenous,
nonhomogenous, or with separated variables) is given in Chapter 7. The
core ideas are those of the Alternating Method and symmetrized semirings.
This chapter is concluded by the proof of a result of fundamental theoretical



Contents xi

importance, namely that the solution set to a two-sided system is �nitely
generated.
Following the complete resolution of the eigenproblem, Chapter 8 deals

with the problem of reachability of eigenspaces by matrix orbits. First it
is shown how matrix scaling can be useful in visualizing spectral proper-
ties of matrices. This is followed by presenting the classical theory of the
periodic behavior of matrices in max-algebra and then it is shown how
the reachability question for irreducible matrices can be answered in poly-
nomial time. Matrices whose orbit from every starting vector reaches an
eigenvector are called robust. An e¢ cient characterization of robustness for
both irreducible and reducible matrices is presented.
The generalized eigenproblem is a relatively new and hard area of re-

search. Existing methodology is restricted to a few solvability conditions, a
number of solvable special cases and an algorithm for narrowing the search
for generalized eigenvalues. An account of these results can be found in
Chapter 9. Almost all of Section 9.3 is original research never published
before.
Chapter 10 presents theory and algorithms for solving max-linear pro-

grams subject to one or two-sided max-linear constraints (both minimiza-
tion and maximization). The emphasis is on the two-sided case. We present
criteria for the objective function to be bounded and we prove that the
bounds are always attained, if they exist. Finally, bisection methods for
localizing the optimal value with a given precision are presented. For pro-
grams with integer entries these methods turn out to be exact, of pseudopoly-
nomial computational complexity.
The last chapter contains a brief summary of the book and a list of open

problems.
In a text of this size, it would be impossible to give a fully comprehensive

account of max-algebra. In particular this book does not cover (or does so
only marginally) control, discrete-event systems, stochastic systems or case-
studies; material related to these topics may be found in e.g. [9], [102] and
[112]. On the other hand, max-algebra as presented in this book provides
the linear-algebraic background to the rapidly developing �eld of tropical
mathematics.
This book is the result of many years of my work in max-algebra. Through-

out the years I worked with many colleagues but I would like to highlight
my collaboration with Ray Cuninghame-Green, with whom I was privi-
leged to work for almost quarter of a century. Without Ray�s support and
encouragement, for which I am extremely grateful, this book would never
exist. In recent years, I learned a great deal at many working sessions with
Hans Schneider and I am indebted to him for the advice and support.
I would like to express gratitude to my teachers, in particular to Ernest

Jucoviµc for his vision and leadership, to Karel Zimmermann who in 1974
introduced me to max-algebra and Miroslav Fiedler whose mathematical
style and elegance I will always admire.
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pared in collaboration with my research fellow Serge¼¬Sergeev, whose enthu-
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of his generation. His comments on various parts of the book have helped
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Numerical examples and exercises have been checked by my students

Abdulhadi Aminu, Kin Po Tam and Vikram Dokka. I am of course taking
full responsibility for any outstanding errors or omissions.
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1
Introduction

In this chapter we introduce max-algebra, give the essential de�nitions
and study the concepts that play a key role in max-algebra: the maximum
cycle mean, transitive closures, conjugation and the assignment problem. In
Section 1.3 we brie�y introduce two types of problems that are of particular
interest in this book: feasibility and reachability.

1.1 Notation, de�nitions and basic properties

Throughout this book1 we use the following notation:

R = R [ f�1g;
R = R [ f+1g ;
Z = Z [ f�1g;

a� b = max(a; b)
and

a
 b = a+ b

for a; b 2 R. Note that by de�nition

(�1) + (+1) = �1 = (+1) + (�1) :

1Except Section 1.4 and in the proof of Theorem 8.1.4.
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By max-algebra we understand the analogue of linear algebra developed for
the pair of operations (�;
), after extending these to matrices and vectors.
This notation is of key importance since it enables us to formulate and in
many cases also solve certain nonlinear problems in a way similar to that
in linear algebra. Note that we could alternatively de�ne

a� b = min(a; b)

for a; b 2 R: The corresponding theory would then be called min-algebra
or also "tropical algebra" [141], [104]. However, in this book, � will always
denote the max operator.
Some authors use the expression "max-plus algebra", to highlight the dif-

ference from "max-times algebra" (see Section 1.4). We use the shorter ver-
sion "max-algebra", since the structures are isomorphic and we can easily
form the adjective "max-algebraic". Other names used in the past include
"path algebra" [45] and "schedule algebra" [95].
Max-algebra has been studied in research papers and books from the

early 1960�s. Perhaps the �rst paper was that of R.A. Cuninghame-Green
[57] in 1960, followed by [58], [60], [65] and numerous other articles. Inde-
pendently, a number of pioneering articles were published, e.g. by B. Gi er
[95], [96], N.N. Vorobyov [144], [145], M. Gondran and M. Minoux [97], [98],
[100], [99], B.A. Carré [45], G.M. Engel and H. Schneider [80], [81], [129]
and L. Elsner [77]. Intensive development of max-algebra has followed since
1985 in the works of M. Akian, R. Bapat, R.E. Burkard, G. Cohen, P. van
den Driessche, S. Gaubert, M. Gavalec, J. Gunawardena, B. Heidergott,
M. Joswig, R. Katz, G. Litvinov, J.-J. Loiseau, W. McEneaney, G.-J. Ols-
der, J.-P. Quadrat, I. Singer, S. Sergeev, E. Wagneur, K. Zimmermann, U.
Zimmermann and many others. Note that idempotency of addition makes
max-algebra part of idempotent mathematics [108], [110].
Our aim is to develop a theory of max-algebra over R; +1 appears

as a necessary element only when using certain techniques, such as dual
operations and conjugation (see Subsection 1.6.3). We do not attempt to

develop a concise max-algebraic theory over R.
In max-algebra the pair of operations (�;
) is extended to matrices and

vectors similarly as in linear algebra. That is if A = (aij); B = (bij) and

C = (cij) are matrices with elements from R of compatible sizes, we write
C = A�B if cij = aij � bij for all i; j, C = A
B if cij =

P�
k aik 
 bkj =

maxk(aik + bkj) for all i; j and �
 A = A
 � = (�
 aij) for � 2 R: The
symbol AT stands for the transpose of the matrix A: The standard order �
of real numbers is extended to matrices (including vectors) componentwise,
that is if A = (aij) and B = (bij) are of the same size then A � B means
that aij � bij for all i; j:
Throughout the book we denote �1 by " and for convenience we also

denote by the same symbol any vector or matrix whose every component
is ": If a 2 R then the symbol a�1 stands for �a:
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So 2� 3 = 3; 2
 3 = 5; 4�1 = �4;

(5; 9)

�
�3
"

�
= 2

and the system �
1 �3
5 2

�


�
x1
x2

�
=

�
3
7

�
in conventional notation reads

max(1 + x1;�3 + x2) = 3;

max(5 + x1; 2 + x2) = 7:

The possibility of working in a formally linear way is based on the fact
that the following statements hold for a; b; c 2 R (their proofs are either
trivial or straightforward from the de�nitions):

a� b = b� a
(a� b)� c = a� (b� c)

a� " = a = "� a
a� b = a or b
a� b � a

a� b = a () a � b
a
 b = b
 a

(a
 b)
 c = a
 (b
 c)
a
 0 = a = 0
 a
a
 " = " = "
 a

a
 a�1 = 0 = a�1 
 a for a 2 R
(a� b)
 c = a
 c� b
 c
a � b =) a� c � b� c
a � b =) a
 c � b
 c

a
 c � b
 c; c 2 R =) a � b

Let us denote by I any square matrix, called the unit matrix, whose
diagonal entries are 0 and o¤-diagonal ones are ": For matrices (including

vectors) A;B;C and I of compatible sizes over R and a 2 R we have:

A�B = B �A
(A�B)� C = A� (B � C)

A� " = A = "�A
A�B � A

A�B = A () A � B
(A
B)
 C = A
 (B 
 C)

A
 I = A = I 
A
A
 " = " = "
A
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(A�B)
 C = A
 C �B 
 C
A
 (B � C) = A
B �A
 C
a
 (B � C) = a
B � a
 C
a
 (B 
 C) = B 
 (a
 C)

It follows that (R;�;
) is a commutative idempotent semiring and
(Rn;�) is a semimodule (for de�nitions and further properties see [9], [146]
and [147]). Hence many of the tools known from linear algebra are available
in max-algebra as well. The neutral elements are of course di¤erent: " is
neutral for � and 0 for 
: In the case of matrices the neutral elements are
the matrix (of appropriate dimensions) with all entries " (for �) and I for

:
On the other hand, in contrast to linear algebra, the operation � is not

invertible. However, � is idempotent and this provides the possibility of
constructing alternative tools, such as transitive closures of matrices or
conjugation (see Section 1.6), for solving problems such as the eigenvalue-
eigenvector problem and systems of linear equations or inequalities.
One of the most frequently used elementary property is isotonicity of

both � and 
 which we formulate in the following lemma for ease of refer-
ence.

Lemma 1.1.1 If A;B;C are matrices over R of compatible sizes and c 2 R
then

A � B =) A� C � B � C;
A � B =) A
 C � B 
 C;
A � B =) C 
A � C 
B;
A � B =) c
A � c
B:

Proof. The �rst and last statements follow from the scalar versions im-
mediately since max-algebraic addition and multiplication by scalars are
de�ned componentwise. For the second implication assume A � B; then
A � B = A and (A�B) 
 C = A 
 C: Hence A 
 C � B 
 C = A 
 C;
yielding �nally A
C � B
C: The third implication is proved in a similar
way.

Corollary 1.1.2 If A;B 2 R
m�n

and x; y 2 R
n
then the following hold:

A � B =) A
 x � B 
 x;
x � y =) A
 x � A
 y:

Throughout the book, unless stated otherwise, we will assume that m
and n are given integers, m;n � 1; and M and N will denote the sets
f1; :::;mg and f1; :::; ng, respectively.
An n � n matrix is called diagonal, notation diag(d1; :::; dn); if its di-

agonal entries are d1; :::; dn 2 R and o¤-diagonal entries are ": Thus I =
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diag(0; :::; 0): Any matrix which can be obtained from the unit (diagonal)
matrix by permuting the rows and/or columns will be called a permutation
matrix (generalized permutation matrix). Obviously, for any generalized
permutation matrix A = (aij) 2 R

n�n
there is a permutation � of the set

N such that for all i; j 2 N we have:

aij 2 R () j = � (i) : (1.1)

The position of generalized permutation matrices in max-algebra is slightly
more special than in conventional linear algebra as they are the only ma-
trices having an inverse:

Theorem 1.1.3 [60] Let A = (aij) 2 R
n�n

: Then a matrix B = (bij) such
that

A
B = I = B 
A (1.2)

exists if and only if A is a generalized permutation matrix.

Proof. Suppose that A is a permutation matrix and � a permutation sat-
isfying (1.1). De�ne B = (bij) 2 R

n�n
so that

b�(i);i =
�
ai;�(i)

��1
and

bji = " if j 6= � (i) :

It is easily seen then that A
B = I = B 
A:
Suppose now that (1.2) is satis�ed, that isX�

k2N
aik 
 bkj =

X�

k2N
bik 
 akj =

�
0 if i = j
" if i 6= j

:

Hence for every i 2 N there is an r 2 N such that air 
 bri = 0; thus
air; bri 2 R: If there was an ail 2 R for an l 6= r then bri 
 ail 2 R which
would imply X�

k2N
brk 
 akl > ";

a contradiction. Therefore every row of A contains a unique �nite entry. It
is proved in a similar way that the same holds about every column of A:
Hence A is a generalized permutation matrix.
Clearly, if an inverse matrix to A exists then it is unique and we may

therefore denote it by A�1: We will often need to work with the inverse of
a diagonal matrix. If X = diag(x1; :::; xn); x1; :::; xn 2 R then

X�1 = diag
�
x�11 ; :::; x�1n

�
:

As usual a matrix A is called blockdiagonal if it consists of blocks and
all o¤-diagonal blocks are ":
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If A is a square matrix then the iterated product A
A
:::
A; in which
the letter A stands k-times, will be denoted as Ak: By de�nition A0 = I
for any square matrix A.
The symbol ak applies similarly to scalars, thus ak is simply ka and

a0 = 0: This de�nition immediately extends to ax = xa for any real x (but
not for matrices).
The (i; j) entry of Ak will usually be denoted by a(k)ij and should not be

confused with akij ; which is the k
th power of aij : The symbol a

[k]
ij will be

used to denote the (i; j) entry of the kth matrix in a sequence A[1]; A[2]; :::
.
Idempotency of � enables us to deduce the following formula, speci�c

for max-algebra:

Lemma 1.1.4 The following holds for every A 2 Rn�n and nonnegative
integer k :

(I �A)k = I �A�A2 � :::�Ak: (1.3)

Proof. By induction, straightforwardly from de�nitions.

We �nish this section with some more terminology and notation used
throughout the book, unless stated otherwise. As an analogue to "sto-
chastic", A = (aij) 2 Rm�n will be called column (row) R-astic [60] ifP�

i2M aij 2 R for every j 2 N (if
P�

j2N aij 2 R for every i 2 M), that is
when A has no " column (no " row). The matrix A will be called doubly
R-astic if it is both row and column R-astic. Also, we will call A �nite if
none of its entries is �1: Similarly for vectors and scalars.
If

1 � i1 < i2 < ::: < ik � m;

1 � j1 < j2 < ::: < jl � n;

K = fi1; :::; ikg; L = fj1; :::; jlg;

then A[K;L] denotes the submatrix0@ ai1j1 ::: ai1jl
::: ::: :::
aikj1 ::: aikjl

1A
of the matrixA = (aij) 2 R

m�n
and x[L] denotes the subvector (xj1 ; :::; xjl)

T

of the vector x = (x1; :::; xn)T : If K = L then, as usual, we say that A[K;L]
is a principal submatrix of A; A [K;K] will be abbreviated to A [K] :
If X is a set then jXj stands for the size of X: By convention, max ; = ":
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x1

x2

x3

a1

a2

FIGURE 1.1. Connecting train

1.2 Examples

We present a few simple examples illustrating how a nonlinear formulation
is converted to a linear one in max-algebra (we brie�y say, "max-linear").
This indicates the key strength of max-algebra, namely converting a non-
linear problem into another one, which is linear with respect to the pair of
operators (�;
). These examples are introductory; more substantial ap-
plications of max-algebra are presented in Section 1.3 and in Chapter 2.
The �rst two examples are related to the role of max-algebra as a "schedule
algebra", see [95] and [96].

Example 1.2.1 Suppose two trains leave two di¤erent stations but arrive
at the same station from which a third train, connecting to the �rst two,
departs. Let us denote the departure times of the trains as x1 and x2; respec-
tively and the duration of the journeys of the �rst two trains (including the
necessary times for changing the trains) by a1 and a2; respectively (Figure
1.1). Let x3 be the earliest departure time of the third train. Then

x3 = max(x1 + a1; x2 + a2)

which in the max-algebraic notation reads

x3 = x1 
 a1 � x2 
 a2:

Thus x3 is a max-algebraic scalar product of the vectors (x1; x2) and
(a1; a2). If the departure times of the �rst two trains is given, then the
earliest possible departure time of the third train is calculated as a max-
algebraic scalar product of two vectors.

Example 1.2.2 Consider two �ights from airports A and B, arriving at
a major airport C from which two other connecting �ights depart. The
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x1
d1

d2

x2

b1

b2

a11

a21

a12

a22

A

B

C

FIGURE 1.2. Transfer between connecting �ights

major airport has many gates and transfer time between them is nontrivial.
Departure times from C (and therefore also gate closing times) are given
and cannot be changed, for the above mentioned �ights they are b1 and
b2: The transfer times between the two arrival and two departure gates are
given in the matrix

A =

�
a11 a12
a21 a22

�
:

Durations of the �ights from A to C and B to C are d1 and d2; respectively.
The task is to determine the departure times x1 and x2 from A and B,
respectively, so that all passengers arrive at the departure gates on time,
but as close as possible to the closing times (Figure 1.2).
We can express the gate closing times in terms of departure times from

airports A and B:

b1 = max (x1 + d1 + a11; x2 + d2 + a12)

b2 = max (x1 + d1 + a21; x2 + d2 + a22)

In max-algebraic notation this system gets a more formidable form, of a
system of linear equations:

b = A
 x:

We will see in Sections 3.1 and 3.2 how to solve such systems. For those
that have no solution, Section 3.5 provides a simple max-algebraic technique
for �nding the "tightest" solution to A
 x � b:
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Example 1.2.3 One of the most common operational tasks is to �nd the
shortest distances between all pairs of places in a network for which a direct-
distances matrix, say A = (aij) ; is known. We will see in Section 1.4 that
there is no substantial di¤erence between max-algebra and min-algebra and
for continuity we will consider the task of �nding the longest distances.
Consider the matrix A2 = A
A : its elements areX�

k2N
aik 
 akj = max

k2N
(aik + akj);

that is the weights of longest i� j paths of length 2 (if any) for all i; j 2 N .
Similarly the elements of Ak (k = 1; 2; :::) are the weights of longest paths
of length k for all pairs of places. Therefore the matrix

A�A2 � ::: (1.4)

represents the weights of longest paths of all lengths. In particular, its di-
agonal entries are the weights of longest cycles in the network. It is known
that the longest-distances matrix exists if and only if there is no cycle of
positive weight in the network (Lemma 1.5.4). Assuming this, and under
the natural assumption aii = 0 for all i 2 N; we will prove later in this
chapter that the in�nite series (1.4) converges and is equal to An�1; where
n is the number of places in the network. Thus the longest- (and shortest-)
distances matrix can max-algebraically be described simply as a power of
the direct-distances matrix.

1.3 Feasibility and reachability

Throughout the years (since the 1960�s) max-algebra has found a consider-
able number of practical interpretations [9], [60], [88], [51]. Note that [102]
is devoted to applications of max-algebra in the Dutch railway system.
One of the aims of this book is to study problems in max-algebra that are

motivated by feasibility or reachability problems. In this section we brie�y
introduce these type of problems.

1.3.1 Multi-machine interactive production process: A
managerial application

The �rst model is of a special signi�cance as it is used as a basis for subse-
quent models. It is called the multi-machine interactive production process
[58] (MMIPP) and is formulated as follows.
Products P1; :::; Pm are prepared using n machines (or processors), every

machine contributing to the completion of each product by producing a
partial product. It is assumed that every machine can work for all products
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simultaneously and that all these actions on a machine start as soon as the
machine starts to work. Let aij be the duration of the work of the jth

machine needed to complete the partial product for Pi (i = 1; :::;m; j =
1; :::; n): If this interaction is not required for some i and j then aij is set to
�1: Let us denote by xj the starting time of the jth machine (j = 1; :::; n).
Then all partial products for Pi (i = 1; :::;m) will be ready at time

max(x1 + ai1; :::; xn + ain):

Hence if b1; :::; bm are given completion times then the starting times have
to satisfy the system of equations:

max(x1 + ai1; :::; xn + ain) = bi for all i 2M:

Using max-algebra this system can be written in a compact form as a
system of linear equations:

A
 x = b: (1.5)

The matrix A is called the production matrix. The problem of solving (1.5)
is a feasibility problem. A system of the form (1.5) is called a one-sided
system of max-linear equations (or brie�y a one-sided max-linear system or
just a max-linear system). Such systems are studied in Chapter 3.

1.3.2 MMIPP: Synchronization and optimization

Now suppose that independently, as part of a wider MMIPP, k other ma-
chines prepare partial products for products Q1; :::; Qm and the duration
and starting times are bij and yj ; respectively. Then the synchronization
problem is to �nd starting times of all n + k machines so that each pair
(Pi; Qi) (i = 1; :::;m) is completed at the same time. This task is equivalent
to solving the system of equations

max(x1 + ai1; :::; xn + ain) = max(y1 + bi1; :::; yk + bik) (i 2M) : (1.6)

It may also be given that Pi is not completed before a particular time ci
and similarly Qi not before time di: Then the equations are

max(x1+ai1; :::; xn+ain; ci) = max(y1+bi1; :::; yk+bik; di) (i 2M): (1.7)

Again, using max-algebra and denoting K = f1; :::; kg we can write this
system as a system of linear equations:X

j2N

�
aij 
 xj � ci =

X
j2K

�
bij 
 yj � di (i 2M): (1.8)

To distinguish such systems from those of the form (1.5), the system (1.7)
(and also (1.8)) is called a two-sided system of max-linear equations (or
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brie�y a two-sided max-linear system). Such systems are studied in Chapter
7. It is shown there that we may assume without loss of generality that (1.8)
has the same variables on both sides, that is in the matrix-vector notation
it has the form

A
 x� c = B 
 x� d:
This is another feasibility problem; Chapter 7 provides solution methods

for this generalization.
Another variant of (1.6) is the task when n = k and the starting times

are linked, for instance it is required that there be a �xed interval between
the starting times of the �rst and second system, that is the starting times
xj ; yj of each pair of machines di¤er by the same value. If we denote this
(unknown) value by � then the equations read

max(x1 + ai1; :::; xn + ain) = max(�+ x1 + bi1; :::; �+ xn + bin) (1.9)

for i = 1; :::;m: In max-algebraic notation this system gets the formX
j2N

�
aij 
 xj = �


X
j2N

�
bij 
 xj (i 2M) (1.10)

which in a compact form is a "generalized eigenproblem":

A
 x = �
B 
 x:

This is another feasibility problem and is studied in Chapter 9.
In applications it may be required that the starting times be optimized

with respect to a given criterion. In Chapter 10 we consider the case when
the objective function is max-linear, that is

f(x) = fT 
 x = max(f1 + x1; :::; fn + xn)

and f(x) has to be either minimized or maximized. Thus the studied max-
linear programs (MLP) are of the form

fT 
 x �! min or max

subject to
A
 x� c = B 
 x� d:

This is an example of a reachability problem.

1.3.3 Steady regime and its reachability

Other reachability problems are obtained when the MMIPP is considered
as a multi-stage rather than a one-o¤ process:
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Suppose that in the MMIPP the machines work in stages. In each stage
all machines simultaneously produce components necessary for the next
stage of some or all other machines. Let xi(r) denote the starting time of
the rthstage on machine i (i = 1; :::; n) and let aij denote the duration of
the operation at which the jth machine prepares a component necessary
for the ith machine in the (r + 1)st stage (i; j = 1; :::; n). Then

xi(r + 1) = max(x1(r) + ai1; :::; xn(r) + ain) (i = 1; :::; n; r = 0; 1; :::)

or, in max-algebraic notation

x(r + 1) = A
 x(r) (r = 0; 1; :::)

where A = (aij) is, as before, the production matrix. We say that the system
reaches a steady regime [58] if it eventually moves forward in regular steps,
that is if for some � and r0 we have x(r+1) = �
x(r) for all r � r0. This
implies A 
 x(r) = � 
 x(r) for all r � r0. Therefore a steady regime is
reached if and only if for some � and r; x(r) is a solution to

A
 x = �
 x:

Systems of this form describe the max-algebraic eigenvalue-eigenvector
problem and can be considered as two-sided max-linear systems with a
parameter. Obviously, a steady regime is reached immediately if x(0) is a
(max-algebraic) eigenvector of A corresponding to a (max-algebraic) eigen-
value � (these concepts are de�ned and studied in Chapter 4). However, if
the choice of a start-time vector is restricted, we may need to �nd out for
which vectors a steady regime will be reached. The set of such vectors will
be called the attraction space. The problem of �nding the attraction space
for a given matrix is a reachability problem (see Sections 8.4 and 8.5).
Another reachability problem is to characterize production matrices for

which a steady regime is reached with any start-time vector, that is the
attraction space is the whole space (except "). In accordance with the ter-
minology in control theory such matrices are called robust and it is the
primary objective of Section 8.6 to provide a characterization of such ma-
trices.
Note that a di¤erent type of reachability has been studied in [91].

1.4 About the ground set

The semiring (R;�;
) could be introduced in more general terms as fol-
lows: Let G be a linearly ordered commutative group (LOCG). Let us denote
the group operation by 
 and the linear order by � : Thus G = (G;
;�);
where G is a set. We can then denote G = G[ f"g ; where " is an adjoined
element such that " < a for all a 2 G; and de�ne a � b = max(a; b) for
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a; b 2 G and extend 
 to G by setting a 
 " = " = " 
 a: It is easily
seen that (G;�;
) is an idempotent commutative semiring (see page 3).
Max-algebra as de�ned in Section 1.1 corresponds to the case when G is
the additive group of reals, that is G = (R;+;�) where � is the natural
ordering of real numbers. This LOCG will be denoted by G0 and called the
principal interpretation [60].
Let us list a few other linearly ordered commutative groups which will

be useful later in the book (here R+ (Q+;Z+) are the sets of positive reals
(rationals, integers), Z2 is the set of even integers):

G1 = (R;+;�);
G2 = (R+; �;�);
G3 = (Z;+;�);
G4 = (Z2;+;�);
G5 = (Q+; �;�);
G6 = (Z+;+;�):

Obviously both G1 and G2 are isomorphic with G0 (the isomorphism in
the �rst case is f(x) = �x; in the second case it is f(x) = log(x)). This
book presents results for max-algebra over the principal interpretation but
due to the isomorphism these results usually immediately extend to max-
algebra over G1 and G2: A rare exception is strict visualization (Theorem
8.1.4), where the proof has to be done in G2 and then transformed to G0:
Many (but not all) of the results in this book are applicable to general
LOCG. In a few cases we will present results for groups other than G0; G1
and G2: The theory corresponding to G1 is usually called min-algebra, or
tropical algebra.
A linearly ordered group G = (G;
;�) is called dense if for any a; b 2 G;

a < b; there is a c 2 G satisfying a < c < b; it is called sparse if it is not
dense. A group (G;
) is called radicable if for any a 2 G and positive
integer k there is a b 2 G satisfying bk = a: Observe that in a radicable
group

a <
p
a
 b < b

if a < b and so every radicable group is dense.
Thus G0;G1;G2 and G5 are dense, G3;G4;G6 are sparse, G0;G1 and G2

are radicable and G3;G4;G5;G6 are not. It will turn out in Section 6.2 that
the density of groups is important for strong regularity of matrices and in
Section 4.2 that radicability is crucial for the existence of eigenvalues.

1.5 Digraphs and matrices

We will often use the language of directed graphs (brie�y digraphs). A
digraph is an ordered pair D = (V;E) where V is a nonempty �nite set (of
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nodes) and E � V � V (the set of arcs). A subdigraph of D is any digraph
D0 = (V 0; E0) such that V 0 � V and E0 � E: If e = (u; v) 2 E for some
u; v 2 V then we say that e is leaving u and entering v: Any arc of the
form (u; u) is called a loop.
Let D = (V;E) be a given digraph. A sequence � = (v1; :::; vp) of nodes

in D is called a path (in D) if p = 1 or p > 1 and (vi; vi+1) 2 E for all
i = 1; :::; p� 1: The node v1 is called the starting node and vp the endnode
of �, respectively. The number p � 1 is called the length of � and will be
denoted by l (�) : If u is the starting node and v is the endnode of � then
we say that � is a u � v path. If there is a u � v path in D then v is said
to be reachable from u, notation u ! v. Thus u ! u for any u 2 V: If �
is a u � v path and �0 is a v � w path in D; then � � �0 stands for the
concatenation of these two paths.
A path (v1; :::; vp) is called a cycle if v1 = vp and p > 1 and it is called

an elementary cycle if, moreover, vi 6= vj for i; j = 1; :::; p � 1; i 6= j: If
there is no cycle in D then D is called acyclic. Note that the word "cycle"
will also be used to refer to cyclic permutations, see Subsection 1.6.4, as no
confusion should arise from the use of the same word in completely di¤erent
circumstances.
A digraph D is called strongly connected if u! v for all nodes u; v in D.

A subdigraph D0 of D is called a strongly connected component of D if it
is a maximal strongly connected subdigraph of D; that is D0 is a strongly
connected subdigraph ofD and ifD0 is a subdigraph of a strongly connected
subdigraph D00 of D then D0 = D00: All strongly connected components of
a given digraph D = (V;E) can be identi�ed in O (jV j+ jEj) time [142].
Note that a digraph consisting of one node and no arc is strongly connected
and acyclic, however if a strongly connected digraph has at least two nodes
then it obviously cannot be acyclic. Because of this singularity we will have
to assume in some statements that jV j > 1:
If A = (aij) 2 R

n�n
then the symbol FA (ZA) will denote the digraph

with the node setN and arc set E = f(i; j) ; aij > "g (E = f(i; j) ; aij = 0g) :
ZA will be called the zero digraph of the matrix A: If FA is strongly con-
nected then A is called irreducible and reducible otherwise.

Lemma 1.5.1 If A 2 Rn�n is irreducible and n > 1 then A is doubly
R-astic.

Proof. It follows from irreducibility that an arc leaving and an arc entering
a node exist for every node in FA. Hence every row and column of A has a
�nite entry.
Note that a matrix may be reducible even if it is doubly R-astic (e.g. I).

Lemma 1.5.2 If A 2 Rn�n is column R-astic and x 6= " then Ak 
 x 6= "

for every nonnegative integer k. Hence if A 2 Rn�n is column R-astic then
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Ak is column R-astic for every such k. This is true in particular when A
is irreducible and n > 1:

Proof. If xj 6= " and and aij 6= " then the ith component of A
 x is �nite
and the �rst statement follows by repeating this argument; the second one
by setting x to be any column of A. The third one follows from Lemma
1.5.1.

Lemma 1.5.3 If A 2 Rn�n is row or column R-astic then FA contains a
cycle.

Proof. Without loss of generality suppose that A = (aij) is row R-astic
and let i1 2 N be any node. Then ai1i2 > " for some i2 2 N . Similarly
ai2i3 > " for some i3 2 N and so on. Hence FA has arcs (i1; i2) ; (i2; i3) ; :::.
By �niteness of N in the sequence i1; i2; :::; some ir will eventually recur;
this proves the existence of a cycle in FA:
A weighted digraph is D = (V;E;w) where (V;E) is a digraph and

w : E �! R: All de�nitions for digraphs are naturally extended to weighted
digraphs. If � = (v1; :::; vp) is a path in (V;E;w) then the weight of � is
w(�) = w (v1; v2) + w (v2; v3) + :::+ w (vp�1; vp) if p > 1 and " if p = 1. A
path � is called positive if w(�) > 0. In contrast, a cycle � = (u1; :::; up)
is called a zero cycle if w (uk; uk+1) = 0 for all k = 1; :::; p � 1: Since w
stands for "weight" rather than "length", from now on we will use the
word "heaviest path/cycle" instead of "longest path/cycle".
The following is a basic combinatorial optimization property.

Lemma 1.5.4 If D = (V;E;w) is a weighted digraph with no positive
cycles then for every u; v 2 V a heaviest u � v path exists if at least one
u � v path exists. In this case at least one heaviest u � v path has length
jV j or less.

Proof. If � is a u � v path of length greater than jV j then it contains a
cycle as a subpath. By successive deletions of all such subpaths (necessarily
of nonpositive weight) we obtain a u � v path �0 of length not exceeding
jV j such that w(�0) � w(�): A heaviest u � v path of length jV j or less
exists since the set of such paths is �nite, and the statement follows.
Given A = (aij) 2 R

n�n
the symbolDA will denote the weighted digraph

(N;E;w) where FA = (N;E) and w (i; j) = aij for all (i; j) 2 E: If � =
(i1; :::; ip) is a path in DA then we denote w(�;A) = w(�) and it now
follows from the de�nitions that w(�;A) = ai1i2 + ai2i3 + ::: + aip�1ip if
p > 1 and " if p = 1.

If D = (N;E;w) is an arc-weighted digraph with the weight function
w : E ! R then AD will denote the matrix (aij) 2 R

n�n
de�ned by

aij =

�
w(i; j); if (i; j) 2 E;
"; else,

for all i; j 2 N:
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AD will be called the direct-distances matrix of the digraph D:
If D = (N;E) is a digraph and K � N then D[K] denotes the induced

subdigraph of D; that is

D[K] = (K;E \ (K �K)):

It follows from the de�nitions that DA[K] = D[K].
Various types of transformations between matrices will be used in the

book. We say that matrices A and B are

� equivalent (notation A � B) if B = P�1
A
P for some permutation
matrix P; that is B can be obtained by a simultaneous permutation
of the rows and columns of A;

� directly similar (notation A � B) if B = C 
 A 
D for some diag-
onal matrices C and D; that is B can be obtained by adding �nite
constants to the rows and/or columns of A;

� similar (notation A � B) if B = P 
A
Q for some generalized per-
mutation matrices P and Q; that is B can be obtained by permuting
the rows and/or columns and by adding �nite constants to the rows
and columns of A:

We also say that B is obtained from A by diagonal similarity scaling
(brie�y, matrix scaling, or just scaling) if

B = X�1 
A
X

for some diagonal matrix X: Clearly all these four relations are relations of
equivalence.
Observe that A and B are similar if they are either directly similar or

equivalent. Scaling is a special case of direct similarity.
If A � B then FA = FB ; if A � B then FA can be obtained from FB by

a renumbering of the nodes and �nally, if A � B then DA can be obtained
from DB by a renumbering of the nodes.
Matrix scaling preserves crucial spectral properties of matrices and we

conclude this section by a simple but important statement that is behind
this fact (more properties of this type can be found in Lemma 8.1.1) :

Lemma 1.5.5 Let A = (aij); B = (bij) 2 R
n�n

and B = X�1 
 A 
 X
where X = diag (x1; :::; xn) ; x1; :::; xn 2 R: Then w(�;A) = w(�;B) for
every cycle � in FA (= FB) :
Proof. B = X�1 
A
X implies

bij = �xi + aij + xj
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for all i; j 2 N; hence for � = (i1; :::; ip�1; ip = i1) we have

w(�;B) = bi1i2 + bi2i3 + :::+ bip�1i1
= �xi1 + ai1i2 + xi2 � :::� xip�1 + aip�1i1 + xi1
= ai1i2 + ai2i3 + :::+ aip�1i1
= w(�;A):

1.6 The key players

Since the operation � in max-algebra is not invertible, inverse matrices are
almost non-existent (Theorem 1.1.3) and thus some tools used in linear al-
gebra are unavailable. It was therefore necessary to develop an alternative
methodology that helps to solve basic problems such as systems of inequal-
ities and equations, the eigenvalue-eigenvector problem, linear dependence
and so on.
In this section we introduce and prove basic properties of the maximum

cycle mean and transitive closures. We also discuss conjugation and the
assignment problem. All these four concepts will play a key role in solving
problems in max-algebra.

1.6.1 Maximum cycle mean

Everywhere in this book, given A 2 Rn�n, the symbol �(A) will stand for
the maximum cycle mean of A, that is:

�(A) = max
�

�(�;A); (1.11)

where the maximization is taken over all elementary cycles in DA; and

�(�;A) =
w(�;A)

l (�)
(1.12)

denotes the mean of a cycle �. Clearly, � (A) always exists since the number
of elementary cycles is �nite. It follows from this de�nition that DA is
acyclic if and only if �(A) = ":

Example 1.6.1 If

A =

0@ �2 1 �3
3 0 3
5 2 1

1A
then the means of elementary cycles of length 1 are �2; 0; 1; of length 2 are
2; 1; 5=2; of length 3 are 3 and 2=3: Hence �(A) = 3:
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Lemma 1.6.2 �(A) remains unchanged if the maximization in (1.11) is
taken over all cycles.

Proof. We only need to prove that �(�;A) � � (A) for any cycle � in DA:
Let � be a cycle. Then � can be partitioned into elementary cycles

�1; :::; �t (t � 1). Hence

�(�;A) =
w(�;A)

l (�)

=

Pt
i=1 w(�i; A)Pt
i=1 l (�i)

�
Pt

i=1 l(�i)�(A)Pt
i=1 l (�i)

= �(A):

The maximum cycle mean of a matrix is of fundamental importance
in max-algebra because for any square matrix A it is the greatest (max-
algebraic) eigenvalue of A; and every eigenvalue of A is the maximum cycle
mean of some principal submatrix of A (see Subsections 1.6.2, 2.2.2 and
Chapter 4 for details).
In this subsection we �rst prove a few basic properties of � (A) that will

be useful later on and then we show how it can be calculated.

Lemma 1.6.3 If A = (aij) 2 R
n�n

is row or column R-astic then �(A) >
": This is true in particular when A is irreducible and n > 1:

Proof. The statement follows from Lemmas 1.5.1 and 1.5.3.

Lemma 1.6.4 Let A 2 Rn�n: Then for every � 2 R the sets of arcs
(and therefore also the sets of cycles) in DA and D�
A are equal and
�(�; �
A) = �
 �(�;A) for every cycle � in DA:

Proof. For any A = (aij) 2 R
n�n

; cycle � = (i1; :::; ik; i1) and � 2 R we
have

�(�; �
A) =
�+ ai1i2 + �+ ai2i3 + :::+ �+ aik�1ik + �+ aiki1

k

= �+
ai1i2 + ai2i3 + :::+ aik�1ik + aiki1

k
=

= �
 �(�;A):

A matrix A is called de�nite if �(A) = 0 [45], [60]. Thus a matrix is
de�nite if and only if all cycles in DA are nonpositive and at least one has
weight zero.
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Theorem 1.6.5 Let A 2 Rn�n and � 2 R: Then �(�
A) = �
�(A) for
any � 2 R: Hence (�(A))�1 
A is de�nite whenever �(A) > ":

Proof. For any A 2 Rn�n and � 2 R we have by Lemma 1.6.4:

�(�
A) = max
�

�(�; �
A)

= max
�

�
 �(�;A)

= �
max
�

�(�;A)

= �
 �(A):

Also, �((�(A))�1 
A) = �(A)�1 
 �(A) = 0.
The matrix (�(A))�1 
A will be denoted in this book by A�.
For A 2 Rn�n we denote

Nc (A) = fi 2 N ;9� = (i = i1; :::; ik; i1) in DA : �(�;A) = �(A)g:

The elements of Nc (A) are called critical nodes or eigennodes of A since
they play an essential role in solving the eigenproblem (Lemma 4.2.3). And
a cycle � is called critical (in DA) if �(�;A) = �(A). Hence Nc (A) is the
set of the nodes of all critical cycles in DA: If i; j 2 Nc (A) belong to the
same critical cycle then i and j are called equivalent and we write i � j;
otherwise they are called nonequivalent and we write i � j. Clearly, �
constitutes a relation of equivalence on Nc (A) :

Lemma 1.6.6 Let A 2 Rn�n: Then for every � 2 R we have Nc(�
A) =
Nc(A):

Proof. By Lemma 1.6.4 we have

�(�; �
A) = �
 �(�;A)

for any A 2 Rn�n and � 2 R: Hence the critical cycles in DA and D�
A
are the same.
The critical digraph of A is the digraph C(A) with the set of nodes N ;

the set of arcs, notation Ec (A) ; is the set of arcs of all critical cycles.
A strongly connected component of C(A) is called trivial if it consists
of a single node without a loop, nontrivial otherwise. Nontrivial strongly
connected components of C(A) will be called critical components.

Remark 1.6.7 [9], [102] It is not di¢ cult to prove from the de�nitions
that all cycles in a critical digraph are critical. We will see this as Corollary
8.1.7.

Computation of the maximum cycle mean from the de�nition is di¢ -
cult except for small matrices since the number of elementary cycles in
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a digraph may be prohibitively large in general. The task of �nding the
maximum cycle mean of a matrix was studied also in combinatorial opti-
mization, independently of max-algebra. Publications presenting a method
are e.g. [144], [60], [72], [109], [106]. One of the �rst methods was Vorobyov�s
O
�
n4
�
formula, following directly from Lemma 1.6.2 and the longest path

interpretation of matrix powers, see Example 1.2.3:

�(A) = max
k2N

max
i2N

a
(k)
ii

k

where Ak =
�
a
(k)
ij

�
; k 2 N:

Example 1.6.8 For the matrix A of Example 1.6.1 we get

A2 =

0@ 4 1 4
8 5 4
6 6 5

1A ;

A3 =

0@ 9 6 5
9 9 8
10 7 9

1A ;

hence �(A) = max(1; 5=2; 9=3) = 3:

A linear programming method has been designed in [60], see Remark
1.6.30. Another one is Lawler�s [109] of computational complexityO

�
n3 log n

�
based on Theorem 1.6.5 and existing O

�
n3
�
methods for checking the ex-

istence of a positive cycle. It uses a bivalent search for a value of � such
that �(�
A) = 0:
We present Karp�s algorithm [106] which �nds the maximum cycle mean

of an n � n matrix A in O(n jEj) time where E is the set of arcs of DA.
Note that for the computation of the maximum cycle mean of a matrix
we may assume without loss of generality that A is irreducible since any
cycle is wholly contained in one strongly connected component and, as
already mentioned, all strongly connected components can be recognized
in O (jV j+ jEj) time [142]. Let A = (aij) 2 Rn�n and s 2 N be an
arbitrary �xed node of DA = (N;E; (aij)) : For every j 2 N; and every
positive integer k we de�ne Fk (j) as the maximum weight of an s� j path
of length k; if no such path exists then Fk (j) = ":

Theorem 1.6.9 (Karp) If A = (aij) 2 R
n�n

is irreducible then

�(A) = max
j2N

min
k2N

Fn+1 (j)� Fk (j)
n+ 1� k : (1.13)
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Proof. The statement holds for n = 1: If n > 1 then �(A) > ": By
subtracting �(A) from the weight of every arc of DA the value of Fk (j)
decreases by k�(A) and thus the right-hand side in (1.13) decreases by
�(A): Hence it is su¢ cient to prove that

max
j2N

min
k2N

Fn+1 (j)� Fk (j)
n+ 1� k = 0 (1.14)

if A is de�nite. If A is de�nite then there are no positive cycles in DA and
by Lemma 1.5.4 a heaviest s � j path of length n or less exists for every
j 2 N (since at least one such path exists by strong connectivity of DA).
Let us denote this maximum weight by w (j) : Then

Fn+1 (j) � w (j) = max
k2N

Fk (j) ;

hence

min
k2N

(Fn+1 (j)� Fk (j)) = Fn+1 (j)�max
k2N

Fk (j)

= Fn+1 (j)� w (j) � 0

holds for every j 2 N: It remains to show that equality holds for at least
one j: Let � be a cycle of weight zero and i be any node in �: Let � be
any s� i path of maximum weight w (i) : Then � extended by any number
of repetitions of � is also an s � i path of weight w (i) and therefore any
subpath of such an extension starting at s is also a heaviest path from s
to its endnode. By using a su¢ cient number of repetitions of � we may
assume that the extension of � is of length n + 1 or more. Let us denote
one such extension by �0: A subpath of �0 starting at s of length n + 1
exists. Its endnode is the sought j:

The quantities Fk (j) can be computed by the recurrence

Fk (j) = max
(i;j)2E

(Fk�1 (i) + aij) (k = 2; :::; n+ 1) (1.15)

with the initial conditions F1 (j) = asj for all j 2 N: The computation of
Fk (j) from (1.15) for a �xed k and for all j requires O (jEj) operations
as every arc will be used once. Hence the number of operations needed
for the computation of all quantities Fk (j) (j 2 N; k = 1; :::; n + 1) is
O (n jEj) : The application of (1.13) is obviously O(n2): By connectivity we
have n � jEj and the overall complexity bound O (n jEj) now follows.
Specially designed algorithms �nd the maximum cycle mean for some

types of matrices with computational complexity lower than O(n3) [33],
[94], [121]. See also [122] and [46].
There are also other, fast methods for �nding the maximum cycle mean

for general matrices whose performance bound is not known. See for in-
stance Howard�s algorithm or the power method [9], [49], [84], [102], [17],
[77], [78].
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1.6.2 Transitive closures

1.6.2.1 Transitive closures, eigenvectors and subeigenvectors

Given A 2 Rn�n we de�ne the following in�nite series

�(A) = A�A2 �A3 � ::: (1.16)

and
�(A) = I � �(A) = I �A�A2 �A3 � ::: . (1.17)

If these series converge to matrices that do not contain +1, then the
matrix �(A) is called the weak transitive closure of A and �(A) is the
strong transitive closure of A: These names are motivated by the digraph
representation if A is a f0;�1g matrix since the existence of arcs (i; j) and
(j; k) in Z�(A) implies that also the arc (i; k) exists.
The matrices �(A) and �(A) are of fundamental importance in max-

algebra. This follows from the fact that they enable us to e¢ ciently describe
all solutions (called eigenvectors, if di¤erent from ") to

A
 x = �
 x; � 2 R (1.18)

in the case of �(A); and all �nite solutions to

A
 x � �
 x; � 2 R (1.19)

in the case of �(A): Solutions to (1.19) di¤erent from " are called subeigen-
vectors). The possibility of �nding all (�nite) solutions is an important fea-
ture of max-algebra and we illustrate the bene�ts of this on an application
in Section 2.1.
If A 2 Rn�n and � 2 R; we will denote the set of �nite subeigenvectors

by V � (A; �) ; that is

V � (A; �) = fx 2 Rn;A
 x � �
 xg ;

and for convenience also

V � (A) = V � (A; � (A)) ;

V �0 (A) = V � (A; 0) :

We will �rst show how �(A) and �(A) can be used for �nding one solu-
tion to (1.18) and (1.19), respectively. Then we describe all �nite solutions
to (1.19) using �(A). The description of all solutions to (1.18) will follow
from the theory presented in Chapter 4.
It has been observed in Example 1.2.3 that the entries of A2 = A 
 A

are the weights of heaviest paths of length 2 for all pairs of nodes in DA:
Similarly the elements of Ak (k = 1; 2; :::) are the weights of heaviest paths
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of length k for all pairs of nodes. Therefore the matrix �(A) (if the in�nite
series converges) represents the weights of heaviest paths of any length for
all pairs of nodes. Motivated by this fact � (A) is also called the metric
matrix corresponding to the matrix A [60]. Note that �(A) is often called
the Kleene star [3].

1.6.2.2 Weak transitive closure

If �(A) � 0 then all cycles in DA have nonpositive weights and so by
Lemma 1.5.4 we have:

Ak � A�A2 � :::�An (1.20)

for every k � 1; and therefore �(A) for any matrix with �(A) � 0; and in
particular for de�nite matrices, exists and is equal to A � A2 � ::: � An:
On the other hand if �(A) > 0 then a positive cycle in DA exists, thus
the value of at least one position in Ak is unbounded as k �! 1 and,
consequently, at least one entry of �(A) is +1: Also, �(A) is �nite if A is
irreducible since � (A) is the matrix of the weights of heaviest paths in DA

and in a strongly connected digraph there is a path between any pair of
nodes. We have proved:

Proposition 1.6.10 Let A 2 Rn�n: Then (1.16) converges to a matrix
with no +1 if and only if �(A) � 0: If �(A) � 0 then

�(A) = A�A2 � :::�Ak

for every k � n: If A is also irreducible and n > 1 then �(A) is �nite.

A matrix A = (aij) 2 R
n�n

is called increasing if aii � 0 for all i 2 N:
Obviously, A = I�A when A is increasing and so then there is no di¤erence
between �(A) and �(A):

Lemma 1.6.11 If A = (aij) 2 R
n�n

is increasing then x � A 
 x for
every x 2 Rn: Hence

A � A2 � A3 � :::. (1.21)

Proof. If A is increasing then I � A and thus x = I 
 x � A 
 x for
any x 2 Rn by Corollary 1.1.2. The rest follows by taking the individual
columns of A for x and repeating the argument.
A matrix A = (aij) 2 R

n�n
is called strongly de�nite if it is de�nite and

increasing. Since the diagonal entries of A are the weights of cycles (loops)
we have that aii = 0 for all i 2 N if A is strongly de�nite.

Proposition 1.6.12 If A 2 Rn�n is strongly de�nite then

�(A) = �(A) = An�1 = An = An+1 = ::::
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Proof. Since A � A2 � A3 � ::: we have �(A) = A�A2� :::�Ak = Ak for
any k � n straightforwardly by Proposition 1.6.10. Also, we deduce that
all diagonal entries of all powers are nonnegative; they are all actually zero
as a positive diagonal entry would indicate a positive cycle. To prove the
case k = n� 1 consider a(n�1)ij and a(n)ij - the (i; j) entries in An�1 and An

for some i; j 2 N; respectively. If

a
(n�1)
ij < a

(n)
ij (1.22)

then i 6= j (since all diagonal entries in all powers are zero) and the greatest
weight of an i�j path, say �, of length n is greater than the greatest weight
of an i � j path of length n � 1. However � contains a cycle, say �; as a
subpath. Since w(�;A) � 0 by removing � from � we obtain an i � j
path, say �0; l (�0) < n;w(�0; A) � w(�;A) which contradicts (1.22). Hence
a
(n�1)
ij = a

(n)
ij for all i; j 2 N:

Remark 1.6.13 As a by-product of Proposition 1.6.12 we may compile a
simple and fast power method [65] for �nding �(A) if A is strongly de�nite,
since we only need to �nd a su¢ ciently high power of A: We calculate
A2; A4 =

�
A2
�2
; A8 =

�
A4
�2
; :::; A2

k

; ::: and we stop as soon as 2k � n�1;
that is when k � log2 (n� 1) ; yielding an O(n3 log n) method.

Another useful property of strongly de�nite matrices immediately follows
from Lemma 1.6.11:

Lemma 1.6.14 If A 2 Rn�n is strongly de�nite and x 2 Rn then A
x =
x if and only if A
 x � x:

1.6.2.3 Strong transitive closure (Kleene star)

The matrix �(A) also has some remarkable properties. A key to under-
standing these is Lemma 1.1.4 which immediately implies another formula:

�(A) = �(I �A): (1.23)

Proposition 1.6.15 If A 2 Rn�n and �(A) � 0 then

�(A) = I �A� :::�An�1; (1.24)

(�(A))
k
= �(A) (1.25)

for every k � 1 and
A
�(A) = �(A): (1.26)
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Proof. If �(A) � 0 then I � A is both de�nite and increasing, hence by
(1.23), Lemma 1.1.4 and Proposition 1.6.12 we have

�(A) = �(I �A)
= (I �A)n�1

= I �A� :::�An�1:

The other two formulae straightforwardly follow from the �rst.

Corollary 1.6.16 A = (aij) 2 R
n�n

is a Kleene star if and only if A2 = A
and aii = 0 for all i 2 N:

Suppose �(A) � 0; then by (1.20)

A
 �(A) = A2 � :::�An+1

� A�A2 � :::�An+1

= �(A)

and similarly by (1.24)

A
�(A) = A� :::�An

= �(A) � �(A):

Hence every column of �(A) or �(A) is a solution to A
x � x if �(A) � 0:
If, moreover, A is also increasing then

�(A) = �(A) = An�1 = An = An+1 = :::

and so A
�(A) = �(A) and A
 �(A) = �(A): We readily deduce:

Proposition 1.6.17 If A 2 Rn�n is strongly de�nite then every column
of �(A) (= �(A)) is a solution to A
 x = x:

We will show in Chapter 4 how to use �(A) for �nding all solutions to
A 
 x = x for de�nite matrices A. Consequently, this will enable us to
describe all solutions and all �nite solutions to A
 x = �
 x:
Now we use the strong transitive closure to provide a description of all

�nite solutions to A
x � �
x for any � 2 R and all solutions for � � � (A)
and � > ": Note that A 
 x � � 
 x may have a solution x 2 Rn; x 6= "
even if � < � (A) ; see Theorem 4.5.14.
Observe that if A = " then every x 2 Rn is a solution to A
 x � �
 x.

Theorem 1.6.18 [59], [80], [128], [41] Let A = (aij) 2 Rn�n; A 6= ".
Then the following statements hold:

(a) A
x � �
x has a �nite solution if and only if � � � (A) and � > ":
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(b) If � � � (A) and � > " then

V � (A; �) =
�
�(��1 
A)
 u;u 2 Rn

	
:

(c) If � � � (A) and � > " then

A
 x � �
 x; x 2 Rn

if and only if
x = �(��1 
A)
 u; u 2 Rn:

Proof. (a) Suppose A 
 x � � 
 x; x 2 Rn: Since A 6= " we have � > ":
If � (A) = " then also � > � (A) : Suppose now that � (A) > "; thus DA

contains a cycle. Let � = (i1; :::; ik; ik+1 = i1) be any cycle in DA: Then we
have

aiii2 + xi2 � �+ xi1

ai2i3 + xi3 � �+ xi2

::::

aiki1 + xi1 � �+ xik :

If we add up these inequalities and simplify, we get

� �
ai1i2 + ai2i3 + :::+ aik�1ik + aiki1

k
= �(�;A):

It follows that � � max� �(�;A) = �(A).
For the converse suppose � � � (A) and � > "; thus �(��1
A) � 0 and

take u 2 Rn: We show that

A
 x � �
 x; x 2 Rn

is satis�ed by x = �
�
��1 
A

�

 u: Since �

�
��1 
A

�
� I we have that

x � u and thus x 2 Rn: Also,

�
�
��1 
A

�

 x =

�
�
�
��1 
A

��2 
 u = � ���1 
A�
 u = x

by (1.25). Hence we have�
��1 
A

�

 x � �

�
��1 
A

�

 x = x

and the statement follows.
(b) Suppose � � � (A), � > " and A
 x � �
 x; x 2 Rn; thus�

��1 
A
�

 x � x

and
x�

�
��1 
A

�

 x = x:
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Hence �
I � ��1 
A

�

 x = x;

and by (1.3) and (1.24) we have

�(��1 
A)
 x =
�
I � ��1 
A

�n�1 
 x = x:

The proof of su¢ ciency follows the second part of the proof of (a).
(c) The proof is the same as that of part (b) except the reasoning that

x 2 Rn:

1.6.2.4 Two properties of subeigenvectors

The following two statements provide information that will be helpful later
on.

Lemma 1.6.19 Let A 2 Rn�n and � (A) > ": If x 2 V � (A) and (i; j) 2
Ec (A) then

aij 
 xj = � (A)
 xi:

Proof. The inequality aij
xj � � (A)
xi for all i; j follows from Theorem
1.6.18. Suppose it is strict for some (i; j) 2 Ec (A). Since (i; j) belongs to
a critical cycle, say � = (j1 = i; j2 = j; j3; :::; jk; jk+1 = j1) ; we have

ajrjr+1 
 xjr+1 � � (A)
 xjr

for all r = 1; :::; k: Since the �rst of these inequalities is strict, by multiply-
ing them out using 
 and cancellations of all xj we get the strict inequality

aj1j2 
 :::
 ajkj1 < (� (A))
k
;

which is a contradiction with the assumption that � is critical.

Lemma 1.6.20 The set V � (A; �) is convex for any A 2 Rn�n and � 2 R.

Proof. If � = " then V � (A; �) is either empty (if A 6= ") or Rn (if A = ").
If � > " then A
 x � �
 x is in conventional notation equivalent to

aij + xj � �+ xi

for all i; j 2 N such that aij > "; which is a system of conventional linear
inequalities, hence the solution set is convex.
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1.6.2.5 Computation of transitive closures

We �nish this section with computational observations. The product of two
n � n matrices from the de�nition uses O(n3) operations of � and 
 and
unlike in conventional linear algebra a faster way of �nding this product
does not seem to be known (see Chapter 11 for a list of open problems).
This implies that the computation of �(A) (and therefore also �(A)) for
a matrix A with �(A) � 0 from the de�nition needs O(n4) operations.
However, a classical method can do better:

Algorithm 1.6.21 FLOYD-WARSHALL
Input: A = (aij) 2 R

n�n
:

Output: �(A) = (ij) or an indication that there is a positive cycle in
DA (and hence �(A) contains +1).
ij := aij for all i; j 2 N
for all p = 1; :::; n do
for all i = 1; :::; n; i 6= p do
for all j = 1; :::; n; i 6= p do
begin
if ij < ip + pj then ij := ip + pj
if i = j and ij > 0 then stop (�Positive cycle exists�)
end

Theorem 1.6.22 [120] The algorithm Floyd-Warshall is correct and ter-
minates after O(n3) operations.

Proof. Correctness: Let
G[p] =

�

[p]
ij

�
be the matrix obtained at the end of the (p� 1)st run of the main (outer)
loop of the algorithm, p = 1; 2; :::; n + 1. Hence the algorithm starts with
the matrix G[1] = A and constructs a sequence of matrices

G[2]; :::; G[n+1]:

The formula used in the algorithm is


[p+1]
ij := max

�

[p]
ij ; 

[p]
ip + 

[p]
pj

�
(i; j 2 N ; i; j 6= p) : (1.27)

It is su¢ cient to prove that each [p]ij (i; j 2 N; p = 1; :::; n + 1) calculated
in this way is the greatest weight of an i � j path not containing nodes
p; p + 1; :::; n as intermediate nodes because then G[n+1] is the matrix of
weights of heaviest paths (without any restriction) for all pairs of nodes,
that is �(A): We show this by induction on p:
The statement is true for p = 1 because G[1] = A is the direct-distances

matrix (in which no intermediate nodes are allowed).
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For the second induction step realize that a heaviest i�j path, say �; not
containing nodes p+ 1; :::; n as intermediate nodes either does or does not
contain node p: In the �rst case it consists of two subpaths, without loss of
generality both elementary, one being an i�p path, the other a p� j path;
neither of them contains node p as an intermediate node. By optimality
both are heaviest paths and therefore the weight of � is [p]ip + 

[p]
pj : In the

second case � is a heaviest i � j path not containing p; thus its weight is

[p]
ij : The correctness of the transition formula (1.27) now follows.
Complexity bound: Two inner nested loops, each of length n�1; contain

two lines which require a constant number of operations. The outer loop
has length n; thus the complexity bound is O(n (n� 1)2) = O(n3):

Example 1.6.23 For the matrix A of Example 1.6.1 we have �(A) = 3;
hence by subtracting 3 from every entry of A we obtain the de�nite matrix
A� : 0@ �5 �2 �6

0 �3 0
2 �1 �2

1A :

We may calculate �(A�) from the de�nition as A� �A2� �A3�: Since

A2� =

0@ �2 �5 �2
2 �1 �2
0 0 �1

1A ; A3� =

0@ 0 �3 �4
0 0 �1
1 �2 0

1A
we see that

�(A�) =

0@ 0 �2 �2
2 0 0
2 0 0

1A :

Alternatively we may use the algorithm Floyd-Warshall:

A� =

0@ �5 �2 �6
0 �3 0
2 �1 �2

1A p = 1���!

0@ �5 �2 �6
0 �2 0
2 0 �2

1A
p = 2���!

0@ �2 �2 �2
0 �2 0
2 0 0

1A p = 3���!

0@ 0 �2 �2
2 0 0
2 0 0

1A :

Remark 1.6.24 The transitive closure of Boolean matrices A (in conven-
tional linear algebra) can be calculated in O(n2 + m�log(m)) time [115],
where m is the number of strongly connected components of DA and � is
the matrix multiplication constant (currently � = 2:376 [56]). This imme-
diately yields an O(n2 + m�log(m)) algorithm for �nding the weak and
strong transitive closures of matrices over f0;�1g in max-algebra. Note
that the transitive closure of every irreducible matrix over f0;�1g is the
zero matrix.
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1.6.3 Dual operators and conjugation

Other tools that help to overcome the di¢ culties caused by the absence of
subtraction and matrix inversion are the dual pair of operations (�0;
0)
and the matrix conjugation respectively [59], [60]. These are de�ned as

follows. For a; b 2 R set

a�0 b = min(a; b);

a
0 b = a+ b if fa; bg 6= f�1;+1g

and
(�1)
0 (+1) = +1 = (+1)
0 (�1) :

The pair of operations (�0;
0) is extended to matrices (including vec-

tors) in the same way as (�;
) and it is easily veri�ed that all properties
described in Section 1.1 hold dually if � is replaced by �0; 
 by 
0 and by
reverting the inequality signs.

The conjugate of A = (aij) 2 R
m�n

is A� = �AT 2 R
n�m

. The signif-
icance of the dual operators and conjugation is indicated by the following
statement which will be proved in Section 3.2, where we also show more of
their properties.

Theorem 1.6.25 [59] If A 2 R
m�n

; b 2 R
m
and x 2 R

n
then

A
 x � b if and only if x � A� 
0 b:

Corollary 1.6.26 If A 2 R
m�n

and v 2 R
m
then A
 (A� 
0 v) � v:

Corollary 1.6.27 If A 2 R
m�n

and B 2 R
m�k

then

A
 (A� 
0 B) � B:

Conjugation can also be used to conveniently express the maximum cycle
mean of A in terms of its �nite subeigenvectors:

Lemma 1.6.28 Let A 2 Rn�n and � (A) > ": If z 2 V � (A) then

� (A) = z� 
A
 z = min
x2Rn

x� 
A
 x

Proof. It follows from the de�nition of V � (A) that z� 
 A 
 z � � (A) :
At the same time

z� 
A
 z = max
i;j2N

(�zi + aij + zj) � � (A)
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by Lemma 1.6.19.
On the other hand, if x�
A
x = � for x 2 Rn then A
x � �
x and

� � � (A) by Theorem 1.6.18.
We conclude this subsection by an observation that was proved many

years ago and inspired a linear programming method for �nding � (A) [60],
[80] and [128]. See also [41].

Theorem 1.6.29 If A = (aij) 2 R
n�n

then

�(A) = inff�;A
 x � �
 x; x 2 Rng: (1.28)

If � (A) > " or A = " then the in�mum in (1.28) is attained.

Proof. The statement follows from Theorem 1.6.18 and Lemma 1.6.28.
Note that using the spectral theory of Section 4.5 we will be able to prove

a more general result, Theorem 4.5.14.

Remark 1.6.30 If � (A) > " then formula (1.28) suggests that �(A) is the
optimal value of the linear program

� �! min

s.t.
�+ xi � xj � aij ; (i; j) 2 FA:

This idea was used in [60], to design a linear programming method for
�nding the maximum cycle mean of a matrix.

1.6.4 The assignment problem and its variants

By Pn we denote in this book the set of all permutations of the set N .
The symbol id will stand for the identity permutation. As usual, cyclic
permutations (or, brie�y, cycles if no confusion arises) are of the form � :
i1 �! i2 �! ::: �! ik �! i1: We will also write � = (i1i2:::ik) : Every
permutation of the set N can be written as a product of cyclic permutations
of subsets of N; called constituent cycles. For instance, if n = 5 then the
permutation

� =

�
1 2 3 4 5
4 5 1 3 2

�
is the product of cyclic permutations 1 �! 4 �! 3 �! 1 and 2 �! 5 �!
2; that is � = (143) (25) :
Let A = (aij) 2 R

n�n
: The max-algebraic permanent (or brie�y perma-

nent) of A is

maper(A) =
X�

�2Pn

Y


i2N
ai;�(i);
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which in conventional notation reads

maper(A) = max
�2Pn

X
i2N

ai;�(i):

For � 2 Pn the value

w(�;A) =
Y


i2N
ai;�(i) =

X
i2N

ai;�(i)

is called the weight of the permutation � (with respect to A). The problem
of �nding a permutation � 2 Pn of maximum weight (called optimal per-
mutation or optimal solution) is the assignment problem for the matrix A
solvable in O(n3) time using e.g. the Hungarian method (see for instance
[22], [120] or textbooks on combinatorial optimization). Hence the max-
algebraic permanent of A is the optimal value to the assignment problem
for A and, in contrast to the linear-algebraic permanent, it can be found
e¢ ciently. To mark this link we denote the set of optimal solutions to the
assignment problem by ap(A); that is

ap(A) = f� 2 Pn;w(�;A) = maper(A)g :

The permanent plays a key role in a number of max-algebraic problems
because of the absence of the determinant due to the lack of subtraction.
It turns out that the structure of the set of optimal solutions is related to
some max-algebraic properties, in particular to questions such as regularity
of matrices.

Example 1.6.31 If

A =

0@ 3 7 2
4 1 5
2 6 3

1A
then maper (A) = 14; ap(A) = f(123) ; (1) (23) ; (12) (3)g :

A very simple property, on which the Hungarian method is based, is
that the set of optimal solutions to the assignment problem for A does not
change by adding a constant to a row or column of A: We can express this
fact conveniently in max-algebraic terms: adding the constants c1; :::; cn to
the rows and d1; :::; dn to the columns of A means to multiply C 
A
D;
where C = diag (c1; :::; cn) and D = (d1; :::; dn).

Lemma 1.6.32 If A � B then ap(A) = ap(B):
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Proof. Let � 2 Pn and B = C 
A
D: Then

w(�;B) =
Y


i2N
bi;�(i)

=
Y


i2N
ci 
 ai;�(i) 
 d�(i)

=
Y


i2N
ci 


Y


i2N
ai;�(i) 


Y


i2N
d�(i)

= c
 w(�;A)
 d;

where c =
Q

i2N ci and d =

Q

i2N di: Hence optimal permutations for B

are exactly the same as for A:
The Hungarian method applied to a matrix A assumes without loss of

generality that w(�;A) is �nite for at least one � 2 Pn or, equivalently,
maper (A) > " (otherwise ap(A) = Pn). Any such matrix is transformed by
adding suitable constants to the rows and columns to produce a nonpositive
matrix B with w(�;B) = 0 for at least one � 2 Pn and thusmaper (B) = 0:
By Lemma 1.6.32 we have ap(A) = ap(B): Because of the special form of
B we then have that optimal permutations for B (and A) are exactly those
that select only zeros from B that is

ap(A) = ap (B) =
�
� 2 Pn; bi;�(i) = 0

	
:

Example 1.6.33 The Hungarian method transforms the matrix A of Ex-
ample 1.6.31 using

C = diag (�4;�5;�3) ; D = diag (1;�3; 0)

to 0@ 0 0 �2
0 �7 0
0 0 0

1A ;

from which we can readily identify ap(A):

We may immediately deduce from the Hungarian method the following,
otherwise rather nontrivial statement:

Theorem 1.6.34 Let A 2 Rn�n and suppose that w(�;A) is �nite for at
least one � 2 Pn: Then diagonal matrices C;D such that

maper (C 
A
D) = 0

and
C 
A
D � 0

exist and can be found in O(n3) time.
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The assignment problem plays a prominent role in various max-algebraic
problems, see Chapters 5, 6, 7 and 9. Therefore we will now discuss some
computational aspects of the assignment problem relevant to max-algebra.
First we mention that the diagonal entries in C and D in Theorem 1.6.34
are components of a dual optimal solution when the assignment problem
is considered as a linear program and therefore using duality of linear pro-
gramming it is possible to improve the complexity bound in that theorem
if an optimal solution is known [22], [120]:

Theorem 1.6.35 Let A 2 Rn�n and suppose that a � 2 ap(A) is known.
Then diagonal matrices C;D such that

maper (C 
A
D) = 0

and
C 
A
D � 0

can be found in O(n) time.

It will be essential in Chapter 6 to decide whether an optimal permuta-
tion to the assignment problem is unique, that is whether jap(A)j = 1: If
this is the case then we say that A has strong permanent. For answering this
question (see Theorem 1.6.39 below) it will be useful to transform a given
matrix by permuting the rows and/or columns to a form where the diagonal
entries of the matrix form an optimal solution, that is where id 2 ap(A):

We say that A 2 Rn�n is diagonally dominant if id 2 ap(A): We therefore
make �rst some observations on diagonally dominant matrices.
It is a straightforward matter to transform any square matrix to a diag-

onally dominant by suitably permuting the rows and/or columns once an
optimal permutation has been found for this matrix. This transformation
clearly does not change the size of the set of optimal permutations and
can be described as a multiplication of the matrix by permutation matri-
ces, that is a transformation of the matrix to a similar one. Using Lemma
1.6.32 we readily get:

Lemma 1.6.36 If A � B then jap(A)j = jap(B)j :

An example of a class of diagonally dominant matrices is the set of
strongly de�nite matrices, since the weight of every permutation is the
sum of the weights of constituent cycles, which are all nonpositive and the
weight of id is 0:
A nonpositive matrix with zero diagonal is called normal (thus every nor-

mal matrix is strongly de�nite but not conversely). A normal matrix whose
all o¤-diagonal elements are negative is called strictly normal. Obviously,
a strictly normal matrix has strong permanent. We have

strictly normal =) normal =) strongly de�nite =) diagonally dominant.
(1.29)
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As a consequence of Theorem 1.6.34 we have:

Theorem 1.6.37 Every square matrix A with �nite maper(A) is similar
to a normal matrix, that is there exist generalized permutation matrices P
and Q such that P 
A
Q is normal.

A normal matrix similar to a matrix A may not be unique. Any such
matrix will be called a normal form of A:

Corollary 1.6.38 A normal form of any square matrix A 2 Rn�n with
�nite maper(A) can be found using the Hungarian method in O(n3) time.

Not every square matrix is similar to a strictly normal (for instance a
constant matrix). This question is related to strong regularity of matrices
in max-algebra and will be revisited in Chapter 6.
We are now ready to present a method for checking whether a matrix

has strong permanent. Let A = (aij) 2 R
n�n

: If maper(A) = " then A
does not have strong permanent. Suppose now that maper(A) > ": Due
to the Hungarian method we can �nd a normal matrix B similar to A:
By Lemma 1.6.36 A has strong permanent if and only if B has the same
property. Every permutation is a product of elementary cycles, therefore if
w(�;B) = 0 for some � 6= id then at least one of the constituent cycles of
� is of length two or more or, equivalently, there is a cycle of length two
or more in the digraph ZB : Conversely, every such cycle can be extended
using the complementary diagonal zeros in B to a permutation of zero
weight with respect to B, di¤erent from id. Thus we have:

Theorem 1.6.39 [24] A square matrix has strong permanent if and only
if the zero digraph of any (and thus of all) of its normal forms contains
no cycles other than the loops (that is it becomes acyclic once all loops are
removed).

Checking that a digraph is acyclic can be done using standard techniques
[120] in linear time expressed in terms of the number of arcs.
Note that an early paper [82] on matrix scaling contains results which

are closely related to Theorem 1.6.39.
Another aspect of the assignment problem that will be useful is the fol-

lowing simple transformation: Once an optimal solution to the assignment
problem for a matrix A is known, it is trivial to permute the columns of A
so that id 2 ap(A): By subtracting the diagonal entries from their columns
we readily get a matrix that is not only diagonally dominant but also has
all diagonal entries equal to 0: Hence this matrix is strongly de�nite. We
summarize:

Proposition 1.6.40 If A 2 Rn�n has �nite maper (A) then there is a
generalized permutation matrix Q such that A
Q is strongly de�nite. The
matrix Q can be found using O(n3) operations.
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Finally we discuss the question of parity of optimal permutations for the
assignment problem, which will be useful in Chapter 6.
As usual [111], we de�ne the sign of a cyclic permutation (cycle) � =

(i1i2:::ik) as sgn (�) = (�1)k�1 : The integer k is called the length of the
cycle �. If �1; :::; �r are the constituent cycles of a permutation � 2 Pn
then the sign of � is

sgn (�) = sgn (�1) : ::: :sgn (�k) :

A permutation � is odd if sgn (�) = �1 and even otherwise. We denote the
set of odd (even) permutations of N by P�n (P+n ). Straightforwardly from
the de�nitions we get:

Lemma 1.6.41 If � is an odd permutation then at least one of the con-
stituent cycles of � has an even length.

In Chapter 6 it will important to decide whether all permutations in
ap(A) are of the same parity. We therefore denote

ap+(A) = ap(A) \ P+n ;
ap�(A) = ap(A) \ P�n

and

maper+ (A) = max
�2P+

n

X
i2N

ai;�(i);

maper� (A) = max
�2P�

n

X
i2N

ai;�(i):

Example 1.6.42 For the matrix A of Example 1.6.31 we have

ap+(A) = f(123)g ;

ap�(A) = f(1) (23) ; (12) (3)g

and
maper+ (A) = maper (A) = maper� (A) :

It is obvious that the following three statements are equivalent:

ap+(A) 6= ap(A) 6= ap�(A);

maper+ (A) = maper� (A) ;

ap+(A) 6= ; and ap�(A) 6= ;:

Adding a constant to a row or column a¤ects neither ap+(A) nor ap�(A):
On the other hand a permutation of the rows or columns either swaps these
two sets or leaves them unchanged. Hence we deduce:
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Lemma 1.6.43 If A � B then either ap+(A) = ap+(B) and ap�(A) =
ap�(B) or ap+(A) = ap�(B) and ap�(A) = ap+(B):

Due to Lemma 1.6.43 and Theorem 1.6.37 we may assume that A is
normal, thus id 2 ap(A) and therefore the question whether all optimal
permutations are of the same parity reduces to deciding whether ap�(A) 6=
;: Since A is normal ap(A) =

�
� 2 Pn; ai;�(i) = 0

	
: If � 2 ap(A) then

all constituent cyclic permutations of � can be identi�ed as cycles in the
digraph ZA: We say that a cycle in a digraph is odd (even) if its length is
odd (even). If � 2 ap�(A) then at least one of its constituent cycles is of odd
parity and therefore its corresponding cycle in ZA is even (Lemma 1.6.41).
Also conversely, if there is an even cycle, say (i1; i2; :::; ik; i1) in ZA then the
corresponding cyclic permutation � : i1 �! i2 �! ::: �! ik �! i1 is of
odd parity and when complemented by loops (i; i) for i 2 N�fi1; i2; :::; ikg ;
the obtained permutation is odd, since loops are even cyclic permutations.
We can summarize:

Theorem 1.6.44 The problem of deciding whether all optimal permuta-
tions for an assignment problem are of the same parity is polynomially
equivalent to the problem of deciding whether a digraph contains an even
cycle ("Even Cycle Problem"). Once an even cycle in ZA is known, optimal
permutations of both parities can readily be identi�ed.

Remark 1.6.45 The computational complexity of the Even Cycle Problem
was unresolved for almost 30 years until 1999 when an O

�
n3
�
algorithm

was published [124].

Note that the problem of �nding maper+ (A) and maper� (A) has still
unresolved computational complexity [29].
We close this subsection by a max-algebraic analogue of the van der

Waerden Conjecture. Recall that an n�n matrix A = (aij) is called doubly
stochastic, if all aij � 0 and all row and column sums of A equal 1.

Theorem 1.6.46 [21] (Max-algebraic van der Waerden Conjecture) Among
all doubly stochastic n � n matrices the max-algebraic permanent obtains
its minimum for the matrix A = (aij), where aij = 1

n for all i; j 2 N:

Proof. We have maper(A) = max�2Pn
P

1�i�n ai;�(i) = 1: Assume that

there is a doubly stochastic matrixX = (xij) withmax�2Pn
P

1�i�n xi;�(i) <
1. Then we get for all permutations �:

P
1�i�n xi;�(i) < 1. This holds in

particular for the permutations �k which map i to i + k modulo n for
i = 1; 2; :::; n and k = 0; 1:::; n� 1: Thus we get

n =
nX
i=1

nX
j=1

xij =
n�1X
k=0

nX
i=1

xi;�k(i) < n;
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a contradiction. Therefore the matrix A yields the least optimal value for
the max-algebraic permanent.

1.7 Exercises

Exercise 1.7.1 Evaluate the following expressions:

(a) 14
 32 � 3
 58 (all operations are max-algebraic). [43]

(b)
�
4 �1 5
0 3 �2

�



0@ 7 1
�3 4
5 3

1A : [
�
11 8
3 7

�
]

(c) 3
A2 �A3; where A =
�

2 0
�1 3

�
: [
�
7 6
5 9

�
]

(d) A
A�; A�
A; where A =

0@ 3 2
1 5

�3 0

1A : [A
A� =

0@ 0 2 6
3 0 5

�2 �4 0

1A ;

A� 
A =
�
0 4
1 0

�
:]

Exercise 1.7.2 Prove that (A�B)� = A��0B� and (A
B)� = B�
0A�
hold for any matrices A and B of compatible sizes. Use this to �nd A 
0
A�; A� 
0 A for the matrix A of Exercise 1.7.1 (d).

Exercise 1.7.3 About each of the matrices below decide whether it is def-
inite and whether it is increasing. If it is de�nite then �nd also its weak
transitive closure.

(a)
�
�2 �1
3 0

�
: [Not increasing; not de�nite, positive cycle (1; 2; 1) :]

(b)
�
�1 2
�3 �4

�
: [Not increasing; not de�nite, there is no zero cycle]

(c)
�

0 2
�3 �4

�
: [De�nite but not increasing,

�
0 2

�3 �1

�
]

(d)
�

3 2
�5 0

�
: [Increasing; not de�nite, positive cycle (1; 1) :]

(e)
�

0 1
�2 0

�
: [De�nite and increasing (hence strongly de�nite),

�
0 1

�2 0

�
.]
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(f)

0BB@
0 2 �4 1

�3 0 �2 0
�5 1 0 1
�4 �2 �3 0

1CCA : [De�nite and increasing (hence strongly def-

inite),

0BB@
0 2 0 2

�3 0 �2 0
�2 1 0 1
�4 �2 �3 0

1CCA.]

(g)

0BB@
0 2 �4 1

�3 0 �2 0
�5 2 0 1
�4 �2 �1 0

1CCA : [Increasing; not de�nite, positive cycle (2; 4; 3) :]

Exercise 1.7.4 (Symmetric matrices) Let A 2 Rn�n be symmetric. Prove
then that:

(a) � (A) = maxi;j aij :

(b) There is a symmetric matrix B in normal form such that ap(A) =
ap(B): [19]

(c) If A is also diagonally dominant then � (A) = maxi aii and a best
nondiagonal permutation has the form (k; l) � id: Deduce then that
both maper+ (A) and maper� (A) can be found in O

�
n2
�
time. [29]

Exercise 1.7.5 (Monge matrices) A matrix A 2 Rn�n is called Monge
if aij + akl � ail + akj for all i; j; k; l such that 1 � i � k � n and
1 � j � l � n. Prove that

(a) Every Monge matrix is diagonally dominant.

(b) If A is Monge and normal then a best nondiagonal permutation has
the form (k; k + 1) � id:
Deduce then that both maper+ (A) and maper� (A) can be found in
O (n) time. [29]

Exercise 1.7.6 (Matrix sums) For each of the following relations prove or
disprove that it holds for all matrices A;B 2 Rn�n:

(a) maper (A�B) � maper (A)�maper(B). [true; take � 2 ap(A) and
show that w(�;A) � maper (A�B)]

(b) maper (A�B) � maper (A)�maper(B). [false]

(c) � (A�B) � � (A)� � (B) : [true; take � critical in A and show that
�(�;A) � � (A�B)]
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(d) � (A�B) � � (A)� � (B) : [false]

Exercise 1.7.7 (Matrix products) For each of the following relations prove
or disprove that it holds for all matrices A;B 2 Rn�n:

(a) maper (A
B) � maper (A)
maper(B). [true]

(b) maper (A
B) � maper (A)
maper(B). [false]

(c) � (A
B) � � (A)
 � (B) : [false]

(d) � (A
B) � � (A)
 � (B) : [false]

Exercise 1.7.8 (AA� products) Let A 2 Rn�n and P be a matrix product
formed as follows: Write the letters A and A� alternatingly starting by any
of them, insert the product signs 
 and 
0alternatingly between them and
insert brackets so that a meaningful algebraic expression is obtained. Prove
that if the total number of letters is odd then P is equal to the �rst symbol;
if the total number is even then P is equal to the product of the �rst two
letters. [60]

Exercise 1.7.9 Two cross city line trains arrive at the central railway
station C. One arrives at platform 1 from suburb A after a 40 minute jour-
ney, the other one at platform 7 from suburb B, journey time 30 minutes.
Two trains connecting to both these trains leave from platforms 3 and 10
at 10.20 and 10.25, respectively. Find the latest times at which the cross
city line trains should depart from A and B so that the passengers can
board the connecting trains. Describe this problem as a problem of solving
a max-algebraic system of simultaneous equations. Take into account times
for changing the trains between platforms given in the following table:

Platform 3 10

1 6 15
7 8 4

[
�
46 38
55 34

�

 x =

�
80
85

�
; departures: 9.30, 9.42]

Exercise 1.7.10 INDULGE produces milk chocolate bars in department
D1 and drinking chocolate in department D2. Production runs in stages. D1
also simultaneously prepares milk (pasteurization etc.) for the use by both
departments in the next stage and similarly, D2 also prepares cocoa powder
for both departments. In each stage each department prepares su¢ cient
amount of milk and powder, for both departments to run the next stage.
The milk preparation takes 2 hours, cocoa powder 5, production of bars 3
and drinking chocolate 6 hours. Set up max-algebraic equations for starting
times of the departments in stages 2, 3, . . . depending on the starting times
of the �rst stage. Then �nd the starting times of stages 2, 3,. . . if (a) both
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departments start to work at the same time, (b) D1 starts 3 hours earlier
than D2, (c) D1 starts 5 hours later than D2. You may assume that at the
beginning of the �rst stage there is su¢ cient amount of both cocoa powder
and milk in stock to run the �rst stage.

[x(r + 1) =
�
3 5
2 6

�

 x(r) (r = 0; 1; :::);

(a) (0; 0)T ; (5; 6)T ; (11; 12)T ; (17; 18)T ; :::; (b) (0; 3)T ; (8; 9)T ; (14; 15)T ;
(20; 21)

T
; :::; (c) (5; 0)T ; (8; 7)T ; (12; 13)T ; (18; 19)T ; :::]

Exercise 1.7.11 The matrix A =

0@ 2 4 3
1 1 5
0 1 0

1A is the technological ma-

trix of an MMIPP with starting vector x = (0; 0; 0)T : Generate the starting
time vectors of the �rst stages until periodicity is reached. Describe the pe-
riodic part by a formula. (This question is revisited in Exercise 9.4.2.)
[(4; 5; 1)T ; (9; 6; 6)T ; (11; 11; 9)T ; (15; 14; 12)T ; (18; 17; 15)T ; � (A) = 3;

x(r+1) = 3
x(r) = (15 + 3 (r � 4) ; 14 + 3 (r � 4) ; 12 + 3 (r � 4))T (r � 4)]

Exercise 1.7.12 The same task as in Exercise 1.7.11 but for the produc-
tion matrix

A =

0@ 4 1 3
3 0 3
5 2 4

1A :

[(4; 3; 5)T ; (8; 8; 9)T ; (12; 12; 13)T ; � (A) = 4;

x(r + 1) = 4
 x(r) = (8 + 3 (r � 2) ; 8 + 3 (r � 2) ; 9 + 3 (r � 2))T (r � 2)]
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2
Max-algebra: Two special features

The aim of this chapter is to highlight two special features of max-algebra
which make it unique as a modelling and solution tool: the ability to e¢ -
ciently describe all solutions to some problems where it would otherwise be
awkward or impossible to do so; and the potential to describe combinatorial
problems algebraically.
First we show an example of a problem where max-algebra can help to

e¢ ciently �nd all solutions and, consequently, �nd a solution satisfying
additional requirements (Section 2.1).
Then in Section 2.2 we show that using max-algebra a number of com-

binatorial and combinatorial optimization problems can be formulated in
algebraic terms. Based on this max-algebra may, to some extent, be con-
sidered "an algebraic encoding" of combinatorics [27].
This chapter may be skipped without loss of continuity of reading this

book.

2.1 Bounded mixed-integer solution to dual
inequalities: A mathematical application

2.1.1 Problem formulation

A special feature of max-algebra is the ability to e¢ ciently describe the set
of all solutions to some problems in contrast to standard approaches, using
which we can usually �nd one solution. Finding all solutions may be helpful
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for identifying solutions that satisfy speci�c additional requirements. As an
example consider the systems of the form

xi � xj � bij (i; j = 1; :::; n) (2.1)

where B = (bij) 2 Rn�n: In [55] the matrix of the left-hand side coe¢ cients
of this system is called the dual network matrix. It is the transpose of
the constraint matrix of a circulation problem in a network (such as the
maximum �ow or minimum-cost �ow problem) and inequalities of the form
(2.1) therefore appear as dual inequalities for this type of problems. These
facts motivate us to call (2.1) the system of dual inequalities (SDI). The
aim of this section is to show that using standard max-algebraic techniques
it is possible to generate the set of all solutions to (2.1) (which is of size
n2 � n) using n generators. This description enables us then to �nd, or to
prove that it does not exist, a bounded mixed-integer solution to the system
of dual inequalities, that is a vector x = (x1; :::; xn)

T satisfying:

xi � xj � bij ; (i; j 2 N)
uj � xj � lj ; (j 2 N)
xj integer, (j 2 J)

9=; (2.2)

where u = (u1; :::; un)
T ; l = (l1; :::; ln)

T 2 Rn and J � N = f1; :::; ng are
given. We will refer to this problem as to BMISDI. Note that without loss
of generality uj and lj may be assumed to be integer for j 2 J: This type of
inequalities have been studied for instance in [55] where it has been proved
that a related mixed-integer feasibility question is NP -complete.
We will show that in general, the application of max-algebra leads to

a pseudopolynomial algorithm for solving BMISDI. However, an explicit
solution is described in the case when B is integer (but still a mixed-
integer solution is wanted). This implies that BMISDI can be solved using
O(n3) operations when B is an integer matrix. Note that when J = ; then
BMISDI is polynomially solvable since it is a set of constraints of a linear
program. When J = N and B is integer then BMISDI is also polynomially
solvable since the matrix of the system is totally unimodular [120].

2.1.2 All solutions to SDI and all bounded solutions

The system of inequalities

xi � xj � bij (i; j 2 N)

is equivalent to
max
j2N

(bij + xj) � xi (i 2 N):

In max-algebraic notation this readsX�

j2N
bij 
 xj � xi (i 2 N)
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or in the compact form
B 
 x � x: (2.3)

Recall that using the notation introduced in Subsection 1.6.2 the set of
�nite solutions to (2.3) is V �0 (B) :
The next theorem is straightforwardly deduced from Theorem 1.6.18.

Theorem 2.1.1 If B 2 Rn�n then

1. V �0 (B) 6= ; if and only if �(B) � 0:

2. If V �0 (B) 6= ; then

V �0 (B) = f�(B)
 z; z 2 Rng :

We can now use Theorems 2.1.1 and 1.6.25 to describe all bounded so-
lutions to SDI.

Corollary 2.1.2 The set of all solutions x to SDI satisfying x � u is�
�(B)
 z; z � (�(B))� 
0 u

	
and if this set is nonempty then the vector �(B) 


�
(�(B))

� 
0 u
�
is the

greatest element of this set. Hence the inequality

l � �(B)

�
(�(B))

� 
0 u
�

is necessary and su¢ cient for the existence of a solution to SDI satisfying
l � x � u:

2.1.3 Solving BMISDI

We start with another corollary to Theorem 2.1.1.

Corollary 2.1.3 A necessary condition for BMISDI to have a solution is
that �(B) � 0: If this condition is satis�ed then BMISDI is equivalent to
�nding a vector z 2 Rn such that

l � �(B)
 z � u

and
(�(B)
 z)j 2 Z for j 2 J:

In the rest of this subsection we will assume without loss of generality
(Theorem 2.1.1) that �(B) � 0.
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Theorem 2.1.4 Let A 2 Rn�n; b 2 Rn and J � N: Let ~b be de�ned by

~bj = bbjc for j 2 J;
~bj = bj for j =2 J:

Then the following are equivalent:

1. There exists a z 2 Rn such that l � A
 z � b and

(A
 z)j 2 Z for j 2 J:

2. There exists a z 2 Rn such that l � A
 z � ~b and

(A
 z)j 2 Z for j 2 J:

3. There exists a z 2 Rn such that l � A
 z � A

�
A� 
0 ~b

�
and

(A
 z)j 2 Z for j 2 J:

Proof. 1:() 2: is trivial, 2:() 3: follows from Theorem 1.6.25, Corollary
1.6.26 and Lemma 1.1.1.
Theorem 2.1.4 enables us to compile the following algorithm.

Algorithm 2.1.5 BMISDI
Input: B 2 Rn�n; u; l 2 Rn and J � N
Output: x satisfying (2.2) or an indication that no such vector exists.

1. A := �(B); x := u

2. xj := bxjc for j 2 J

3. z := A� 
0 x; x := A
 z

4. If l � x then stop (�no solution�)

5. If l � x and xj 2 Z for j 2 J then stop else go to 2.

Theorem 2.1.6 [30] The algorithm BMISDI is correct and requires O(n3+
n2L) operations of addition, maximum, minimum, comparison and integer
part, where

L =
X

j2J
(uj � lj) :

Proof. If the algorithm terminates at step 4 then there is no solution by
the repeated use of Theorem 2.1.4.
The sequence of vectors x constructed by this algorithm is nonincreasing

by Corollary 1.6.26 and hence x = A
z � u if it terminates at step 5. The
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remaining requirements of (2.2) are satis�ed explicitly due to the conditions
in step 5.
Computational complexity: The calculation of �(B) is O(n3) by Theo-

rem 1.6.22. Each run of the loop between steps 2 and 5 is O(n2): In every
iteration at least one component of xj ; j 2 J decreases by one and the
statement now follows from the fact that all xj range between lj and uj :

Example 2.1.7 Let

B =

0@ �2 2:7 �2:1
�3:8 �1 �5:2
1:6 3:5 �3

1A ;

u = (5:2; 0:8; 7:4)T and J = f1; 3g (l is not speci�ed). The algorithm
BMISDI will �nd:

A = �(B) =

0@ 0 2:7 �2:1
�3:6 0 �5:2
1:6 4:3 0

1A ;

x = (5; 0:8; 7)T ;

z = A� 
0 x =

0@ 0 3:6 �1:6
�2:7 0 �4:3
2:1 5:2 0

1A
0 x =
0@ 4:4
0:8
6

1A
and

x = A
 z = (4:4; 0:8; 6)T :

Now x1 =2 Z so the algorithm continues by another iteration: x = (4; 0:8; 6)T ;

z = A� 
0 x = (4; 0:8; 6)T

and

x = A
 z = (4; 0:8; 6)T ;

which is a solution (provided that l � x - otherwise there is no solution) to
the BMISDI since x1; x3 2 Z.

2.1.4 Solving BMISDI for integer matrices

In this subsection we prove that a solution to the BMISDI can be found
explicitly if B is integer. The following will be useful (the proof below is a
simpli�cation of the original proof due to [132]):
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Theorem 2.1.8 [30] Let A 2 Zn�n; b 2 Rn and A 
 x = b for some
x 2 Rn: Let J � N and ~b be de�ned by

~bk = bbkc for k 2 J;
~bk = bk for k =2 J:

Then there exists an ~x 2 Rn such that

A
 ~x � ~b

and
(A
 ~x)k = ~bk for k 2 J:

Proof.Without loss of generality assume that bk =2 Z for some k 2 J; then
the set

S = fs 2 N ; aks + xs > bbkc for some k 2 Jg
is nonempty and xs =2 Z for every s 2 S since A is integer. Let ~x 2 Rn be
de�ned by ~xj = bxjc for j 2 S and ~xj = xj otherwise. Clearly ~x � x and
so A
 ~x � A
 x by Lemma 1.1.1. Hence maxj2N (akj + ~xj) � bk = ~bk for
all k =2 J: At the same time maxj2N (akj + ~xj) = bbkc = ~bk for all k 2 J .

For the main application, Theorem 2.1.10 below, it will be convenient
to deduce from the statement of Theorem 2.1.8 a property of the greatest
solution x to A
 x � ~b (Corollary 1.6.26):

Corollary 2.1.9 Under the assumptions of Theorem 2.1.8 and using the
same notation, if x = A� 
0 ~b then

A
 x � ~b

and
(A
 x)k = ~bk for k 2 J:

Proof. The inequality follows from Corollary 1.6.26. Let ~x be the vector
described in Theorem 2.1.8. By Theorem 1.6.25 we have ~x � x implying
that

~bk = (A
 ~x)k � (A
 x)k � ~bk for k 2 J
which concludes the proof.
Finally, we are prepared to use max-algebra and explicitly describe a

solution to BMISDI in the case when B is an integer matrix:

Theorem 2.1.10 Let B 2 Zn�n; �(B) � 0; A = �(B); b = A 
 (A� 
0 u)
and ~b be de�ned by

~bk = bbkc for k 2 J
and

~bk = bk for k =2 J:
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Then the BMISDI has a solution if and only if

l � A

�
A� 
0 ~b

�
;

and x̂ = A

�
A� 
0 ~b

�
is then the greatest solution (that is y � x̂ for any

solution y).

Proof. Note �rst that A is an integer matrix and we therefore may apply
Corollary 2.1.9 to A:
"If": By Corollary 1.6.26 x̂ � ~b � b � u: Let us take in Corollary 2.1.9

(and Theorem 2.1.8) x = A�
0 u: Then x̂ = A
x and so x̂k 2 Z for k 2 J:
"Only if": Let y be a solution. Then y = A 
 w � u for some w 2 Rn;

thus by Theorem 1.6.25
w � A� 
0 u

and so
y = A
 w � A
 (A� 
0 u) = b:

Since yk 2 Z for k 2 J we also have

A
 w = y � ~b:

Hence by Theorem 1.6.25
w � A� 
0 ~b

and by Lemma 1.1.1 then

l � y = A
 w � A

�
A� 
0 ~b

�
= x̂:

We also have x̂ � ~b � b � u by Corollary 1.6.26 and x̂k 2 Z for k 2 J by
Corollary 2.1.9 as above, hence x̂ is the greatest solution.

Example 2.1.11 Let

B =

0@ �2 2 �2
�3 �1 �4
1 3 �3

1A ;

u = (3:5; 0:8; 5:7)T and J = f1; 3g (l is not speci�ed). Then we have:

A = �(B) =

0@ 0 2 �2
�3 0 �4
1 3 0

1A ;

A� 
0 u =

0@ 0 3 �1
�2 0 �3
2 4 0

1A
0 u =
0@ 3:5
0:8
4:8

1A ;
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b = A
 (A� 
0 u) =

0@ 3:5
0:8
4:8

1A ;

~b =

0@ 3
0:8
4

1A
and

x̂ = A

�
A� 
0 ~b

�
= (3; 0:8; 4)T :

By Theorem 2.1.10 x̂ is the greatest solution to the BMISDI provided that
l � x̂ (otherwise there is no solution).

2.2 Max-algebra and combinatorial optimization

There is a number of combinatorial and combinatorial optimization prob-
lems closely related to max-algebra. In some cases max-algebra provides an
e¢ cient and elegant algebraic encoding of these problems. Although com-
putational advantages do not necessarily follow from the max-algebraic
formulation, for some problems this connection may help to deduce useful
information [27].

2.2.1 Shortest/longest distances: Two connections

Perhaps the most striking example is the shortest-distances problem which
is one of the best known combinatorial optimization problems:
Given an n � n matrix A of direct distances between n places, �nd the

matrix ~A of shortest distances (that is the matrix of the lengths of shortest
paths between any pair of places).
It is known that the shortest-distances matrix exists if and only if there

are no negative cycles in DA: For the shortest-distances problem we may
assume without loss of generality that all diagonal elements of A are 0.
We could continue from this and show a link to min-algebra, however to

be consistent with the rest of the book we shall formulate these results in
max-algebraic terms, similarly as in Example 1.2.3. Hence the considered
combinatorial optimization problem is:
Given an n � n matrix A of direct distances between n places, �nd the

matrix ~A of longest distances (that is the matrix of the lengths of longest
paths between any pair of places).
We may assume that all diagonal elements of A are 0 and that there

are no positive cycles in DA; thus A is strongly de�nite. We have seen
in Subsection 1.6.2 that �(A) is exactly ~A: By Proposition 1.6.12 then
~A = An�1: We have:
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Theorem 2.2.1 If A 2 Rn�n is a strongly de�nite direct-distances matrix
then all matrices Aj (j � n � 1) are equal to the longest-distances matrix
for DA: Hence, the kth column (k = 1; :::; n) of Aj (j � n�1) is the vector
of longest distances to node k in DA.

One bene�t of this result is that the longest (and similarly shortest)
distances matrix for a strongly de�nite direct-distances matrix A can be
found simply by repeated max-algebraic squaring of A; that is

A2; A4; A8; A16; :::

until a power Aj (j � n� 1) is reached (see Subsection 1.6.2).
However, there exists another max-algebraic interpretation of the longest

distances problem. We have seen in Proposition 1.6.17 that for a strongly
de�nite matrix A every column v of Aj (j � n� 1) is an eigenvector of A;
that is

A
 v = v:

Corollary 2.2.2 If A 2 Rn�n is a strongly de�nite direct-distances matrix
then every vector of longest-distances to a node in DA is a max-algebraic
eigenvector of A corresponding to the eigenvalue 0:

2.2.2 Maximum cycle mean

The maximum cycle mean of a matrix (denoted � (A) for a matrix A),
has already been de�ned in subsection 1.6.1. As already mentioned, the
problem of calculating � (A) was studied independently in combinatorial
optimization [109], [106]. At the same time the maximum cycle mean is
very important in max-algebra. It is

� the eigenvalue of every matrix,

� the greatest eigenvalue of every matrix,

� the only eigenvalue whose corresponding eigenvectors may be �nite.

Moreover, every eigenvalue of a matrix is the maximum cycle mean of
some principal submatrix of that matrix.
All these and other aspects of the maximum cycle mean are proved in

Chapter 4. Let us mention here a dual feature of the maximum cycle mean
(see Corollary 4.5.6 and Theorem 1.6.29):

Theorem 2.2.3 If A 2 Rn�n then
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(a) �(A) is the greatest eigenvalue of A; that is

�(A) = max
n
� 2 R;A
 x = �
 x; x 2 Rn; x 6= "

o
and, dually

(b)
�(A) = inf

�
� 2 R;A
 x � �
 x; x 2 Rn

	
:

2.2.3 The job rotation problem

Characteristic maxpolynomials of matrices in max-algebra (Section 5.3)
are related to the following job rotation problem: Suppose that a company
with n employees requires these workers to swap their jobs (possibly on a
regular basis) in order to avoid exposure to monotonous tasks (for instance
manual workers at an assembly line, guards in a gallery or ride operators in
a theme park). It may also be required that to maintain stability of service
only a certain number of employees, say k (k < n); actually swap their jobs.
With each pair old job - new job a quantity may be associated expressing
the cost (for instance for an additional training) or the preference of the
worker to this particular change. So the aim may be to select k employees
and to suggest a schedule of the job swaps between them so that the sum
of the parameters corresponding to these changes is either minimum or
maximum. This task leads to �nding a k � k principal submatrix of A for
which the optimal assignment problem value is minimal or maximal (some
entries can be set to +1 or �1 to avoid an assignment to the same or
infeasible job). More formally, we deal with the best principal submatrix

problem (BPSM):
Given a real n � n matrix A; for every k � n �nd a k � k principal

submatrix of A whose optimal assignment problem value is maximal.
Note that solving the assignment problem for all

�
n
k

�
principal subma-

trices for each k would be computationally di¢ cult since
nX
k=1

�
n
k

�
= 2n � 1:

No polynomial method for solving BPSM seems to be known, although its
modi�cation obtained after removing the word �principal� is known [73]
and is polynomially solvable. This can also be seen from the following sim-
ple observation: Let eA be the (2n� k)� (2n� k) matrix obtained from an
n� n matrix A 2 Rn�n by adding n� k rows and n� k columns (k < n)
so that the entries in the intersection of these columns are �1 and the
remaining new entries are zero, see Figure 2.1. If the assignment problem
is solved for eA then every permutation selects 2n� k entries from eA. If A
is �nite then any optimal (maximizing) permutation avoids selecting en-
tries from the intersection of the new columns and rows. But as it selects
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A 0

0   ε

n

n–k

n n–k

=A~

FIGURE 2.1. Solving the Best Submatrix Problem

n � k elements from the new rows and n � k di¤erent elements from the
new columns, it will select exactly 2n � k � 2(n � k) = k elements from
A: No two of these k elements are from the same row or from the same
column and so they represent a selection of k independent entries from a
k � k submatrix of A: Their sum is maximum as the only elements taken
from outside A are zero. So the best k � k submatrix problem can readily
be solved as the classical assignment problem for a special matrix of order
2n� k.
Unfortunately no similar trick seems to exist, that would enable us to

�nd a best principal submatrix.
Let us denote by �k the optimal value in the assignment problem for

a best principal submatrix of order k (k = 1; :::; n). It will be proved in
Section 5.3 that �1; :::; �n are coe¢ cients of the max-algebraic character-
istic polynomial of A: It is not known whether the problem of �nding all
these quantities is an NP -complete or polynomially solvable problem (see
Chapter 11). However, in Subsection 5.3.3 we will present a polynomial
algorithm, based on the max-algebraic interpretation, for �nding some and
in some cases all these coe¢ cients. Note that there is an indication that
the problem of �nding all coe¢ cients is likely to be polynomially solvable
as the following result suggests:
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Theorem 2.2.4 [21] If the entries of A 2 Rn�n are polynomially bounded,
then the best principal submatrix problem for A and all k; k � n; can be
solved by a randomized polynomial algorithm.

2.2.4 Other problems

In the table below (where SD stands for "strongly de�nite") is an overview
of combinatorial or combinatorial optimization problems that can be for-
mulated as max-algebraic problems [27]. The details of most of these links
will be presented in the subsequent chapters.

Max-algebra Combinatorics Combinatorial
(0-1 entries) Optimization

maper(A) Term rank Optimal value to the
assignment problem

A
 x = b
9x Set covering
9!x Minimal set covering

�(A) if A SD Transitive closure Longest distances matrix

A
 x = �
 x
� Maximum cycle mean
x Balancing coe¢ cients
x if A SD Connectivity to a node Longest distances
x if A SD Scaling to normal form

GM regularity /9 even directed cycle All optimal permutations
0-1 sign-nonsingularity of the same parity

Strong regularity Digraph acyclic Unique optimal
permutation

Characteristic 9 exact cycle cover Best principal submatrix
polynomial 9 principal submatrix (JRP)

with > 0 permanent

2.3 Exercises

Exercise 2.3.1 The assignment problem for A = (aij) 2 Rn�n can be
described as a (conventional) linear program

f(x) =
X
i;j2N

aijxij �! max
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s.t. X
j2N

aijxij = 1; i 2 N;

X
i2N

aijxij = 1; j 2 N;

xij � 0:

Its dual is
g (u; v) =

X
i2N

ui +
X
j2N

vi �! min

s.t.
ui + vj � aij ; i; j 2 N:

Show using max-algebra that fmax = gmin = maper (A) :
(Hint: First show that f � g and then prove the rest by using the results

on the eigenproblem for strongly de�nite matrices.)

Exercise 2.3.2 A matrix A = (aij) 2 Rn�n is called pyramidal if aij �
ars whenever max (i; j) < max (r; s) : Prove that �k = maper (Ak) ; where
Ak is the principal submatrix of A determined by the �rst k row and column
indices. [38]
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3
One-sided max-linear systems and
max-algebraic subspaces

Recall that one-sided max-linear systems are systems of equations of the
form

A
 x = b (3.1)

where A 2 Rm�n and b 2 Rm: They are closely related to systems of
inequalities

A
 x � b: (3.2)

Both were studied already in the �rst papers on max-algebra [57], [144]
and the theory has further evolved in the 1960�s and 1970�s [149], [150],
and later [24], [27].
It should be noted that one-sided max-linear systems can be solved more

easily than their linear-algebraic counterparts. Also, unlike in conventional
linear algebra, systems of inequalities (3.2) always have a solution x 2 Rn

and the task of �nding a solution to (3.1) is strongly related to the same
task for the systems of inequalities. Note that, in contrast, the two-sided
systems studied in Chapter 7 are much more di¢ cult to solve.
In this chapter we will pay attention to two approaches for solving the

one-sided systems, combinatorial and algebraic. Since the solvability ques-
tion is essentially deciding whether a vector (b) is in a subspace (generated
by the columns of A), later in this chapter we present a general theory
of max-algebraic subspaces including the concepts of generators, indepen-
dence and bases. We also brie�y discuss unsolvable systems.

3.1 The combinatorial method
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Let A = (aij) 2 R
m�n

and b = (b1; :::; bm)
T 2 Rm: The set of solutions to

(3.1) will be denoted by S(A; b) or just S if no confusion can arise, that is

S(A; b) =
n
x 2 Rn;A
 x = b

o
;

and A1; :::; An will stand for the columns of A:
We start with trivial cases. If b = " then

S(A; b) =
n
x = (x1; :::; xn)

T 2 Rn;xj = " if Aj 6= "; j 2 N
o
;

in particular S(A; b) = Rn if A = ": If A = " and b 6= " then S(A; b) = ;:
Hence we assume in what follows that A 6= " and b 6= ":
If bk = " for some k 2 M then for any x 2 S(A; b) we have xj = " if

akj 6= "; j 2 N ; consequently the kth equation may be removed from the
system together with every column Aj where akj 6= " (if any) and setting
the corresponding xj = ". Hence there is no loss of generality to assume
that b 2 Rm (however, we will not always make this assumption).
If b 2 Rm and A has an " row then S(A; b) = ;: If Aj = "; j 2 N then xj

may take on any value in a solution x. Hence we may also suppose without
loss of generality that A is doubly R-astic.
Let A be column R-astic and b 2 Rm. A key role is played by the vector

x = (x1; :::; xn)
T where

xj =

�
max
i2M

aij 
 b�1i
��1

for j 2 N: Obviously, x 2 Rn and

xj = min
�
bi 
 a�1ij ; i 2M;aij 2 R

	
for j 2 N . Where appropriate we will denote x = x(A; b): We will also
denote

Mj (A; b) =
�
i 2M ;xj = bi 
 a�1ij

	
for j 2 N: We will abbreviate Mj (A; b) by Mj if no confusion can arise.
The combinatorial method follows from the next theorem.

Theorem 3.1.1 [57], [149] Let A 2 Rm�n be doubly R-astic and b 2 Rm:
Then

(a) A
 x(A; b) � b;

(b) x � x(A; b) for every x 2 S(A; b),

(c) x 2 S(A; b) if and only if x � x(A; b) and[
j:xj=xj

Mj =M; (3.3)
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(d) (A
 x)i = bi for at least one i 2M:

Proof. (a) Let k 2M; j 2 N and suppose that akj 2 R: Then

akj 
 xj � akj 
 bk 
 a�1kj = bk:

This inequality follows immediately if akj = ": HenceX�

j2N
(akj 
 xj) � bk for all k 2M

and the statement follows.
(b) Let x 2 S(A; b); i 2M; j 2 N: Then aij
xj � bi thus x

�1
j � aij
b�1i

and so x�1j � maxi2M aij 
 b�1i : Therefore

xj �
�
max
i2M

aij 
 b�1i
��1

= xj :

(c) Suppose �rst x 2 S(A; b): We only need to prove M �
S
j:xj=xj

Mj :

Let k 2 M: Since bk = akj 
 xj > " for some j 2 N and x�1j � x�1j �
aij 
 b�1i for every i 2 M; we have x�1j = akj 
 b�1k = maxi2M aij 
 b�1i :
Hence k 2Mj and xj = xj :
Suppose now x � x(A; b) and that (3.3) holds. Let k 2 M; j 2 N: Then

akj 
 xj � bk if akj = ": If akj 6= " then

akj 
 xj � akj 
 xj � akj 
 bk 
 a�1kj = bk: (3.4)

Therefore A 
 x � b: At the same time k 2 Mj for some j 2 N satisfying
xj = xj : For this j both inequalities in (3.4) are equalities and thus A
x =
b:
(d) If (A
 x)i < bi for all i 2 M then A 
 (�
 x) � b for some � > 0

and so (due to the �niteness of x) � 
 x would be a greater solution to
A
 x � b than x; a contradiction with (b).
It follows that x = x(A; b) is always a solution to A
x � b; and A
x = b

has a solution if and only if x(A; b) is a solution. Because of the special role
of x; this vector is called the principal solution to A
 x = b and A
 x � b
[60]. Note that the principal solution may not be a solution to A
 x = b:
More precisely, we have:

Corollary 3.1.2 Let A 2 Rm�n be doubly R-astic and b 2 Rm: Then the
following three statements are equivalent:

(a) S(A; b) 6= ;;

(b) x 2 S(A; b);

(c)
S
j2N Mj =M:
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The combinatorial aspect of systems A 
 x = b will become even more
apparent when we deduce a criterion for unique solvability:

Corollary 3.1.3 Let A 2 Rm�n be doubly R-astic and b 2 Rm: Then
S(A; b) = fxg if and only if

(a)
S
j2N Mj =M and

(b)
S
j2N 0 Mj 6=M for any N 0 � N;N 0 6= N:

Example 3.1.4 Consider the system0BBBB@
�2 2 2
�5 �3 �2
" " 3

�3 �3 2
1 4 "

1CCCCA

0@ x1

x2
x3

1A =

0BBBB@
3

�2
1
0
5

1CCCCA :

The matrix
�
aij 
 b�1i

�
is 0BBBB@

�5 �1 �1
�3 �1 0
" " 2

�3 �3 2
�4 �1 "

1CCCCA :

Hence x = (3; 1;�2)T ;M1 = f2; 4g ;M2 = f1; 2; 5g ;M3 = f3; 4g : The
vector x is a solution since [

j=1;2;3

Mj =M: (3.5)

However, M2[M3 =M as well and no other union of the sets M1;M2;M3

is equal to M: Therefore we may describe the whole solution set:

S(A; b) =
n
(x1; x2; x3)

T 2 R3;x1 � 3; x2 = 1; x3 = �2
o
:

Note that if a22 = �3 is reduced, say to �4; then (3.5) still holds but
none of the sets M1;M2;M3 may be omitted without violating this equality.
Therefore x is a unique solution to this (new) system. If we further reduce
a12 = 2; say to 1 then (3.5) is not satis�ed any more and the system has
no solution.

It is easily seen that the principal solution to A
 x = b can be found in
O (mn) time and the same e¤ort is su¢ cient for checking that it actually
is a solution to this system.
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The previous statements already indicate that the task of solving one-
sided max-linear systems is essentially a combinatorial problem. To make
it even more visible, let us consider the following problems:
(UNIQUE) SOLVABILITY: Given A 2 Rm�n and b 2 Rm does the

system A
 x = b have a (unique) solution?
(MINIMAL) SET COVERING [126]: Given a �nite set M and subsets

M1; :::;Mn of M , is [
j2N

Mj =M

(is [
j2N

Mj =M but
[
j2N
j 6=k

Mj 6=M

for any k 2 N)?
Corollaries 3.1.2 and 3.1.3 show that for every linear system it is pos-

sible to straightforwardly �nd a �nite set and a collection of its subsets
so that SOLVABILITY is equivalent to SET COVERING and UNIQUE
SOLVABILITY is equivalent to MINIMAL SET COVERING.
This correspondence is two-way, as the statements below suggest. Let us

assume without loss of generality that M and its subsets M1; :::;Mn are
given. De�ne A = (aij) 2 Rm�n as follows:

aij =

�
1 if i 2Mj

0 else
for all i 2M; j 2 N;

b = 0:
The following are corollaries of Theorem 3.1.1.

Theorem 3.1.5
S
j2N Mj =M if and only if A
 x = b has a solution.

Theorem 3.1.6
S
j2N Mj = M and

S
j2N 0 Mj 6= M for any N 0 �

N;N 0 6= N if and only if A
 x = b has a unique solution.

We have demonstrated that every max-linear system is an algebraic rep-
resentation of a set covering problem, and conversely. This has various con-
sequences. For instance the task of �nding a solution to A
x = b with the
minimum number of components equal to x is polynomially equivalent to
the minimum cardinality set cover problem and is therefore NP -complete
[83]. Standard textbooks on combinatorial optimization such as [120] are
recommended for more explanation on the set covering problem or for an
explanation of NP -completeness.
Note that an interesting generalization of the combinatorial method to

the in�nite-dimensional case can be found in [5].
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3.2 The algebraic method

In some theoretical and practical applications it may be helpful to ex-
press the principal solution algebraically rather than combinatorially. We
start with inequalities. As already seen in Theorem 3.1.1, the systems of
one-sided inequalities always have a solution and can be solved as eas-
ily as equations (unlike their linear-algebraic counterparts). The algebraic

method slightly extends this result to any A 2 R
m�n

and b 2 R
m
: Key

statements are the following lemma and theorem; the reader is referred to
page 1 and Subsection 1.6.3 for the necessary de�nitions and conventions
on �1. For consistency we will denote in this section a�1 (that is �a) for
a 2 R by a�:

Lemma 3.2.1 If a; b 2 R then x 2 R satis�es the inequality

a
 x � b (3.6)

if and only if
x � a� 
0 b: (3.7)

Proof. The statement holds when a; b 2 R since a�
0b = �a+b: If a = +1
and b = �1 then x = �1 is the unique solution to (3.6) and (3.7) reads
x � �1: In all other cases when a; b 2 f�1;+1g the solution set to (3.6)
is R and (3.7) reads x � +1:

Theorem 3.2.2 [59] If A 2 R
m�n

; b 2 R
m
and x 2 R

n
then

A
 x � b if and only if x � A� 
0 b:

Proof. The following are equivalent (Lemma 3.2.1 is used in the third
equivalence):

A
 x � b,X�

j2N
(aij 
 xj) � bi for all i 2M;

aij 
 xj � bi for all i 2M; j 2 N;
xj � (aij)

� 
0 bi for all i 2M; j 2 N;
xj � a�ji 
0 bi for all i 2M; j 2 N;

xj �
X�0

i2M

�
a�ji 
0 bi

�
for all j 2 N;

x � A� 
0 b:

It follows from the de�nition of the principal solution x (page 58) that
x = A� 
0 b if A is doubly R-astic and b 2 Rm: We will therefore extend
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this de�nition and call A� 
0 b the principal solution for any A 2 R
m�n

and b 2 R
m
:

Corollary 3.2.3 If A 2 Rm�n, b 2 Rm and c 2 Rnthen

(a) x is the greatest solution to A
 x � b; that is

A
 (A� 
0 b) � b

(b) A
 x = b has a solution if and only if x is a solution and

(c)
A
 (A� 
0 (A
 c)) = A
 c:

Proof. (a) x is a solution since it satis�es the condition of Theorem 3.2.2
and that theorem is also saying that x � x if A
x � b; hence x is greatest.
(b) Suppose A 
 x = b for some x 2 Rn: By Theorem 3.2.2 x � x and

by Corollary 1.1.2 we then have

b = A
 x � A
 x � b:

This implies A
 x = b:
(c) The equation A
x = A
 c has a solution, thus by (b) A�
0 (A
 c)

is a solution and the statement follows.
It will be useful to have an immediate generalization of these results to

matrix inequalities:

Corollary 3.2.4 If A 2 R
m�n

; B 2 R
m�k

; C 2 R
n�l

and X = A� 
0 B
then

(a) X is the greatest solution to A
X � B, that is

A
 (A� 
0 B) � B;

(b) A
X = B has a solution if and only if X is a solution and

(c)
A
 (A� 
0 (A
 C)) = A
 C:

Proof. This corollary follows immediately since A 
X � B is equivalent
to the system of one-sided max-linear systems:

A
Xr � Br (r = 1; :::; k)

where X1; :::; Xk and B1; :::; Bk are the columns of X and B, respectively.
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3.3 Subspaces, generators, extremals and bases

Being motivated by the results of the previous sections of this chapter we
now present the theory of max-linear subspaces, independence and bases.
The main bene�t for the aims of this book is the result that every �nitely
generated subspace has an essentially unique basis. We will also show how
to �nd a basis of a �nitely generated subspace which will be of fundamental
importance in Chapter 4 where we use this result for �nding the bases of
eigenspaces. Our presentation follows the lines of [43] and con�rms the
results of [69] developed for subspaces of Rn [ f"g : Some of the results of
this section have been proved in [60], [103], [105] and [147].
Let S � Rn: The set S is called a max-algebraic subspace if

�
 u� � 
 v 2 S

for every u; v 2 S and �; � 2 R: The adjective "max-algebraic" will usually
be omitted.
A vector v = (v1; :::; vn)

T 2 Rn is called a max-combination of S if

v =
X�

x2S
�x 
 x; �x 2 R (3.8)

where only a �nite number of �x are �nite. The set of all max-combinations
of S is denoted by span (S) : We set span (;) = f"g : It is easily seen that
span (S) is a subspace. If span (S) = T then S is called a set of generators
for T:
A vector v 2 S is called an extremal in S if v = u�w for u; v 2 S implies

v = u or v = w: Clearly, if v 2 S is an extremal in S and � 2 R then �
 v
is also an extremal in S:
Note that terminology varies in the max-algebraic literature and, for in-

stance, extremals are called �vertices�in [76], [105] and �irreducible elements�
in [146].
Let v = (v1; :::; vn)

T 2 Rn; v 6= ": The max-norm or just norm of v is
kvk = max (v1; :::; vn) ; v is called scaled if kvk = 0: The set S is called
scaled if all its elements are scaled.
The set S is called dependent if v is a max-combination of S�fvg for some

v 2 S: Otherwise S is independent. The set S is called totally dependent
if every v 2 S is a max-combination of S � fvg : Note that ; is both
independent and totally dependent and f"g is totally dependent.
Let S; T � Rn: The set S is called a basis of T if it is an independent set

of generators for T: The set
n
ei 2 Rn; i = 1; :::; n

o
de�ned by

eij =

�
0 if j = i
" if j 6= i

is a basis of Rn; it will be called standard.
We start with two simple lemmas.
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Lemma 3.3.1 Let S be a set of generators of a subspace T � Rn and let
v be a scaled extremal in T: Then v 2 S:

Proof. Let v be a max-combination (3.8). Since the number of �nite �x
is �nite and v is an extremal we deduce by induction that v = �x 
 x for
some �x 2 R: But both v and x are scaled and therefore v = x yielding
v 2 S:

Lemma 3.3.2 The set of scaled extremals of a subspace is independent.

Proof. Let E 6= ; be the set of extremals of a subspace T and v 2 E: By
applying Lemma 3.3.1 to the subspace T 0 = span (E � fvg) we get v =2 T 0
and the statement follows.
If v = (v1; :::; vn)

T 2 Rn then the support of v is de�ned by

Supp (v) = fj 2 N ; vj 2 Rg :

We will use the following notation. If j 2 Supp (v) then v (j) = v�1j 
 v:

For any j 2 N and S � Rn we denote

S (j) = fv (j) ; v 2 S; j 2 Supp (v)g :

An element of v 2 S is called minimal in S if u � v; u 2 S imply u = v: If
S � Rn is a subspace, v 2 S and j 2 Supp (v) then we denote

Dj (v) = fu 2 S (j) ;u � v (j)g :

The following will be important for the main results of this section.

Proposition 3.3.3 Let S � Rn: Then the following are equivalent:

(a) v 2 span (S) :

(b) For each j 2 Supp (v) there is an xj 2 S such that j 2 Supp
�
xj
�
and

xj (j) 2 Dj (v) :

Proof. If (b) holds then v =
P�

j2Supp(v) �j 
xj ; where �j = vj 

�
xjj

��1
:

Let now v 2 span (S) : Then for each j 2 Supp (v) there is an xj 2 S

with �j 
 xj � v and
�
�j 
 xj

�
j
� vj : Clearly, �j = vj 


�
xjj

��1
and (b)

follows.
The following immediate corollary is an analogue of Carathéodory�s The-

orem and was essentially proved in [103] and [76].

Corollary 3.3.4 Let S � Rn: Then v 2 span (S) if and only if v 2
span

�
x1; :::; xk

	
for some x1; :::; xk 2 S where k � jSupp (v)j :

We add another straightforward corollary that will be used later on.
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Corollary 3.3.5 Let T � Rn be a subspace and Q be a set of generators
for T: Let U � Q and S = Q� U: Then S generates T if and only if each
v 2 Q satis�es condition (b) of Proposition 3.3.3.

The next statement provides two criteria for a vector to be an extremal.

Proposition 3.3.6 Let T � Rn be a subspace and S be a set of generators
for T: Let v 2 S; v 6= ": Then the following are equivalent:

(a) v is an extremal in T:

(b) v (j) is minimal in T (j) for some j 2 Supp (v) :

(c) v (j) is minimal in S (j) for some j 2 Supp (v) :

Proof. (a)=)(c): If jSupp (v)j = 1 then v (j) is minimal in S (j) : So
suppose that jSupp (v)j > 1 and v (j) is not minimal in S (j) for any
j 2 Supp (v) : Then for each j 2 Supp (v) there is an xj 2 S (j) such
that xj � v (j) ; xj 6= v (j) : Therefore v =

P�
j2Supp(v) vj 
 xj ; and v is

proportional with none of xj : Hence v is not an extremal in T:
(c)=)(b): Let u 2 T and assume that j 2 Supp (v) and u (j) � v (j) :

We need to show that u (j) = v (j) : By Proposition 3.3.3 the inequality
w (j) � u (j) holds for some w 2 S: Thus w (j) � u (j) � v (j) and by (c)
it follows that w (j) = u (j) = v (j) :
(b)=)(a): Let v (j) be minimal in T (j) for some j 2 Supp (v) and sup-

pose that v = u � w for some u;w 2 T: Then both u � v and w � v and
either uj = vj or wj = vj ; say (without loss of generality) uj = vj : Hence
u (j) � v (j) and it follows from (b) that u (j) = v (j) : Therefore also u = v
and (a) follows.
We can now easily deduce a corollary that shows the crucial role of

extremals: they are generators.

Corollary 3.3.7 Let T � Rn be a subspace. If Dj (v) has a minimal el-
ement for each v 2 T and each j 2 Supp (v) then T is generated by its
extremals.

Proof. Suppose that xj is a minimal element ofDj (v) : Since, for u 2 T (j) ;
the inequality u � xj implies u 2 Dj (v) ; x

j is also a minimal element of
T (j) : The statement now follows by combining Propositions 3.3.3 and
3.3.6.
The following fundamental result was essentially proved in [147]. Here

we slightly reformulate it: every set of generators S of a subspace T can be
partitioned as E[F where E is a set of extremals for T and the remainder
F is redundant.

Theorem 3.3.8 Let T � Rn be a subspace and S be a set of scaled gener-
ators for T: Let E be a set of scaled extremals in T: Then
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(a) E � S:

(b) Let F = S �E: Then for any v 2 F the set S �fvg is (also) a set of
generators for T:

Proof. Part (a) repeats Lemma 3.3.1.
To prove (b), let v 2 F: Since v is not an extremal, by Proposition

3.3.6 for each j 2 Supp (v) there is a zj 2 T such that zj (j) < v (j) :
Since T = span (S) ; by Proposition 3.3.3 there is also an yj 2 S satisfying
yj (j) � zj (j) < v (j) : Obviously, yj 6= v and by applying Proposition
3.3.3 again we get that v is a max-combination of

�
yj ; j 2 Supp (v)

	
where

yj 2 S are di¤erent from v: Thus in any max-combination involving v; this
vector can be replaced by a max-combination of vectors in S � fvg which
completes the proof.
The following re�nement of Theorem 3.3.8 will also be useful.

Theorem 3.3.9 Let E be the set of scaled extremals in a subspace T: Let
S � T consist of scaled vectors. Then the following are equivalent:

(a) S is a minimal set of generators for T:

(b) S = E and S generates T:

(c) S is a basis for T:

Proof. (a)=)(b): By Theorem 3.3.8 we have S = E [ F where every
element of F is redundant in S: But since S is a minimal set of generators,
we have F = ;: Hence S = E:
(b)=)(c): E is independent and generating.
(c)=)(a): By independence of S the span of a proper subset of S is

strictly contained in span (S) :
Theorem 3.3.9 shows that if a subspace has a (scaled) basis then it must

be its set of (scaled) extremals, hence the basis is essentially unique. Note
that a maximal independent set in a subspace T may not be a basis for T
as is shown by the following example.

Example 3.3.10 Let T � R2 consist of all (x1; x2)T with x1 � x2 > ": If

0 > a > b > " then
n
(0; a)

T
; (0; b)

T
o
is a maximal independent set in T

but it does not generate T:

We now deduce a few corollaries of Theorem 3.3.9. The �rst one can be
found in [76], [105] and [131].

Corollary 3.3.11 If T is a �nitely generated subspace then its set of scaled
extremals is nonempty and it is the unique scaled basis for T:

Proof. Since T is �nitely generated there exists a minimal set of generators
S: By Theorem 3.3.9 S = E and S is a basis.
The next corollaries are related to totally dependent sets.
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Corollary 3.3.12 If S is a nonempty scaled totally dependent set then S
is in�nite.

Proof. Suppose that S is �nite and let T = span (S) : By Corollary 3.3.11 T
contains scaled extremals, which by Theorem 3.3.8 are contained in S; given
that T = span (S) : But then S is not totally dependent, a contradiction.

Corollary 3.3.13 Let T � Rn be a subspace. Then the following are equiv-
alent:

(a) There is no extremal in T:

(b) There exists a totally dependent set of generators for T:

(c) Every set of generators for T is totally dependent.

Proof. Since there always is a set of generators for T (e.g. the set T itself),
each of (b) and (c) is equivalent to (a) by Theorem 3.3.8.
A subspace S in Rn is called open if S � f"g is open in the Euclidean

topology.

Corollary 3.3.14 Let T � Rn [ f"g ; n > 1; be a subspace. If T � f"g is
open then every generating set for T is totally dependent (and hence T has
no basis).

Proof. It is su¢ cient to show that there is no scaled extremal in T since
the result then follows from Theorem 3.3.8. Let v 2 T � f"g : Since T is
open there exist vectors wp 2 T (p = k; l), where wpp < vp and w

p
i = vi

for i 6= p: Hence v = wk � wl and v 6= wk; v 6= wl: Therefore there are no
scaled extremals in T:
An example of an open subspace is T = Rn [ f"g : For this particular

case Corollary 3.3.14 was proved in [69]. Another example consists of all
vectors (a; b)T with a; b 2 R; a > b:
More geometric and topological properties of max-algebraic subspaces

can be found in [43], [89], [90], [54], [53], [52] and [103].

3.4 Column spaces

We have seen a number of corollaries of the key result, Theorem 3.3.9. We
shall now link the �rst of these corollaries, Corollary 3.3.11 to the results of
the previous sections of this chapter. As usual the column space of a matrix
A 2 Rm�n with columns A1; :::; An is the set

Col(A) =
nX�

j2N
xj 
Aj ;xj 2 R

o
=
n
A
 x;x 2 Rn

o
:
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Since � 
 A 
 x � � 
 A 
 y = A 
 (�
 x� � 
 y) ; we readily see that
any column space is a subspace. Observe that by �nding a solution to a
system A 
 x = b we prove that b 2 Col (A) : A natural task then is to
�nd a basis of this subspace. Corollary 3.3.11 guarantees that such a basis
exists and is unique up to scalar multiples of its elements. Note that for a
formal proof we would have to �rst remove repeated columns as they would
be indistinguishable in a set of columns, but they may be re-instated after
deducing the uniqueness of the basis since the expression "multiples of a
vector v" also covers vectors identical with v: We summarize:

Theorem 3.4.1 For every A 2 Rm�n there is a matrix B 2 Rm�k; k � n;
consisting of some columns of A such that no two columns of B are equal
and the set of column vectors of B is a basis of Col (A) : This matrix B is
unique up to the order and scalar multiples of its columns.

It remains to show how to �nd a basis of the column space of a matrix,
say A: If a column, say Ak is a max-combination of the remaining columns
and A0 arises from A by removing Ak then Col(A) = Col(A0) since in every
max-combination of the columns of A; the vector Ak may be replaced by a
max-combination of the other columns, that is columns of A0: By repeat-
ing this process until no column is a max-combination of the remaining
columns, we arrive at a set that satis�es both requirements in the de�ni-
tion of a basis. Every check of linear independence is equivalent to solving
an m � (n� 1) one sided system and can therefore be performed using
O (mn) operations, thus the whole process is O

�
mn2

�
: Although asymp-

totically equally e¢ cient, a method called the A-test, essentially described
in the following theorem, is more compact:

Theorem 3.4.2 [60] Let A 2 Rm�n be a matrix with columns A1; :::; An
and A be the matrix arising from A� 
0 A after replacing the diagonal
entries by ": Then for all j 2 N the vector Aj is equal to the jth column of
A 
 A if and only if Aj is a max-combination of the other columns of A:
The elements of the jth column of A then provide the coe¢ cients to express
the max-combination.

Proof. See [60], Theorem 16-2.

Example 3.4.3 Let

A =

0@ 1 1 2 " 5
1 0 4 1 5
1 " �1 1 0

1A :
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Then

A� 
0 A =

0BBBB@
�1 �1 �1
�1 0 �"
�2 �4 1
�" �1 �1
�5 �5 0

1CCCCA
0
0@ 1 1 2 " 5
1 0 4 1 5
1 " �1 1 0

1A

=

0BBBB@
0 �1 �2 0 �1
0 " 1 " 4

�3 " 0 " 1
0 " �2 " �1

�4 " �3 " 0

1CCCCA :

Hence

A
A =

0@ 1 0 2 1 5
1 � 2 � 5
1 � � � 0

1A :

We deduce

A1 = 0
A2 ��3
A3 � 0
A4 ��4
A5
A5 = �1
A1 � 4
A2 � 1
A3 ��1
A4

and the basis of Col(A) is fA2; A3; A4g :

The number of vectors in any basis of a �nitely generated subspace T
is called the dimension of T; notation dim (T ) : Unlike in linear algebra,
the dimensions of max-algebraic subspaces are unrelated to the numbers of
components of the vectors in these subspaces. This has been observed in
the early years of max-algebra and the following two statements describe
the anomaly.

Theorem 3.4.4 [60] Let m � 3 and k � 2: There exist k vectors in Rm

none of which is a max-combination of the others.

Proof. It is su¢ cient to �nd k such vectors for m = 3: Consider

A =

0@ 0 0 ::: 0
1 2 ::: k

�1 �2 ::: �k

1A
and apply the A-test to A:

A� 
0 A =

0BB@
0 �1 1
0 �2 2
::: ::: :::
0 �k k

1CCA
0
0@ 0 0 ::: 0

1 2 ::: k
�1 �2 ::: �k

1A

=

0BB@
0 �1 ::: �k + 1

�1 0 ::: �k + 2
::: ::: ::: :::

�k + 1 �k + 2 ::: 0

1CCA :
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Hence all entries in the �rst row of the matrix

A
A =

0@ 0 0 ::: 0
1 2 ::: k

�1 �2 ::: �k

1A

0BB@

" �1 ::: �k + 1
�1 " ::: �k + 2
::: ::: ::: :::

�k + 1 �k + 2 ::: "

1CCA
are �1 yielding that no column of A 
 A is equal to the corresponding
column in A: Using the A-test we deduce that none of the columns of A is
a max-combination of the others.

Theorem 3.4.5 [60] Every real 2 � n matrix has two columns such that
all other columns are a max-combination of these two columns.

Proof. Let A = (aij) 2 R2�n: We may assume without loss of generality
that the order of the columns is such that

a11 
 a�121 � a12 
 a�122 � ::: � a1n 
 a�12n : (3.9)

It is su¢ cient to prove that the system�
a11 a1n
a21 a2n

�

 x =

�
a1k
a2k

�
has a solution for every k = 1; :::; n: From (3.9) we deduce for every k :

a11 
 a�11k � a21 
 a�12k ;
a1n 
 a�11k � a2n 
 a�12k ;

which imply 2 2M1 and 1 2M2 and the statement now follows by Corol-
lary 3.1.2.
These results indicate that the question of a dimension in max-algebra is

more complicated than that in conventional linear algebra. We will return
to this in Chapter 6.

3.5 Unsolvable systems

If a system A 
 x = b has no solution then the question of a best ap-
proximation of b by the mapping x 7�! A 
 x arises. For this we need to
introduce the concept of a distance between two vectors. We shall consider
the distance based on the Chebyshev norm for which a quick answer fol-
lows from our previous results. If x = (x1; :::; xn)

T
; y = (y1; :::; yn)

T 2 Rn
then the Chebyshev distance of x and y is � (x; y) = maxj2N jxj � yj j :
Max-algebraically,

� (x; y) =
X�

j2N

�
xj 
 y�1j � x�1j 
 yj

�
:
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It is easily veri�ed that

� (�
 x; y) � j�j 
 � (x; y) (3.10)

for any � 2 R:
For the approximation of b by A
x we distinguish two important cases:

Case 1 When x has to satisfy the condition A 
 x � b (recall that this
system always has a solution). In MMIPP (see page 9) b corresponds
to required completion times and A
x is the actual completion times
vector. Thus the approximation using Chebyshev distance of A 
 x
and b subject to A 
 x � b can be described as "minimal earliness
subject to zero tardiness" [60].

Case 2 When x is unrestricted, x 2 Rn.

The following two theorems show that the principal solution plays a key
role in the answers to both questions. Recall that x(A; b) is �nite if A is
doubly R-astic and b �nite.

Theorem 3.5.1 [60] Let A 2 Rm�n be doubly R-astic, b 2 Rm; x = x(A; b)
and

Q =
n
x 2 Rn;A
 x � b

o
Then

� (A
 x; b) = min
x2Q

� (A
 x; b) :

Proof. It follows from Theorem 3.1.1 that x 2 Q if and only if x � x: By
Corollary 1.1.2 then

A
 x � A
 x � b

for every x 2 Q:

Theorem 3.5.2 [60] Let A 2 Rm�n be doubly R-astic, b 2 Rm; x =
x(A; b), �2 = � (A
 x; b) and y = �
 x: Then

� (A
 y; b) = min
x2Rn

� (A
 x; b) :

Proof. Since A
x � b and (A
 x)i = bi for some i 2M (Theorem 3.1.1)
we have � (A
 y; b) = �:
Suppose � (A
 z; b) < � (A
 y; b) for some z 2 Rn and let � = � (A
 z; b) :

Then � < � and
A
 z � �
 b:
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Hence
A


�
��1 
 z

�
� b

and so by Theorem 3.5.1 and (3.10)

�2 = � (A
 x; b)
� �

�
A


�
��1 
 z

�
; b
�

�
����1��
 � (A
 z; b)

= �2:

It follows that � � �; a contradiction, hence the statement.
There are other ways of approximating b using A 
 x; for instance by

permuting the components of A
 x [44]. For more types of approximation
see e.g. [47].

3.6 Exercises

Exercise 3.6.1 Describe the solution set to the system A
 x = b; where

A =

0BBBB@
3 2 4
6 7 6
2 4 8
0 2 3
3 1 8

1CCCCA ; b =

0BBBB@
�p
1
1

�4
1

1CCCCA
in terms of the real parameter p: [No solution for p < 2 or p > 3; (�5;� �6;�7)T

for p = 2; unique solution (�3� p;�6;�7)T if 2 < p < 3; (� �6;�6;�7)T
for p = 3:]

Exercise 3.6.2 As in the previous question but for A
 x � b:

[x �

0@ �3 �6 �2 0 �3
�2 �7 �4 �2 �1
�4 �6 �8 �3 �8

1A
0
0BBBB@
�p
1
1

�4
1

1CCCCA =

0@ max (�p� 3;�1)
max (�p� 2; 0)
max (�p� 4;�5)

1A]
Exercise 3.6.3 Find the scaled basis of the column space of the matrix

A =

0@ 3 �2 0 3 2
1 1 �2 6 3
4 3 1 8 0

1A :

[
n
(�1;�3; 0)T ; (�5;�2; 0)T ; (�1; 0;�3)T

o
:]
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Exercise 3.6.4 For A and b with p = 0 of Exercise 3.6.1 �nd the Cheby-

shev best approximation of b by A 
 x over the set
n
x 2 Rn;A
 x � b

o
and then over Rn.

[

0BBBB@
�2
1
1

�4
1

1CCCCA for x =

0@ �5
�6
�7

1A ;
0BBBB@
�1
2
2

�3
2

1CCCCA for x =

0@ �4
�5
�6

1A :]

Exercise 3.6.5 Find the Chebyshev best approximation of b by A
x over
the set

n
x 2 Rn;A
 x � b

o
and then over Rn for A =

�
3 1
2 5

�
and

b =

�
2
0

�
:

[
�
1
0

�
for x =

�
�2
�5

�
;

�
3=2
1=2

�
for x =

�
�3=2
�9=2

�
:]

Exercise 3.6.6 Let A 2 Rm�2: Prove that there exist positions (k; 1) and
(l; 2) in A such that for any b; for which A
 x = b has a solution, (k; 1) is
a column maximum in column 1 of (diag (b))�1 
A and (l; 2) is a column
maximum in column 2 of this matrix, respectively. [44]

Exercise 3.6.7 Prove that the following problem is NP�complete: Given
A 2 Rm�n and b 2 Rm; decide whether it is possible to permute the com-
ponents of b so that for the obtained vector b0 the system A
 x = b0 has a
solution. [31]
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4
Eigenvalues and eigenvectors

This chapter provides an account of the max-algebraic eigenvalue-eigenvector
theory for square matrices over R: The algorithms presented and proved
here enable us to �nd all eigenvalues and bases of all eigenspaces of an
n� n matrix in O

�
n3
�
time. These results are of fundamental importance

for solving the reachability problems in Chapter 8 and elsewhere.
We start with de�nitions and basic properties of the eigenproblem, then

continue by proving one of the most important results in max-algebra,
namely that for every matrix the maximum cycle mean is the greatest
eigenvalue, which motivates us to call it the principal eigenvalue. We then
show how to describe the corresponding (principal) eigenspace. Next we
present the Spectral Theorem, that enables us to �nd all eigenvalues of a
matrix. It also makes it possible to characterize matrices with �nite eigen-
vectors. Finally, we discuss how to e¢ ciently describe all eigenvectors of a
matrix.

4.1 The eigenproblem: Basic properties

Given A 2 Rn�n; the task of �nding the vectors x 2 Rn; x 6= " (eigenvec-
tors) and scalars � 2 R (eigenvalues) satisfying

A
 x = �
 x (4.1)

is called the (max-algebraic) eigenproblem. For some applications it may be
su¢ cient to �nd one eigenvalue-eigenvector pair, however in this chapter we



76 4. Eigenvalues and eigenvectors

show that all eigenvalues can be found and all eigenvectors can e¢ ciently
be described for any matrix.
The eigenproblem is of key importance in max-algebra. It has been stud-

ied since the 1960�s [58] in connection with the analysis of the steady-state
behavior of production systems (see Subsection 1.3.3). Full solution of the
eigenproblem in the case of irreducible matrices has been presented in [60]
and [98], see also [12], [61] and [144]. A general spectral theorem for re-
ducible matrices has appeared in [84] and [10], and partly in [48]. An appli-
cation of the max-algebraic eigenproblem to the conventional eigenproblem
and in music theory can be found in [79].
For A 2 Rn�nand � 2 R we denote by V (A; �) the set consisting of "

and all eigenvectors of A corresponding to �; and by �(A) the set of all
eigenvalues of A; that is

V (A; �) =
n
x 2 Rn;A
 x = �
 x

o
and

�(A) =
�
� 2 R;V (A; �) 6= f"g

	
:

We also denote by V (A) the set consisting of " and all eigenvectors of A,
that is

V (A) =
S

�2�(A)
V (A; �):

Finite eigenvectors are of special signi�cance for both theory and appli-
cations and we denote:

V +(A; �) = V (A; �) \ Rn

and
V +(A) = V (A) \ Rn:

We start by presenting basic properties of eigenvalues and eigenvectors.
The set f�
 x;x 2 Sg for � 2 R and S � Rn will be denoted �
 S:

Proposition 4.1.1 Let A;B 2 Rn�n; � 2 R; �; � 2 R and x; y 2 Rn: Then

(a) V (�
A) = V (A);

(b) �(�
A) = �
 �(A);

(c) V (A; �) \ V (B;�) � V (A�B; �� �);

(d) V (A; �) \ V (B;�) � V (A
B; �
 �);

(e) V (A; �) � V
�
Ak; �k

�
for all integers k � 0;
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(f) x 2 V (A; �) =) �
 x 2 V (A; �);

(g) x; y 2 V (A; �) =) x� y 2 V (A; �):

Proof. If A
 x = �
 x then (�
A)
 x = (�
 �)
 x which proves (a)
and (b).
If A
 x = �
 x and B 
 x = �
 x then

(A�B)
 x = A
 x�B 
 x
= �
 x� �
 x
= (�� �)
 x

and

(A
B)
 x = A
 (B 
 x)
= A
 �
 x
= �
A
 x
= �
 �
 x

which prove (c) and (d). Statement (e) follows by a repeated use of (d) and
setting A = B:
If A
 x = �
 x then A
 (�
 x) = �
 (�
 x) which proves (f).
Finally, if A
 x = �
 x and A
 y = �
 y then

A
 (x� y) = A
 x�A
 y
= �
 (x� y)

and (g) follows.
It follows from Proposition 4.1.1 that V (A; �) is a subspace for every

� 2 �(A); it will be called an eigenspace ( corresponding to the eigenvalue
�).

Remark 4.1.2 By (c) and (e) of Proposition 4.1.1 we have: If A 2 Rn�n

and " < �(A) � 0 then V (A) � V (�(A)) : In particular, V (A�; 0) �
V (�(A�); 0) :

The next statement summarizes spectral properties that are una¤ected
by a simultaneous permutation of the rows and columns.

Proposition 4.1.3 Let A;B 2 Rn�n and B = P�1
A
P; where P is a
permutation matrix. Then

(a) A is irreducible if and only if B is irreducible.

(b) The sets of cycle lengths in DA and DB are equal.

(c) A and B have the same eigenvalues.
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(d) There is a bijection between V (A) and V (B) described by:

V (B) =
�
P�1 
 x;x 2 V (A)

	
:

Proof. To prove (a) and (b) note that B is obtained from A by simulta-
neous permutations of the rows and columns. Hence DB di¤ers from DA

by the numbering of the nodes only and the statements follow. For (c) and
(d) we observe that B 
 z = � 
 z if and only if A 
 P 
 z = � 
 P 
 z;
that is z 2 V (B) if and only if z = P�1 
 x for some x 2 V (A):

Remark 4.1.4 The eigenvectors as de�ned by (4.1) are also called right
eigenvectors in contrast to left eigenvectors that are de�ned by the equation

yT 
A = yT 
 �:

By the rules for transposition we have that y is a left eigenvector of A if
and only if y is a right eigenvector of AT (corresponding to the same eigen-
value), and hence the task of �nding left eigenvectors for A is converted to
the task of �nding right eigenvectors for AT :

4.2 Maximum cycle mean is the principal
eigenvalue

When solving the eigenproblem a crucial role is played by the concepts of
the maximum cycle mean and that of a de�nite matrix. The aim of this
section is to prove that the maximum cycle mean is an eigenvalue of every
square matrix over R: We will �rst solve the extreme case when � (A) = "
and then we prove that the columns of � (A�) with zero diagonal entries
are eigenvectors corresponding to � (A) if � (A) > ":

Recall that the maximum cycle mean of A = (aij) 2 R
n�n

is

�(A) = max
ai1i2 + ai2i3 + :::+ aik�1ik + aiki1

k

where the maximization is taken over all (elementary) cycles (i1; :::; ik; i1)
in DA (k = 1; :::; n), see Lemma 1.6.2. Due to the convention max ; = "; it
follows from this de�nition that � (A) = " if and only if DA is acyclic.

Lemma 4.2.1 Let A = (aij) 2 Rn�n have columns A1; A2; :::; An: If
�(A) = " then �(A) = f"g; at least one column of A is " and the eigen-
vectors of A are exactly the vectors (x1; :::; xn)

T 2 Rn; x 6= " such that

xj = " whenever Aj 6= " (j 2 N). Hence V (A; ") =
n
G
 z; z 2 Rn

o
;

where G 2 Rn�n has columns g1; g2; ::: and for all j 2 N :

gj =

�
ej ; if Aj = ";
"; if Aj 6= ":
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Proof. Suppose �(A) = " and A
 x = �
 x for some � 2 R; x 6= ": Hence

max
j=1;:::;n

(aij + xj) = �+ xi (i = 1; :::; n):

For every i 2 N there is a j 2 N such that

aij + xj = �+ xi :

Thus if, say xi1 > "; and i = i1 then there are i2; i3; ::: such that

aiii2 + xi2 = �+ xi1
ai2i3 + xi3 = �+ xi2

::::

where xi1 ; xi2 ; xi3 ; ::: > ": This process will eventually cycle. Let us assume
without loss of generality that the cycle is (i1; :::; ik; ik+1 = i1): Hence the
last equation in the above system is

aiki1 + xi1 = �+ xik :

In all these equations both sides are �nite. If we add them up and simplify,
we get

ai1i2 + ai2i3 + :::+ aik�1ik + aiki1 = k�

showing that a cycle in DA exists, a contradiction to �(A) = ". Therefore
�(A)\R = ;: At the same time A has an " column by Lemma 1.5.3. If the
jth column is " then A
x = �(A)
x for any vector x whose components are
all "; except for the jth which may be of any �nite value. Hence �(A) = f"g
and the rest of the Lemma follows.
Since Lemma 4.2.1 completely solves the case �(A) = "; we may now

assume that we deal with matrices whose maximum cycle mean is �nite.
Recall that the matrix A� = (�(A))

�1 
 A is de�nite for any A 2 Rn�n

whenever �(A) > " (Theorem 1.6.5).

Proposition 4.2.2 Let A 2 Rn�n and �(A) > ": Then

V (A) = V (�(A)�1 
A):

Proof. The statement follows from part (a) of Proposition 4.1.1.
Thus by Lemma 4.2.1, Proposition 4.1.1 (parts (a) and (b)) and Propo-

sition 4.2.2 the task of �nding all eigenvalues and eigenvectors of a matrix
has been reduced to the same task for de�nite matrices.
Recall that �(A) was de�ned in Subsection 1.6.2 as the in�nite series

A�A2 �A3 � ::: and that

�(A) = A�A2 � :::�An
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if and only if �(A) � 0 (Proposition 1.6.10).
Let us denote the columns of � (A) =

�
ij
�
by g1; :::; gn: Recall that if A

is de�nite then the values ij (i; j 2 N) represent the weights of heaviest
i� j paths in DA (Subsection 1.6.2). The signi�cance of �(A) for matrices
with �(A) � 0 is indicated by the fact that for such matrices

A
 �(A) = A2 � :::�An+1 � �(A)

due to (1.20), thus yielding

A
 gj � gj for every j 2 N: (4.2)

An important point of the max-algebraic eigenproblem theory is that in
(4.2) actually equality holds whenever A is de�nite and j 2 Nc(A) :

Lemma 4.2.3 Let A = (aij) 2 R
n�n

: If A is de�nite, g1; :::; gn are the
columns of � (A) and j 2 Nc(A) then A
 gj = gj.

Proof. Let j 2 Nc(A) and i 2 N: Then by (4.2)

max
r=1;:::;n

(air + rj) � ij

and we need to prove that actually equality holds. We may assume with-
out loss of generality ij > " (otherwise the wanted equality follows). Let
(i; k; :::; j) be a heaviest i � j path. If k = j then ij = aij = aij + jj :
If k 6= j then ij = aik + kj : In each case there is an r such that
air + rj = ij :
Before we summarize our results in the main statement of this section,

we give a practical description of the set of critical nodes Nc(A): Since there
are no cycles of weight more than 0 in DA for de�nite matrices A but at
least one has weight 0, we have then that for a de�nite matrix A at least
one diagonal entry in �(A) is 0 and all diagonal entries are 0 or less since
the kth diagonal entry is the greatest weight of a cycle in DA containing
node k:
It also follows for any de�nite matrix A, that zero diagonal entries in

� (A) exactly correspond to critical nodes, that is we have

Nc(A) = fj 2 N ; jj = 0g: (4.3)

By Lemma 4.2.3 zero is an eigenvalue of every de�nite matrix. Hence
Proposition 4.1.1 (part 2), Lemmas 4.2.1, 4.2.2, 1.6.6 and 4.2.3 and (4.3)
imply:

Theorem 4.2.4 �(A) is an eigenvalue for any matrix A 2 Rn�n: If �(A) >
" then up to n eigenvectors of A corresponding to �(A) can be found among
the columns of �(A�). More precisely, every column of �(A�) with zero di-
agonal entry is an eigenvector of A with corresponding eigenvalue �(A).
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In view of Theorem 4.2.4 we will call � (A) the principal eigenvalue of
A:
Note that when the result of Theorem 4.2.4 is generalized to matrices

over linearly ordered commutative groups then the concept of radicability
of the underlying group (see Section 1.4) is crucial, since otherwise it is not
possible to guarantee the existence of the maximum cycle mean. Therefore
in groups that are not radicable, such as the additive group of integers, an
eigenvalue of a matrix may not exist.

4.3 Principal eigenspace

The results of the previous section enable us to present a complete de-
scription of all eigenvectors corresponding to the principal eigenvalue. Such
eigenvectors will be called principal and V (A; � (A)) will be called the
principal eigenspace of A: Our aim in this section is to describe bases of
V (A; � (A)).
The columns of � (A�) with zero diagonal entry are principal eigenvectors

by Theorem 4.2.4. We will call them the fundamental eigenvectors [60] of
A (FEV). Clearly, every max-combination of fundamental eigenvectors is
also a principal eigenvector.
We will use Theorem 4.2.4 and

� prove that there are no principal eigenvectors other than max-combinations
of fundamental eigenvectors,

� identify fundamental eigenvectors that are multiples of the others,
and

� prove that by removing fundamental eigenvectors that are multiples
of the others we produce a basis of the principal eigenspace, that is,
none of the remaining columns is a max-combination of the others.

We start with a technical lemma.

Lemma 4.3.1 [65] Let A 2 Rn�n; � (A) > " and g1; :::; gn be the columns
of �(A�) =

�
ij
�
: If x = (x1; :::; xn)

T 2 V (A; � (A)) and xi > " (i 2 N)
then there is an s 2 Nc(A) such that

xi = xs + is:

Proof. Let A� = (dij) and i 2 N; xi > ": Then A�
x = x by Proposition
4.1.1 (parts (a) and (b)) andNc(A) = Nc(A�) by Lemma 1.6.6. This implies
that there is a sequence of indices i1 = i; i2; ::: such that

xi1 = di1i2 + xi2 (4.4)

xi2 = di2i3 + xi3
:::
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This sequence will eventually cycle. Let us assume that the cycle is

(ir; :::; ik; ik+1 = ir):

For this subsequence we have

xir = dirir+1 + xir+1
:::

xik = dikir + xir :

In all these equations both sides are �nite. If we add them up and simplify,
we get

dirir+1 + :::+ dikir = 0

and hence ik 2 Nc(A�) = Nc(A):
If we add up the �rst k � 1 equations in (4.4) and simplify, we get

xi1 = di1i2 + :::+ dik�1ik + xik :

Since di1i2 + :::+ dik�1ik is the weight of an i1 � ik path in DA�
and i1ik

is the weight of a heaviest i1 � ik path, we have

xi1 � i1ik + xik :

At the same time x 2 V (� (A�)) (see Remark 4.1.2) and so

xi1 =
X
j2N

�
i1j 
 xj � i1ik + xik :

Hence ik is the sought s:
We are ready to prove that there are no principal eigenvectors other than

max-combinations of fundamental eigenvectors:

Lemma 4.3.2 Suppose that A = (aij) 2 R
n�n

; �(A) > " and g1; :::; gn are
the columns of �(A�) =

�
ij
�
: If x = (x1; :::; xn)

T 2 V (A; � (A)) then

x =
X

j2Nc(A)

�
xj 
 gj :

Proof. Let x = (x1; :::; xn)
T 2 V (A; � (A)) : We have

A� 
 x = x (4.5)

by Proposition 4.1.1 (parts (a) and (b)) and Nc(A) = Nc(A�) by Lemma
1.6.6. This implies (see Remark 4.1.2) that x 2 V (� (A�) ; 0), yielding

x =
X
j2N

�
xj 
 gj �

X
j2Nc(A)

�
xj 
 gj :
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We need to prove that the converse inequality holds too, that is for every
i 2 N there is an s 2 Nc(A) such that

xi � xs + is:

If xi = " then this is trivially true. If xi > " then it follows from Lemma
4.3.1.
Clearly, when considering all possible max-combinations of a set of fun-

damental eigenvectors (or, indeed, of any vectors), we may remove from this
set fundamental eigenvectors that are multiples of some other. To be more
precise, we say that two fundamental eigenvectors gi and gj are equivalent
if gi = �
gj for some � 2 R and nonequivalent otherwise. We characterize
equivalent fundamental eigenvectors using the equivalence of eigennodes
in the next statement (note that the relation i � j has been de�ned in
Subsection 1.6.1):

Theorem 4.3.3 [60] Suppose that A = (aij) 2 Rn�n; �(A) > " and
g1; :::; gn are the columns of �(A�) =

�
ij
�
: If i; j 2 Nc(A) then gi = �
gj

for some � 2 R if and only if i � j:

Proof. Recall that Nc(A) = Nc(A�) by Lemma 1.6.6.
Let i; j 2 Nc(A�): If gi = � 
 gj , � 2 R then ji = � 
 jj = � and

ij = ��1 
 ii = ��1: Hence the heaviest i � j path extended by the
heaviest j� i path is a cycle of weight ��1
� = 0; thus i � j: Conversely,
let i � j and � be the weight of the j � i subpath of the critical cycle
containing both i and j: Then for any k 2 N we have ki = � 
 kj since
� follows from the de�nition of ki and > would imply ��1 
 ki > kj :
But ��1 is the weight of the i� j subpath of the critical cycle containing
both i and j and thus ��1 
 ki is the weight of a k � j path which is a
contradiction with the maximality of kj : Hence gi = �
 gj :
Note that if i � j then we also write gi � gj .
From the last two theorems we can readily deduce:

Corollary 4.3.4 [60] Suppose that A = (aij) 2 Rn�n; �(A) > " and
g1; :::; gn are the columns of �(A�): Then

V (A; � (A)) =

8<: X
j2N�

c (A)

�
�j 
 gj ;�j 2 R; j 2 N�

c (A)

9=;
where N�

c (A) is any maximal set of nonequivalent eigennodes of A:

Clearly, any set N�
c (A) in Corollary 4.3.4 can be obtained by taking

exactly one gk for each equivalence class in (Nc(A);�). The results on bases
in Chapter 3 enable us now to easily describe bases of principal eigenspaces
and, consequently, to de�ne the principal dimension.
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Theorem 4.3.5 [6] Suppose that A = (aij) 2 R
n�n

; �(A) > " and g1; :::; gn
are the columns of �(A�): Then V (A; �(A)) is a nontrivial subspace and we
obtain a basis of V (A; �(A)) by taking exactly one gk for each equivalence
class in (Nc(A);�).

Proof. V (A; �(A)) is a subspace by Proposition 4.1.1 (parts (f) and (g)). It
is nontrivial due to (4.3) and Lemma 4.2.3. By Corollary 3.3.11 it remains
to prove that every gk; k 2 Nc (A) ; is an extremal.
Let k 2 Nc(A) be �xed and suppose that gk = u � v where u; v 2

V (A; �(A)): Then by Lemma 4.3.2 we have:

u =
X

j2N�
c (A)

�
�j 
 gj

and
v =

X
j2N�

c (A)

�
�j 
 gj

where N�
c (A) is a �xed maximal set of nonequivalent eigennodes of A and

�j ; �j 2 R: We may assume without loss of generality that gk 2 N�
c (A)

and thus gk � gh for any h 2 N�
c (A); h 6= k: Hence

gk =
X

j2N�
c (A)

�
�j 
 gj

where �j = �j � �j : Clearly �k � 0: Suppose �k < 0 then

gk =
X

j2N�
c (A)

j 6=k

�
�j 
 gj :

It follows that

0 = kk =
X

j2N�
c (A)

j 6=k

�
�j 
 kj = �h 
 kh

for some h 2 N�
c (A); h 6= k: At the same time

hk =
X

j2N�
c (A)

j 6=k

�
�j 
 hj � �h 
 hh = �h:

Therefore
kh 
 hk � ��1h 
 �h = 0:

The last inequality is in fact equality since there are no positive cycles in
D�(A�); implying that k � h, a contradiction. Hence �k = 0: Then (without
loss of generality) �k = 0 implying u � gk = u� v and thus u = gk:
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The dimension of the principal eigenspace of A will be called the principal
dimension of A and will be denoted pd (A). It follows from Theorems 4.3.3
and 4.3.5 that pd (A) is equal to the number of critical components of
C (A) or, equivalently, to the size of any basis of the column space of the
matrix consisting of fundamental eigenvectors of A: Since this basis can
be found in O

�
n3
�
time (Section 3.4), pd (A) can be found with the same

computational e¤ort.

Remark 4.3.6 It is easily seen that �
�
AT
�
= � (A), �

�
AT
�
= (� (A))

T

and Nc(AT ) = Nc(A): Hence an analogue of Theorem 4.3.5 in terms of
rows of � (A�) for left principal eigenvectors immediately follows. See also
Remark 4.1.4.

Example 4.3.7 Consider the matrix

A =

0BBBBBB@
7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA :

The maximum cycle mean is 8; attained by three critical cycles: (1; 2; 1);
(5; 5) and (4; 5; 6; 4). Thus �(A) = 8; pd (A) = 2 and

�(A�) =

0BBBBBB@
0 1 �1 0 1 1

�1 0 2 �1 0 0
0 1 �1 0 1 1

�1 0 �1 0 1 1
�2 �1 �2 �1 0 0
�2 �1 �2 �1 0 0

1CCCCCCA :

Critical components have node sets f1; 2g and f4; 5; 6g : Hence the �rst
and second column of �(A�) are multiples of each other and similarly the
fourth, �fth and sixth columns. For the basis of V (A; � (A)) we may take
for instance the �rst and fourth column.

Example 4.3.8 Consider the matrix

A =

0BB@
0 3
1 �1

2
1

1CCA
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where the missing entries are ": Then �(A) = 2; Nc(A) = f1; 2; 3g ; critical
components have node sets f1; 2g and f3g ; pd (A) = 2: We can compute

�(A�) =

0BB@
0 1

�1 0
0
�1

1CCA ;

hence a basis of the principal eigenspace is

fg2; g3g =
n
(1; 0; "; ")

T
; ("; "; 0; ")

T
o
:

4.4 Finite eigenvectors

The aim in this chapter is to show how to �nd all eigenvalues and describe
all eigenvectors of a matrix. To achieve this goal, in this section we will
study the set of �nite eigenvectors. We will show how to e¢ ciently describe
all �nite eigenvectors.
We will continue to use the notation �(A�) =

�
ij
�
if �(A) > ": Recall

that Nc(A) = Nc(A�) by Lemma 1.6.6.
We will present the main results of this section in the following order:

� A proof that the maximum cycle mean is the only possible eigenvalue
corresponding to �nite eigenvectors.

� Criteria for the existence of �nite eigenvectors.

� Description of all �nite eigenvectors.

� A proof that irreducible matrices have only �nite eigenvectors.

The �rst result shows that �(A) is the only possible eigenvalue corre-
sponding to �nite eigenvectors. Note that if A = " then every �nite vector
of a suitable dimension is an eigenvector of A and all correspond to the
unique eigenvalue �(A) = ":

Theorem 4.4.1 [60] Let A = (aij) 2 R
n�n

: If A 6= " and V +(A) 6= ; then
�(A) > " and A
 x = �(A)
 x for every x 2 V +(A):

Proof. Let x = (x1; :::; xn)
T 2 V +(A): We have

max
j=1;:::;n

(aij + xj) = �+ xi (i = 1; :::; n)

for some � 2 R: Since A 6= " the LHS is �nite for at least one i and thus
� > ":



4.4 Finite eigenvectors 87

For every i 2 N there is a j 2 N such that

aij + xj = �+ xi :

Hence, if i = i1 is any �xed index then there are indices i2; i3; ::: such that

aiii2 + xi2 = �+ xi1 ;

ai2i3 + xi3 = �+ xi2 ;

::::

This process will eventually cycle. Let us assume without loss of generality
that the cycle is (i1; :::; ik; ik+1 = i1); otherwise we remove the necessary
�rst elements of this sequence. Hence the last equation in the above system
is

aiki1 + xi1 = �+ xik :

In all these equations both sides are �nite. If we add them up and simplify,
we get

� =
ai1i2 + ai2i3 + :::+ aik�1ik + aiki1

k
:

At the same time, if � = (i1; :::; ik; ik+1 = i1) is an arbitrary cycle in DA

then it satis�es the system of inequalities obtained from the above system
of equations after replacing = by � : Hence

� �
ai1i2 + ai2i3 + :::+ aik�1ik + aiki1

k
= �(�;A):

It follows that � = max� �(�;A) = �(A):
Theorem 4.4.1 opens the possibility of answering questions such as the

existence and description of �nite eigenvectors.

Lemma 4.4.2 Let A 2 Rn�n: If A 6= " and x = (x1; :::; xn)
T 2 V +(A)

then for every i 2 N there is an s 2 Nc(A) such that

xi = xs + is;

where �(A�) =
�
ij
�
:

Proof. Since �(A) > " and x 2 V (A; � (A)) by Theorem 4.4.1, the state-
ment follows immediately from Lemma 4.3.1.
We are ready to formulate the �rst criterion for the existence of �nite

eigenvectors.

Theorem 4.4.3 Suppose that A 2 Rn�n; �(A) > " and g1; :::; gn are the
columns of �(A�) =

�
ij
�
: Then

V +(A) 6= ; ()
X

j2Nc(A)

�
gj 2 Rn:
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Proof. Suppose
P�

j2Nc(A)
gj 2 Rn: Every gj (j 2 Nc(A)) is in V (A; � (A))

by Lemma 4.2.3 and
P�

j2Nc(A)
gj 2 V (A) by Proposition 4.1.1. HenceP�

j2Nc(A)
gj 2 V +(A):

On the other hand, by Lemma 4.4.2, if x = (x1; :::; xn)
T 2 V +(A)

then for every i 2 N there is an s 2 Nc(A) such that is 2 R and soP�
j2Nc(A)

gj 2 Rn:
We can now easily deduce a classical result:

Corollary 4.4.4 [60] Suppose A 2 Rn�n; A 6= ". Then V +(A) 6= ; if and
only if the following are satis�ed:

(a) �(A) > ".

(b) In DA there is
(8i 2 N)(9j 2 Nc(A))i! j:

Proof. By Theorem 4.4.1, A 6= " and V +(A) 6= ; implies � (A) > ":
Observe thatX

j2Nc(A)

�
gj 2 Rn ()

X
j2Nc(A)

�
ij 2 R for all i 2 N:

Hence by Theorem 4.4.3 V +(A) 6= ; if and only if

(8i 2 N)(9j 2 Nc(A))ij 2 R:

However, ij is the greatest weight of an i� j path in DA�
or "; if there is

no such path, and the statement follows.
The description of all �nite eigenvectors can now easily be deduced:

Theorem 4.4.5 Let A 2 Rn�n: If �(A) > "; g1; :::; gn are the columns of
� (A�) and V +(A) 6= ; then

V +(A) =

8<: X
j2N�

c (A)

�
�j 
 gj ;�j 2 R

9=; ; (4.6)

where N�
c (A) is any maximal set of nonequivalent eigennodes of A:

Proof. � follows from Lemma 4.2.3, Proposition 4.1.1 and Theorem 4.4.3
immediately. � follows from Lemma 4.3.2.

Remark 4.4.6 Note that (4.6) requires �j 2 R and, in general, gj may
or may not be in V +(A): Therefore the subspace V +(A)[ f"g may or may
not be �nitely generated and hence, in general, there is no guarantee that
it has a basis.
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Example 4.4.7 Consider the matrix

A =

0BB@
0 3
1 �1

2
0 1

1CCA ;

where the missing entries are ": Then �(A) = 2; Nc(A) = f1; 2; 3g ; critical
components have node sets f1; 2g and f3g ; pd (A) = 2: A �nite eigenvector
exists since an eigennode is accessible from every node (unlike in the slightly
di¤erent Example 4.3.8). We can compute

�(A�) =

0BB@
0 1

�1 0
0

�2 �1

1CCA ;

hence a basis of the principal eigenspace is
n
(1; 0; "; ")

T
; ("; "; 0;�2)T

o
: All

�nite eigenvectors are max-combinations of the vectors in the basis provided
that both coe¢ cients are �nite. However, V +(A) [ f"g has no basis.

The following classical complete solution of the eigenproblem for irre-
ducible matrices is now easy to prove:

Theorem 4.4.8 (Cuninghame-Green [60]) Every irreducible matrix A 2
Rn�n (n > 1) has a unique eigenvalue equal to �(A) and

V (A)� f"g = V +(A) =

8<: X
j2N�

c (A)

�
�j 
 gj ;�j 2 R

9=; ;

where g1; :::; gn are the columns of �(A�) and N�
c (A) is any maximal set of

nonequivalent eigennodes of A:

Proof. Let A be irreducible, thus �(A) > ". Also, �(A�) is �nite by Propo-
sition 1.6.10. Every eigenvector of A is also an eigenvector of �(A�) with
eigenvalue 0 (Remark 4.1.2) but the product of a �nite matrix and a vector
x 6= " is �nite. Hence an irreducible matrix can only have �nite eigenvectors
and thus its only eigenvalue is �(A) by Theorem 4.4.1.
On the other hand, due to the �niteness of all columns of �(A�); by

Theorem 4.4.3, V +(A) 6= ; and the rest follows from Theorem 4.4.5.

Remark 4.4.9 Note that every 1 � 1 matrix A over R is irreducible and
V (A)� f"g = V +(A) = R:
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The fact that �(A) is the unique eigenvalue of an irreducible matrix
A was already proved in [58] and then independently in [144] for �nite
matrices. Since then it has been rediscovered in many papers worldwide.
The description of V +(A) for irreducible matrices as given in Corollary
4.4.4 was also proved in [98].
Note that for an irreducible matrix A we have:

V (A) = V +(A) [ f"g = f�(A�)
 z; z 2 R
n
; zj = " for all j =2 Nc(A)g:

Remark 4.4.10 Since �(A�) is �nite for an irreducible matrix A, the gen-
erators of V +(A) are all �nite if A is irreducible. Hence V +(A) [ f"g =
V (A) has a basis in this case, which coincides with the basis of V (A):

Example 4.4.11 Consider the irreducible matrix

A =

0BB@
0 3 0
1 �1 0

0 2
0 1

1CCA ;

where the missing entries are ": Then �(A) = 2; Nc(A) = f1; 2; 3g ; critical
components have node sets f1; 2g and f3g ; pd (A) = 2: We can compute

�(A�) =

0BB@
0 1 �4 �2

�1 0 �5 �3
�3 �2 0 �5
�5 �4 �2 �1

1CCA ;

hence a basis of the principal eigenspace isn
(1; 0;�2;�4)T ; (�4;�5; 0;�2)T

o
:

4.5 Finding all eigenvalues

Our next step is to describe all eigenvalues of square matrices over R: The
information about principal eigenvectors obtained in the previous sections
will be substantially used.
We have already seen in Section 1.5 that if A;B 2 Rn�n are equivalent

(A � B), then DA can be obtained from DB by a renumbering of the
nodes and that B = P�1 
 A
 P for some permutation matrix P . Hence
if A � B then A is irreducible if and only if B is irreducible. We also know
by Proposition 4.1.3 that V (A) and V (B) are essentially the same (the
eigenvectors of A and B only di¤er by the order of their components).
It follows from Theorem 4.4.8 that a matrix with a non�nite eigenvector

cannot be irreducible. The following lemma provides an alternative and
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somewhat more detailed explanation of this simple but remarkable prop-
erty. It may also be useful for a good understanding of the structure of the
set V (A) for a general matrix A.

Lemma 4.5.1 Let A = (aij) 2 R
n�n

and � 2 �(A): If x 2 V (A; �) �
V +(A; �); x 6= "; then n > 1;

A �
�
A(11) "
A(21) A(22)

�
;

� = �(A(22)), and hence A is reducible.

Proof. Permute the rows and columns of A simultaneously so that the
vector arising from x by the same permutation of its components is x0 =�
x(1)

x(2)

�
; where x(1) = " 2 Rp and x(2) 2 Rn�p for some p (1 � p < n).

Denote the obtained matrix by A0 (thus A � A0) and let us write blockwise

A0 =

�
A(11) A(12)

A(21) A(22)

�
;

where A(11) is p� p. The equality A0 
 x0 = �
 x0 now yields blockwise:

A(12) 
 x(2) = ";

A(22) 
 x(2) = �
 x(2):

Since x(2) is �nite, it follows from Theorem 4.4.4 that � = �(A(22)); also
clearly A(12) = ":
We already know (Theorem 4.4.8) that all eigenvectors of an irreducible

matrix are �nite. We now can prove that only irreducible matrices have
this property.

Theorem 4.5.2 Let A = (aij) 2 R
n�n

: Then V (A)�f"g = V +(A) if and
only if A is irreducible.

Proof. It remains to prove the "only if" part since the "if" part follows from

Theorem 4.4.8. If A is reducible then n > 1 and A �
�
A(11) "
A(21) A(22)

�
,

where A(22) is irreducible. By setting � = �(A(22)); x(2) 2 V +(A22); x =�
"
x(2)

�
2 Rn we see that x 2 V (A)� V +(A); x 6= ".

Theorem 4.5.2 does not exclude the possibility that a reducible matrix
has �nite eigenvectors. The following spectral theory will, as a by product,
enable us to characterize all situations when this occurs.
Every matrix A = (aij) 2 R

n�n
can be transformed in linear time by

simultaneous permutations of the rows and columns to a Frobenius normal
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form (FNF) [18], [12], [126]0BB@
A11 " ::: "
A21 A22 ::: "
::: ::: ::: :::
Ar1 Ar2 ::: Arr

1CCA (4.7)

where A11; :::; Arr are irreducible square submatrices of A. The diagonal
blocks are determined uniquely up to a simultaneous permutation of their
rows and columns, however, their order is not determined uniquely. Since
any such form is essentially determined by strongly connected components
of DA; an FNF can be found in O (jV j+ jEj) time [142], [18]. It will turn
out later in this section that the FNF is a particularly convenient form
for studying spectral properties of matrices. Since these are essentially pre-
served by simultaneous permutations of the rows and columns (Proposition
4.1.3) we will often assume, without loss of generality, that the matrix under
consideration already is in an FNF.
If A is in an FNF then the corresponding partition of the node set N of

DA will be denoted as N1; :::; Nr and these sets will be called classes (of
A). It follows that each of the induced subgraphs DA[Ni] (i = 1; :::; r) is
strongly connected and an arc from Ni to Nj in DA exists only if i � j:
Clearly, every Ajj has a unique eigenvalue � (Ajj) : As a slight abuse of
language we will, for simplicity, also say that �(Ajj) is the eigenvalue of
Nj :
If A is in an FNF, say (4.7), then the condensation digraph, notation CA;

is the digraph

(fN1; :::; Nrg; f(Ni; Nj); (9k 2 Ni)(9l 2 Nj)akl > "g):

Observe that CA is acyclic.
Recall that the symbol Ni ! Nj means that there is a directed path

from a node in Ni to a node in Nj in CA (and therefore from each node in
Ni to each node in Nj in DA).
If there are neither outgoing nor incoming arcs from or to an induced sub-

graph CA [fNi1 ; :::; Nisg] (1 � i1 < ::: < is � r) and no proper subdigraph
has this property then the submatrix0BB@

Ai1i1 " ::: "
Ai2i1 Ai2i2 ::: "
::: ::: ::: :::

Aisi1 Aisi2 ::: Aisis

1CCA
is called an isolated superblock (or just superblock). The nodes of CA (that
is classes of A) with no incoming arcs are called the initial classes, those
with no outgoing arcs are called the �nal classes. Note that an isolated
superblock may have several initial and �nal classes.
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N44 N33

N11 N22

N66

N55

FIGURE 4.1. Condensation digraph (6 classes)

For instance the condensation digraph for the matrix0BBBBBB@
A11 " " " " "
� A22 " " " "
� � A33 " " "
� " " A44 " "
" " " " A55 "
" " " " � A66

1CCCCCCA (4.8)

can be seen in Figure 4.1 (note that in (4.8) and elsewhere � indicates a
submatrix di¤erent from "). It consists of two superblocks and six classes
including three initial and two �nal ones.

Lemma 4.5.3 If x 2 V (A); Ni ! Nj and x[Nj ] 6= " then x[Ni] is �nite.
In particular, x[Nj ] is �nite.

Proof. Suppose that x 2 V (A; �) for some � 2 R: Fix s 2 Nj such that
xs > ": Since Ni ! Nj we have that for every r 2 Ni there is a positive
integer q such that brs > " where B = Aq = (bij): Since x 2 V (B; �q) by
Proposition 4.1.1 we also have �q 
 xr � brs 
 xs > ": Hence xr > ":
We are now able to describe all eigenvalues of any square matrix over R.

Theorem 4.5.4 (Spectral Theorem) Let (4.7) be an FNF of a matrix A =
(aij) 2 R

n�n
: Then

�(A) = f�(Ajj);�(Ajj) = max
Ni!Nj

�(Aii)g:

Proof. Note that
�(A) = max

i=1;:::;r
�(Aii) (4.9)

for a matrix A in FNF (4.7).
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First we prove the inclusion � : Suppose

�(Ajj) = maxf�(Aii);Ni ! Njg

for some j 2 R = f1; :::; rg: Denote

S2 = fi 2 R;Ni ! Njg;
S1 = R� S2

and
Mp =

S
i2Sp

Ni(p = 1; 2):

Then �(Ajj) = �(A[M2]) and

A �
�
A[M1] "
� A[M2]

�
:

If �(Ajj) = " then at least one column, say the lth in A[M2] is ": We set
xl to any real number and xj = " for j 6= l: Then x 2 V (A; �(Ajj)):
If �(Ajj) > " then A[M2] has a �nite eigenvector by Theorem 4.4.4, say

~x: Set x[M2] = ~x and x[M1] = ": Then x = (x[M1]; x[M2]) 2 V (A; �(Ajj)):
Now we prove � : Suppose that x 2 V (A; �); x 6= "; for some � 2 R:
If � = " then A has an " column, say the kth, thus akk = ": Hence

the 1 � 1 submatrix (akk) is a diagonal block in an FNF of A: In the
corresponding decomposition of N one of the sets, say Nj ; is fkg: The set
fi;Ni ! Njg = fjg and the theorem statement follows.
If � > " and x 2 V +(A) then � = �(A) (cf. Theorem 4.4.1) and the

statement now follows from (4.9).
If � > " and x =2 V +(A) then similarly as in the proof of Lemma 4.5.1

permute the rows and columns of A simultaneously so that

x =

�
x(1)

x(2)

�
;

where x(1) = " 2 Rp; x(2) 2 Rn�p for some p (1 � p < n). Hence

A �
�
A(11) "
A(21) A(22)

�
and we can assume without loss of generality that both A(11) and A(22) are
in an FNF and therefore also�

A(11) "
A(21) A(22)

�
is in an FNF. Let

A(11) =

0BB@
Ai1i1 " ::: "
Ai2i1 Ai2i2 ::: "
::: ::: ::: :::

Aisi1 Aisi2 ::: Aisis

1CCA
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and

A(22) =

0BB@
Ais+1is+1 " ::: "
Ais+2is+1 Ais+2is+2 ::: "

::: ::: ::: :::
Aiqis+1 Aiqis+2 ::: Aiqiq

1CCA :

We have
� = �(A(22)) = �(Ajj) = max

i=s+1;:::;q
�(Aii);

where j 2 fs + 1; :::; qg. It remains to say that if Ni ! Nj then i 2
fs+ 1; :::; qg.
The Spectral Theorem has been proved in [84] and [10]. Spectral prop-

erties of reducible matrices have also been studied in [11] and [145]. Sig-
ni�cant correlation exists between the max-algebraic spectral theory and
that for nonnegative matrices in linear algebra [128], [13], see also [126]. For
instance the Frobenius normal form and accessibility between classes play
a key role in both theories. The maximum cycle mean corresponds to the
Perron root for irreducible (nonnegative) matrices and �nite eigenvectors
in max-algebra correspond to positive eigenvectors in the spectral theory
of nonnegative matrices. However there are also di¤erences, see Remark
4.6.8.

Let A be in the FNF (4.7). If

�(Ajj) = max
Ni!Nj

�(Aii)

then Ajj (and also Nj or just j) will be called spectral. Thus �(Ajj) 2 �(A)
if j is spectral but not necessarily the other way round.

Corollary 4.5.5 All initial classes of CA are spectral.

Proof. Initial classes have no predecessors and so the condition of the
Theorem is satis�ed.
Recall that �(A) = minf�; (9x 2 Rn)A
 x � �
 xg if �(A) > " (Theo-

rem 1.6.29). In contrast we have:

Corollary 4.5.6

�(A) = max�(A)

= max
n
�;
�
9x 2 Rn; x 6= "

�
A
 x = �
 x

o
for every matrix A 2 Rn�n:

Proof. If A is in an FNF, say (4:7) ; then �(A) = maxi=1;:::;r �(Aii) �
�(Ajj) for all j.
We easily deduce two more useful statements:
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Corollary 4.5.7 1 � j�(A)j � n for every A 2 Rn�n.

Proof. Follows from the previous corollary and from the fact that the
number of classes of A is at most n.

Corollary 4.5.8 V (A) = V (A; �(A)) if and only if all initial classes have
the same eigenvalue �(A):

Proof. The eigenvalues of all initial classes are in �(A) since all initial
classes are spectral, hence all must be equal to �(A) if �(A) = f�(A)g: On
the other hand, if all initial classes have the same eigenvalue �(A); and �
is the eigenvalue of any spectral class then

� � �(A) = max
i
�(Aii)

since there is a path from some initial class to this class and thus � = �(A).

Figure 4.2 shows a condensation digraph with 14 classes including two
initial classes and four �nal ones. The integers indicate the eigenvalues of
the corresponding classes. The six bold classes are spectral, the others are
not.
Note that the unique eigenvalues of all classes (that is of diagonal blocks

of an FNF) can be found in O(n3) time by applying Karp�s algorithm
(see Section 1.6) to each block. The condition for identifying all spectral
submatrices in an FNF provided in Theorem 4.5.4 enables us to �nd them
in O(r2) � O(n2) time by applying standard reachability algorithms to
CA.

Example 4.5.9 Consider the matrix

A =

0BBBBBB@
0 3
1 1

4
0 3 1
�1 2
1 5

1CCCCCCA ;

where the missing entries are ": Then �(A11) = 2; �(A22) = 4; �(A33) = 3;
�(A44) = 5; r = 4; �(A) = f2; 5g; �(A) = 5; initial classes are N1 and N4
and there are no other spectral classes. Final classes are N1 and N2:

We will now use the Spectral Theorem to prove two results, Theorems
4.5.10 and 4.5.14, whose proofs are easier when the Spectral Theorem is
available. The �rst of them has been known for certain types of matrices
for some time [65], [102], however using Theorem 4.5.4 we are able to prove
it conveniently for any matrix:
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FIGURE 4.2. Condensation digraph
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Theorem 4.5.10 Let A 2 Rn�n: Then

�(Ak) = (�(A))
k

holds for all integers k � 0:

Proof. The proof is trivial if n = 1 or k = 0, so assume n � 2; k � 1:
Suppose �rst that A is irreducible. Let x 2 V + (A) = V (A; � (A))�f"g :

By Proposition 4.1.1 we have x 2 V
�
Ak; �

�
Ak
��
and thus by Theorem

4.4.1 (�(A))k = �(Ak): It also follows that (�(A))k is the greatest principal
eigenvalue of a diagonal block in any FNF of (possibly reducible) Ak:
Now suppose that A is reducible and without loss of generality let A be

in the FNF (4.7). Then �(A) = �(Aii) for some i; 1 � i � r: The matrix Ak

is again lower blockdiagonal and has diagonal blocks Ak11; :::; A
k
ii; :::; A

k
rr:

These blocks may or may not be irreducible. However (�(A))k = (�(Aii))
k

is the greatest principal eigenvalue of a diagonal block in any FNF of Akii
(by the �rst part of this proof since Aii is irreducible) and therefore also in
any FNF of Ak: This completes the proof.
For the second result we need two lemmas.

Lemma 4.5.11 Let A 2 Rn�n: Then " 2 �(A) if and only if A has an "
column.

Proof. If A 
 x = " and xk 6= " then the kth column of A is ": A similar
argument is used for the converse.

Lemma 4.5.12 Let A 2 Rn�n be irreducible. If A
x � �
x; x 6= "; � 2 R
then x 2 Rn:

Proof. The statement is trivial for n = 1: Let n > 1; then � (A) > ":
Without loss of generality we assume that A is de�nite. Then we have

� (A)
 x = A
 x�A2 
 x� :::�An 
 x
� �
 x� �2 
 x� :::� �n 
 x
= (�� :::� �n)
 x:

The LHS is �nite since � (A) is �nite (Proposition 1.6.10) and x 6= "; hence
both � and x are �nite.

Corollary 4.5.13 Let A 2 Rn�n be irreducible. Then

�(A) = minf�; (9x 2 Rn)A
 x � �
 xg

= min
n
�;
�
9x 2 Rn; x 6= "

�
A
 x � �
 x

o
:
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Proof. The statement is trivial for n = 1: If n > 1 then � (A) > " and the
�rst equality follows from Theorem 1.6.29. The second follows from Lemma
4.5.12.
We now make another use of Theorem 4.5.4 and prove a more general

version of Theorem 1.6.29:

Theorem 4.5.14 If A 2 Rn�n then

min
n
�;
�
9x 2 Rn; x 6= "

�
A
 x � �
 x

o
= min�(A):

Proof. Without loss of generality let A be in the FNF (4.7) and as before
R = f1; :::; rg : Let

L = inf
n
�;
�
9x 2 Rn; x 6= "

�
A
 x � �
 x

o
:

Clearly L � min�(A) since for x we may take any eigenvector of A. If
" 2 �(A) then using x 2 V (A; ") � f"g we deduce that L = ": We will
therefore assume in the rest of the proof that " =2 �(A):
Let x 2 Rn; x 6= "; � 2 R and A 
 x � � 
 x: We need to show that

� � min�(A): Observe that � > " since otherwise x 2 V (A; ") � f"g ; a
contradiction with " =2 �(A). Let us denote

K = fk 2 R;x [Nk] 6= "g :

Take any k 2 K: We have

A [Nk]
 x [Nk] � (A
 x) [Nk] � �
 x [Nk] :

Then x [Nk] is �nite by Lemma 4.5.12 and so � � � (A [Nk]) by Theorem
1.6.18.
If ast = " for all s 2 Ni; i 2 R and t 2 Nk; then Nk is spectral and the

statement follows.
If ast > " for some s 2 Ni; i 2 R and t 2 Nk; then xs � ��1
ast
xt > ":

Therefore i 2 K and again, as above, by Lemma 4.5.12 x [Ni] is �nite. CA is
acyclic and �nite, hence after a �nite number of repetitions we will reach an
i 2 R such that Ni is initial, and hence also spectral, yielding � (A [Ni]) > "
(since " =2 �(A)) and � (A [Ni]) � min�(A):
At the same time

A [Ni]
 x [Ni] � (A
 x) [Ni] � �
 x [Ni] :

Therefore x [Ni] is �nite by Lemma 4.5.12 and by Theorem 1.6.18 we have:

� � � (A [Ni]) ;

from which the statement follows.
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4.6 Finding all eigenvectors

Our �nal e¤ort in this chapter is to show how to e¢ ciently describe all
eigenvectors of a matrix.
Let A 2 Rn�n be in the FNF (4.7), N1; :::; Nr be the classes of A and

R = f1; :::; rg: For the following discussion suppose that � 2 �(A) is a �xed
eigenvalue, � > "; and denote I(�) = fi 2 R;�(Ni) = �;Ni spectralg.
We denote by g1; :::; gn the columns of �(�

�1 
 A) = (ij): Note that
�(��1
A) = ��1
�(A) may be positive since � � �(A) and thus �(��1

A) may include entries equal to +1 (Proposition 1.6.10). However, for
i 2 I(�) we have

�
�
��1 
Aii

�
= ��1 
 � (Aii) � 0

by Theorem 4.5.4 and hence �
�
��1 
Aii

�
is �nite for i 2 I(�):

Let us denote

Nc(�) =
S

i2I(�)
Nc(Aii) =

(
j 2 N ; jj = 0; j 2

S
i2I(�)

Ni

)
:

Two nodes i and j in Nc(�) are called � - equivalent (notation i �� j) if
i and j belong to the same cycle whose mean is �: Note that if � = �(A)
then ��coincides with � :

Theorem 4.6.1 [35] Suppose A 2 Rn�n and � 2 �(A); � > ". Then
gj 2 R

n
(that is, gj does not contain +1) for all j 2 Nc(�) and a basis of

V (A; �) can be obtained by taking one gj for each �� equivalence class.

Proof. Let us denote M =
S

i2I(�)
Ni: By Lemma 4.1.3 we may assume

without loss of generality that A is of the form�
� "
� A[M ]

�
:

Hence �(��1 
A) is �
� "
� C

�
where C = �((�(A[M ]))�1 
 A[M ]); and the statement now follows by
Proposition 1.6.10 and Theorem 4.3.5 since � = �(A[M ]) and thus ��
equivalence for A is identical with � equivalence for A[M ]:

Corollary 4.6.2 A basis of V (A; �) for � 2 �(A); � > "; can be found
using O

�
k3
�
operations, where k = jI(�)j and we have

V (A; �) = f�(��1 
A)
 z; z 2 Rn; zj = " for all j =2 Nc(�)g:
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Consequently, the bases of all eigenspaces can be found in O
�
n3
�
opera-

tions.

Using Lemma 4.2.1 and Corollary 4.6.2 we get:

Corollary 4.6.3 If A 2 Rn�n; � 2 �(A) and the dimension of V (A; �) is
r� then there is a column R-astic matrix G� 2 R

n�r� such that

V (A; �) =
n
G� 
 z; z 2 R

r�
o
:

It follows from the proofs of Lemma 4.5.1 and Theorem 4.5.4 that V (A; �)
can also be found as follows: If I(�) = fjg then de�ne

M2 =
S

Ni!Nj

Ni;M1 = N �M2:

Hence

V (A; �) = fx;x[M1] = "; x[M2] 2 V +(A[M2])g:

If the set I(�) consists of more than one index then the same process has
to be repeated for each nonempty subset of I(�) that is for each J � I(�);
J 6= ;; we set S =

S
j2J

Nj and

M2 =
S

Ni!S

Ni;M1 = N �M2:

Obviously, this is not a practical way of �nding all eigenvectors as consid-
ering all subsets would be computationally infeasible, but it enables us to
conveniently prove another criterion for the existence of �nite eigenvectors:

Theorem 4.6.4 [11] V +(A) 6= ; if and only if �(A) is the eigenvalue of
all �nal classes (in all superblocks).

Proof. The set M1 in the above construction must be empty to obtain a
�nite eigenvector, hence a class in S must be reachable from every class
of its superblock. This is only possible if S is the set of all �nal classes
since no class is reachable from a �nal class (other than the �nal class
itself). Conversely, if all �nal classes have the same eigenvalue �(A) then
for � = �(A) the set S contains all the �nal classes, they are reachable
from all classes of their superblocks, and consequently M1 = ;, yielding a
�nite eigenvector.

Corollary 4.6.5 V +(A) = ; if and only if a �nal class has eigenvalue less
than �(A):
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Example 4.6.6 For the matrix A of Example 4.5.9 each of the two eigenspaces
has dimension 1. Since

�((A11)�) =

�
0 1

�1 0

�
V (A; 2) is the set of multiples of (1; 0; "; "; "; ")T ; similarly V (A; 5) is the
set of multiples of ("; "; "; "; "; 0)T : There are no �nite eigenvectors since
for the �nal class N2 we have � (A22) < 5:

Remark 4.6.7 Note that a �nal class with eigenvalue less than �(A) may
not be spectral and so �(A) = f�(A)g is possible even if V +(A) = ;: For
instance in the case of

A =

0@ 1 " "
" 0 "
0 0 1

1A
we have �(A) = 1; but V +(A) = ;.

Remark 4.6.8 Following the terminology of nonnegative matrices in lin-
ear algebra we say that a class is basic if its eigenvalue is �(A): It follows
from Theorem 4.6.4 that V +(A) 6= ; if basic classes and �nal classes co-
incide. Obviously this requirement is not necessary for V +(A) 6= ;, which
is in contrast to the spectral theory of nonnegative matrices where for A to
have a positive eigenvector it is necessary and su¢ cient that basic classes
(that is those whose eigenvalue is the Perron root) are exactly the �nal
classes [126].

Remark 4.6.9 The principal eigenspace of any matrix may contain either
�nite eigenvectors only (for instance when the matrix is irreducible) or
only non�nite eigenvectors (see Remark 4.6.7), or both �nite and non-�nite
eigenvectors, for instance when A = I:

4.7 Commuting matrices have a common
eigenvector

The theory of commuting matrices in max-algebra seems to be rather mod-
est at the time when this book goes to print, however, it is known that any
two commuting matrices have a common eigenvector. This will be useful
in the theory of two-sided max-linear systems (Chapter 7) and for solving
some special cases of the generalized eigenproblem (Chapter 9).

Lemma 4.7.1 [70] Let A;B 2 Rn�n and A
B = B 
A. If x 2 V (A; �);
� 2 R; then B 
 x 2 V (A; �).
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Proof. We have A
 x = �
 x and thus

A
 (B 
 x) = B 
 (A
 x) = B 
 �
 x = �
 (B 
 x) :

Theorem 4.7.2 (Schneider) [107] If A;B 2 Rn�nand A 
 B = B 
 A
then V (A) \ V (B) 6= f"g ; more precisely, for every � 2 �(A) there is a
� 2 �(B) such that

V (A; �) \ V (B;�) 6= f"g :

Proof. Let � 2 �(A) and r� be the dimension of V (A; �) : By Corollary
4.6.3 there is a matrix G� 2 R

n�r� such that

V (A; �) =
n
G� 
 z; z 2 R

r�
o
:

Clearly, A 
 G� = � 
 G�: It follows from Lemma 4.7.1 that all columns
of B 
G� are in V (A; �) and hence

B 
G� = G� 
 C

for some r�� r� matrix C: Let v 2 V (C); v 6= "; thus v 2 V (C; �) for some
� 2 R; and set u = G� 
 v: Then u 6= " since G� is column R-astic and we
have:

A
 u = A
G� 
 v = �
G� 
 v = �
 u

and

B 
 u = B 
G� 
 v = G� 
 C 
 v = �
G� 
 v = �
 u:

Hence u 2 V (A; �) \ V (B;�) and u 6= ":

The proof of Theorem 4.7.2 is constructive and enables us to �nd a
common eigenvector of commuting matrices: The system B
G� = G�
C
is a one-sided system for C and since a solution exists, the principal solution
C = G�� 
0 B 
G� is a solution (Corollary 3.2.4).
Note that [107] contains more information on commuting matrices in

max-algebra.

4.8 Exercises

Exercise 4.8.1 Find the eigenvalue, � (A�) and the scaled basis of the
unique eigenspace for each of the matrices below:
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(a) A =
�
3 6
2 1

�
: [� (A) = 4;

� (A�) =

�
0 2

�2 0

�
;

the scaled basis is
n
(0;�2)T

o
:]

(b) A =
�

0 0
�1 0

�
: [� (A) = 0; � (A�) = A; the scaled basis is

n
(0;�1)T ; (0; 0)T

o
:]

(c) A =

0BB@
1 0 4 3
0 1 �3 3
0 1 0 2

�3 �1 0 1

1CCA : [� (A) = 2;

� (A�) =

0BB@
0 1 2 2

�2 �1 0 1
�2 �1 0 0
�4 �3 �2 �1

1CCA ;

the scaled basis is
n
(0;�2;�2;�4)T

o
:]

(d) Find the eigenvalue, � (A�) and the scaled basis of the unique eigenspace
of the matrix

A =

0BBBB@
4 4 3 8 1
3 3 4 5 4
5 3 4 7 3
2 1 2 3 0
6 6 4 8 1

1CCCCA :

[� (A) = 5;

� (A�) =

0BBBB@
0 �1 0 3 �2
0 0 0 3 �1
0 �1 0 3 �2

�3 �4 �3 0 �5
1 1 1 4 0

1CCCCA ;

the scaled basis is
n
(�1;�1;�1;�4; 0)T ; (�2;�1;�2;�5; 0)T

o
:]
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Exercise 4.8.2 Find all eigenvalues and the scaled bases of all eigenspaces
of the matrix

A =

0BBBBBBBBBBBB@

3 2
2 3

4
3 4
6 1
4 1 7 2

3 0
1 4

0 0 2

1CCCCCCCCCCCCA
;

where the missing entries are ". [�(A) = f3; 4; 7; 2g ; the scaled basis of
V (A; 3) isn

(0;�1; "; "; "; "; ";�2;�3)T ; (�1; 0; "; "; "; "; ";�3;�4)T
o
;

the scaled basis of V (A; 4) isn
("; "; 0; "; "; "; "; "; ")

T
o
;

the scaled basis of V (A; 7) isn
("; "; "; "; "; 0;�4; "; ")T

o
;

the scaled basis of V (A; 2) isn
("; "; "; "; "; "; "; 0;�2)T

o
:]

Exercise 4.8.3 In the matrix A below the sign � indicates a �nite en-
try, all other o¤-diagonal entries are ": Find all spectral indices and all
eigenvalues of A; and decide whether this matrix has �nite eigenvectors.

A =

0BBBBBBBB@

4
� 3

� 5
7
� 8

� � 2
� � 4

1CCCCCCCCA
[Spectral indices: 3; 5; 6; 7; �(A) = f5; 8; 2; 4g ; no �nite eigenvectors.]

Exercise 4.8.4 Prove that � (A) = �
�
AT
�
; �
�
AT
�
= (� (A))

T and Nc(A) =
Nc(A

T ) for every square matrix A: Then prove or disprove that �(A) =
�(AT ): [false]
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Exercise 4.8.5 Prove or disprove each of the following statements:

(a) If A 2 Zn�n then A has an integer eigenvector if and only if � (A) 2
Z. [true]

(b) If A 2 Rn�n then A has an integer eigenvector if and only if � (A) 2
Z. [false]

(c) If A 2 Rn�n then A has an integer eigenvalue and an integer eigen-
vector if and only if A 2 Zn�n. [false]

Exercise 4.8.6 We say that T = (tij) 2 Rn�n is triangular if it satis�es
the condition tij < � (T ) for all i; j 2 N; i � j: Prove the statement: If
A 2 Rn�n then � (A) = � (B) for every B that can be obtained from A by
permuting the rows and/or columns if and only if A cannot be transformed
to a triangular matrix by permuting the rows and/or columns. [40]

Exercise 4.8.7 Show that the maximum cycle mean and an eigenvector
for 0� 1 matrices can be found using O

�
n2
�
operations. [33], [66]

Exercise 4.8.8 Prove that the following problem is NP�complete: Given
A 2 Rn�n and x 2 Rn; decide whether it is possible to permute the compo-
nents of x so that the obtained vector is an eigenvector of A. [31]
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5
Maxpolynomials. The characteristic
maxpolynomial

The aim of this chapter is to study max-algebraic polynomials, that is ex-
pressions of the form

p (z) =
X�

r=0;:::;p
cr 
 zjr ; (5.1)

where cr; jr 2 R: The number jp is called the degree of p (z) and p + 1 is
called its length.
We will consider (5.1) both as formal algebraic expressions with z as

an indeterminate and as max-algebraic functions of z. We will abbrevi-
ate "max-algebraic polynomial" to "maxpolynomial". Note that jr are not
restricted to integers and so (5.1) covers expressions such as

8:3
 z�7:2 � (�2:6)
 z3:7 � 6:5
 z12:3: (5.2)

In conventional notation p (z) has the form

max
r=0;:::;p

(cr + jrz)

and if considered as a function, it is piecewise linear and convex.
Each expression cr
zjr will be called a term of the maxpolynomial p (z) :

For a maxpolynomial of the form (5.1) we will always assume

j0 < j1 < ::: < jp;

where p is a nonnegative integer. If cp = 0 = j0 then p (z) is called standard.
Clearly, every maxpolynomial p (z) can be written as

c
 zj 
 q (z) ; (5.3)
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where q (z) is a standard maxpolynomial. For instance (5.2) is of degree
12:3 and length 3: It can be written as

6:5
 z�7:2 
 q (z) ;

where q (z) is the standard maxpolynomial

1:8� (�9:1)
 z10:9 � z19:5:

There are many similarities with conventional polynomial algebra, in
particular (see Section 5.1) there is an analogue of the fundamental theorem
of algebra, that is, every maxpolynomial factorizes to linear terms (although
these terms do not correspond to "roots" in the conventional terminology).
However, there are aspects that make this theory di¤erent. This is caused,
similarly as in other parts of max-algebra, by idempotency of addition,
which for instance yields the formula

(a� b)k = ak � bk (5.4)

for all a; b; k 2 R: This property has a signi�cant impact on many results.
Perhaps the most important feature that makes max-algebraic polynomial
theory di¤erent is the fact that the functional equality p (z) = q (z) does not
imply equality between p and q as formal expressions. For instance (1� z)2
is equal by (5.4) to 2� z2 but at the same time expands to 2� 1
 z � z2
by basic arithmetic laws. Hence the expressions 2� 1
 z � z2 and 2� z2

are identical as functions. This demonstrates the fact that some terms of
maxpolynomials, do not actually contribute to the function value. In our
example 1
z � 2�z2 for all z 2 R. This motivates the following de�nitions:
A term cs
 zjs of a maxpolynomial

X�

r=0;:::;p
cr
 zjr is called inessential

if
cs 
 zjs �

X
r 6=s

�
cr 
 zjr

holds for every z 2 R and essential otherwise. Clearly, an inessential term
can be removed from [reinstated in] a maxpolynomial ad lib when this
maxpolynomial is considered as a function. Note that the terms c0 
 zj0

and cp 
 zjp are essential in any maxpolynomial
X�

r=0;:::;p
cr 
 zjr :

Lemma 5.0.9 If the term cs 
 zjs ; 0 < s < p; is essential in the maxpoly-
nomial

P�
r=0;:::;pcr 
 zjr then

cs � cs+1
js+1 � js

>
cs�1 � cs
js � js�1

:

Proof. Since the term cs 
 zjs is essential and the sequence fjrgpr=0 is
increasing there is an � 2 R such that

cs + js� > cs�1 + js�1�
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and
cs + js� > cs+1 + js+1�:

Hence
cs � cs+1
js+1 � js

> � >
cs�1 � cs
js � js�1

:

We will �rst analyze general properties of maxpolynomials yielding an
analogue of the fundamental theorem of algebra and we will also brie�y
study maxpolynomial equations. Then we discuss characteristic maxpoly-
nomials of square matrices. Maxpolynomials, including characteristic max-
polynomials, were studied in [71], [65], [62], [21] and [9]. The material pre-
sented in Section 5.1 follows the lines of [65].

5.1 Maxpolynomials and their factorization

One of the aims in this section is to seek factorization of maxpolynomials.
We will see that unlike in conventional algebra it is always possible to fac-
torize a maxpolynomial as a function (although not necessarily as a formal
expression) into linear factors over R with a relatively small computational
e¤ort. We will therefore �rst study expressions of the formY


r=1;:::;p
(�r � z)

er (5.5)

where �r 2 R and er 2 R (r = 1; :::; p) and show how they can be multiplied
out; this operation will be called evolution. We call expressions (5.5) a
product form and will assume

�1 < ::: < �p: (5.6)

The constants �r will be called corners of the product form (5.5). Note
that (5.5) in conventional notation readsX

r=1;:::;p
ermax (�r; z) :

Hence, a factor ("� z)e is the same as the linear function ez of slope e: A
factor (� � z)e ; � 2 R; is constant e� while z � � and linear function ez
if z � �: Therefore (5.5) is the function b (z) + f (z) z, where

b (z) =
X

z��s
es�s; f (z) =

X
z>�s

es:

Every product form is a piecewise linear function with constant slope
between any two corners, and for z < �1 and z > �p: It follows that a
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product form is convex when all exponents er are positive. However, this
function may, in general, be nonconvex and therefore we cannot expect
each product form to correspond to a maxpolynomial as a function.
Let us �rst consider product forms

(z � �1)
 (z � �2)
 :::
�
z � �p

�
; (5.7)

that is product forms where all exponents are 1 and all �r 2 R (and still
�1 < ::: < �p). Such product forms will be called simple.
We can multiply out any simple product form using basic arithmetic

laws as in conventional algebra. This implies that the coe¢ cient at zk

(k = 0; :::; p) of the obtained maxpolynomial isX�

1�i1<:::<ir�p
�i1 
 �i2 
 :::
 �ir ; (5.8)

where r = p � k: Note that (5.8) is 0 if r = 0. However, due to (5.6) this
coe¢ cient signi�cantly simpli�es, namely (5.8) is actually the same as

�k+1 
 :::
 �p

when k < p and 0 when k = p: Hence the maxpolynomial obtained by
multiplying out a simple product form (5.7) is of length p + 1 and can be
found as follows:
The constant term is �1 
 ::: 
 �p; the term involving zk (k � 1) is

obtained by replacing �k in the term involving zk�1 by z:
We now generalize this procedure to an algorithm for any product form

with positive exponents and �nite corners. Product forms with these two
properties are called standard.

Algorithm 5.1.1 EVOLUTION
Input: �1; :::; �p; e1; :::; ep 2 R (parameters of a product form).
Output: Terms of the maxpolynomial obtained by multiplying out (5.5).
t0 := �e11 
 :::
 �

ep
p

for r = 1; :::; p do
tr := tr�1 after replacing �

er
r by zer

The general step of this algorithm can also be interpreted as follows:
cr := cr�1 
 (�err )

�1 and jr := jr�1 + er with c0 := �e11 
 ::: 
 �epp and
j0 = 0:
Alternatively, the sequence of pairs f(er; �r)g

p
r=1 is transformed into the

sequence

f(cr; jr)gpr=0 =
n�X

s�r
es�s;

X
s<r

es

�op+1
r=1

;

where the sum of an empty set is 0 by de�nition. Note that the algorithm
EVOLUTION is formulated for general product forms but its correctness
is guaranteed for standard product forms:
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Theorem 5.1.2 If the algorithm EVOLUTION is applied to standard prod-

uct form (5.5) then the maxpolynomial f(z) =
X�

r=0;:::;p
tr is standard, has

no inessential terms and is the same function as the product form.

Proof. Let f(z) =
X�

r=0;:::;p
tr. Then f(z) is standard since all terms

involving z have positive exponents and one of the terms (t0) is constant.
The highest order term (tp) has coe¢ cient zero.
Let r 2 f0; 1; :::; pg and let z be any value satisfying �r < z < �r+1:

Then
tr = cr 
 zjr = ze1 
 :::
 zer 
 �er+1r+1 
 :::
 �

ep
p

and f(z) = cr 
 zjr because any other term has either some z�s replaced
by some ��s (� �r < z) or some ��s (� �r+1 > z) replaced by z�s and will
therefore be strictly less than tr: At the same time, if �r < z < �r+1; then
the value of (5.5) is cr 
 zjr for r = 0; 1; :::; p: We deduce that f(z) and
(5.5) are equal for all z 2 R and hence f(z) has no inessential terms.

Example 5.1.3 Let us apply EVOLUTION to the product form (1� z)

(3� z)2 : Here

f(er; �r)g
p
r=1 = f(1; 1) ; (2; 3)g :

We �nd

t0 = 11 
 32 = 7;
t1 = z1 
 32 = 6
 z;
t2 = z1 
 z2 = z3::

For the inverse operation (that will be called resolution) we �rst notice
that if a standard maxpolynomial p (z) was obtained by EVOLUTION then
two consecutive terms of p (z) are of the form

:::� �err 
 :::
 �epp 
 ze1+:::+er�1 � �er+1r+1 
 :::
 �
ep
p 
 ze1+:::+er � ::::

By cancelling the common factors we get �err �zer or, alternatively (�r � z)
er :

Example 5.1.4 Consider the maxpolynomial 7� 6
 z� z3: By cancelling
the common factor for the �rst two terms we �nd 1 � z; for the next two
terms we get 6�z2 = (3� z)2 : Hence the product form is (1� z)
(3� z)2 :

This idea generalizes to nonstandard maxpolynomials as they can always
be written in the form (5.3).

Example 5.1.5

10
 z�1 � 9� 3
 z2

= 3
 z�1 

�
7� 6
 z � z3

�
= 3
 z�1 
 (1� z)
 (3� z)2 :
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In fact there is no need to transform a maxpolynomial to a standard
one before we apply the idea of cancellation of common factors and we can
straightforwardly formulate the algorithm:

Algorithm 5.1.6 RESOLUTION

Input: Maxpolynomial
X�

r=0;:::;p
cr 
 zjr :

Output: Product form
Y


r=1;:::;p
(�r � z)

er :

For each r = 0; 1; :::; p � 1 cancel a common factor cr+1 
 zjr of two
consecutive terms cr
zjr and cr+1
zjr+1 to obtain cr
 c�1r+1�zjr+1�jr =�
�r+1 � z

�er+1
:

Observe that er+1 = jr+1 � jr and �r+1 =
cr�cr+1
jr+1�jr for r = 0; 1; :::; p� 1:

Again, this algorithm is formulated without speci�c requirements on the
input and we need to identify the conditions under which it will work
correctly.
It will be shown that the algorithm RESOLUTION works correctly if

the sequence �
cr � cr+1
jr+1 � jr

�p�1
r=0

is increasing (in which case the sequence f�rg is increasing). A maxpolyno-
mial satisfying this requirement is said to satisfy the concavity condition.
Before we answer the question of correctness of the algorithm RESOLU-
TION, we present an observation that will be useful:

Theorem 5.1.7 The algorithms EVOLUTION and RESOLUTION are
mutually inverse.

Proof. EVOLUTION maps

(er; �r) �!
�X

s�r
es�s;

X
s<r

es

�
;

while RESOLUTION maps

(cr; jr) �!
�
jr+1 � jr;

cr � cr+1
jr+1 � jr

�
:

Hence EVOLUTION applied to the result of RESOLUTION produces�X
s�r

(js+1 � js)
cs � cs+1
js+1 � js

;
X

s<r
(js+1 � js)

�
=

= (cr � cp; jr � j0)
= (cr; jr) :

One can similarly deduce that RESOLUTION applied to the result of EVO-
LUTION produces (er; �r) :
This theorem �nds an immediate use in the following key statement.
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Theorem 5.1.8 For a standard maxpolynomial p (z) satisfying the concav-
ity condition the algorithm RESOLUTION �nds a standard product form
q (z) such that p (z) = q (z) for all z 2 R:

Proof. Suppose that the maxpolynomial p (z) satis�es the concavity con-
dition. Then the sequence

f�rg
p
r=1 =

�
cr � cr+1
jr+1 � jr

�p�1
r=0

is increasing and �nite and er > 0; since jr are increasing. Hence the
product form q (z) produced by RESOLUTION is standard.
By an application of EVOLUTION to q (z) we get a maxpolynomial

t (z) and t (z) = q (z) for all z 2 R by Theorem 5.1.2. At the same time
t (z) = p (z) for all z 2 R by Theorem 5.1.7. Hence the statement.
Note that computational complexity of RESOLUTION is O (p) :

Lemma 5.1.9 Let p (z) and p0 (z) be two maxpolynomials such that p0 (z) =
c
 zj 
 p (z) : Then the concavity condition holds for p (z) if and only if it
holds for p0 (z) :

Proof. Let p (z) and p0 (z) be two maxpolynomials such that

p0 (z) = c
 p (z)

for some c 2 R. Then

c0s � c0s+1 = cs + c� cs+1 � c = cs � cs+1:

If p0 (z) = zj 
 p (z) for some j 2 R then

j0s+1 � j0s = js+1 + j � js � j = js+1 � js
and the statement follows.

Theorem 5.1.10 A maxpolynomial has no inessential terms if and only
if it satis�es the concavity condition.

Proof. Due to Lemma 5.0.9 we only need to prove the "if" part.
By Lemma 5.1.9 we may assume without loss of generality that p (z) is

standard. By applying RESOLUTION and then EVOLUTION the result
now follows by Theorems 5.1.8, 5.1.2 and 5.1.7.
It follows from Theorem 5.1.8 that if a standard maxpolynomial p (z)

satis�es the concavity condition then the algorithm RESOLUTION applied
to p (z) will produce a standard product form equal to p (z) as a function. If
p (z) does not satisfy the concavity condition then it contains an inessential
term (Theorem 5.1.10). By removing an inessential term, p (z) as a function
does not change. Hence by a repeated removal of inessential terms we can
�nd a standard maxpolynomial p0 (z) from p (z) such that p0 (z) satis�es the
concavity condition and p (z) = p0 (z) for all z 2 R. Formally, this process
can be described by the following algorithm:
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Algorithm 5.1.11 RECTIFICATION

Input: Standard maxpolynomial p (z) =
X�

r=0;:::;p
cr 
 zjr :

Output: Standard maxpolynomial p0 (z) with no inessential terms and
p0 (z) = p (z) for all z 2 R.
p0 (z) := cp�1 
 zjp�1 � cp 
 zjp
s := p� 1; t := p
For r = p� 2; p� 3; :::; 0 do
begin

Until cs�ctjt�js >
cr�cs
js�jr do

begin
Remove cs 
 zjs from p0 (z) ; let cs 
 zjs and ct 
 zjt be the
lowest and second-lowest order term in p0 (z) ; respectively.

end
p0 (z) := cr 
 zjr � p0 (z) ; t := s; s := r

end

Clearly, RECTIFICATION runs in O (p) time since every term enters
and leaves p (z) at most once.
We summarize the results of this section:

Theorem 5.1.12 [71] (Max-algebraic Fundamental Theorem of Algebra)
For every maxpolynomial p (z) of length p it is possible to �nd using O (p)
operations a product form q (z) such that p (z) = q (z) for all z 2 R. This
product form is unique up to the order of its factors.

Proof. Let p (z) be the maxpolynomial
X�

r=0;:::;p
cr 
 zjr : By taking out

cp
zj0 it is transformed to a standard maxpolynomial, say p0 (z) ; which in
turn is transformed using RECTIFICATION into a standard maxpolyno-
mial p00 (z) with no inessential terms. The algorithm RESOLUTION then
�nds a standard product form q (z) such that q (z) = p00 (z) for all z 2 R.
By Theorems 5.1.8 and 5.1.10 we have p00 (z) = p0 (z) = p (z) for all z 2 R
and the statement follows.
We may now extend the term "corner" to any maxpolynomial: Corners

of a maxpolynomial p (z) are corners of the product form that is equal to
p (z) as a function.
It will be important in the next section that it is possible to explicitly

describe the greatest corner of a maxpolynomial:

Theorem 5.1.13 The greatest corner of p (z) =
X�

r=0;:::;p
cr
zjr ; p > 0;

is
max

r=0;:::;p�1

cr � cp
jp � jr

:

Proof. A corner exists since p > 0: Let  be the greatest corner of p (z) :
Then

cp 
 zjp � cr 
 zjr
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for all z �  and for all r = 0; 1; :::; p: At the same time there is an r < p
such that

cp 
 zjp < cr 
 zjr

for all z < : Hence  = maxr=0;1;:::;p�1 r where r is the intersection
point of cp 
 zjp and cr 
 zjr , that is

r =
cr � cp
jp � jr

and the statement follows.
Note that an alternative treatment of maxpolynomials can be found in [9]

and in [2] in terms of convex analysis and (in particular) Legendre-Fenchel
transform.

5.2 Maxpolynomial equations

Maxpolynomial equations are of the form

p (z) = q (z) ; (5.9)

where p (z) and q (z) are maxpolynomials. Since both p (z) and q (z) are
piecewise linear convex functions, it is clear geometrically that the solution
S set to (5.9) is the union of a �nite number of closed intervals in R,
including possibly one-element sets, and unbounded intervals (see Fig. 5.1,
where S consists of one closed interval and two isolated points). Let us
denote the set of boundary points of S (that is the set of extreme points
of the intervals) by S�: The set S� can easily be characterized:

Theorem 5.2.1 [64] Every boundary point of S is a corner of p (z)�q (z) :

Proof. Let z 2 S�: If z is not a corner of p (z)�q (z) then p (z)�q (z) does
not change the slope in a neighborhood of z: By the convexity of p (z) and
q (z) then neither p (z) nor q (z) can change slope in a neighborhood of z:
But then z is an interior point to S; a contradiction.
Theorem 5.2.1 provides a simple solution method for maxpolynomial

equations (5.9). After �nding all corners of p (z)� q (z) ; say �1 < ::: < �r;
it remains
(1) to check which of them are in S; and
(2) if 1 < ::: < t are the corners in S then by selecting arbitrary

interleaving points �0; :::; �t so that

�0 < 1 < �1 < ::: < t < �t

and checking whether �j 2 S for j = 0; :::; t; it is decided about each of
the intervals

�
j�1; j

�
(j = 1; :::; t + 1) whether it is a subset of S: Here

0 = �1 and t+1 = +1:
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FIGURE 5.1. Solving maxpolynomial equations

Example 5.2.2 [64] Find all solutions to the equation

9� 8
 z � 4
 z2 � z3 = 10� 8
 z � 5
 z2:

If p (z) = 9� 8
 z � 4
 z2 � z3 and q (z) = 10� 8
 z � 5
 z2 then

p (z)� q (z) = 10� 8
 z � 5
 z2 � z3

= (z � 2)
 (z � 3)
 (z � 5) :

All corners are solutions and by checking the interleaving points (say)
1; 2:5; 4; 6 one can �nd S = [2; 3] [ f5g :

5.3 Characteristic maxpolynomial

5.3.1 De�nition and basic properties

There are various ways of de�ning a characteristic polynomial in max-
algebra, brie�y characteristic maxpolynomial [62], [99]. We will study the
concept de�ned in [62].
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Let A = (aij) 2 R
n�n

: Then the characteristic maxpolynomial of A is

�A(x) = maper(A�x
I) = maper

0BBB@
a11 � x a12 ::: a1n
a21 a22 � x ::: a2n
...

...
...

an1 an2 ::: ann � x

1CCCA :

It immediately follows from this de�nition that �A(x) is of the form

xn � �1 
 xn�1 � :::� �n�1 
 x� �n;

or brie�y,
X�

k=0;:::;n
�n�k 
 xk; where �0 = 0: Hence the characteristic

maxpolynomial of an n � n matrix is a standard maxpolynomial with ex-
ponents 0; 1; :::; n; degree n and length n+ 1 or less.

Example 5.3.1 If

A =

0@ 1 3 2
0 4 1
2 5 0

1A
then

�A(x) = maper

0@ 1� x 3 2
0 4� x 1
2 5 0� x

1A
= (1� x)
 (4� x)
 (0� x)� 3
 1
 2

�2
 0
 5� 2
 (4� x)
 2
�(1� x)
 1
 5� 3
 0
 (0� x)

= x3 � 4
 x2 � 6
 x� 8:

Theorem 5.3.2 [62] If A = (aij) 2 R
n�n

then

�k =
X�

B2Pk(A)
maper(B); (5.10)

for k = 1; :::; n; where Pk(A) is the set of all principal submatrices of A of
order k:

Proof. The coe¢ cient �k is associated with xn�k in �A(x) and therefore is
the maximum of the weights of all permutations that select n� k symbols
of x and k constants from di¤erent rows and columns of a submatrix of
A obtained by removing the rows and columns of selected x: Since x only
appear on the diagonal the corresponding submatrices are principal.
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Hence we can readily �nd �n = maper(A) and �1 = max(a11; a22; :::; ann),
but other coe¢ cients cannot be found easily from (5.10) as the number of
matrices in Pk(A) is

�
n
k

�
.

If considered as a function, the characteristic maxpolynomial is a piece-
wise linear convex function in which the slopes of the linear pieces are n
and some (possibly none) of the numbers 0; 1; :::; n � 1: Note that it may
happen that �k = " for all k = 1; :::; n and then �A(x) is just x

n: We can
easily characterize such cases:

Proposition 5.3.3 If A = (aij) 2 R
n�n

then �A(x) = xn if and only if
DA is acyclic.

Proof. If DA is acyclic then the weights of all permutations with respect
to any principal submatrix of A are " and thus all �k = ": If DA contains
a cycle, say (i1; :::; ik; i1) for some k 2 N then

maper (A (i1; :::; ik)) > ";

thus �k > " by Theorem 5.3.2.

Note that the coe¢ cients �k are closely related to the best submatrix
problem and to the job rotation problem, see Subsection 2.2.3.

5.3.2 The greatest corner is the principal eigenvalue

By Theorem 5.1.13 we know that the greatest corner of a maxpolynomial

p (z) =
X�

r=0;:::;p
cr 
 zjr ; p > 0; is

max
r=0;:::;p�1

cr � cp
jp � jr

:

If p (x) = �A(x) where A = (aij) 2 R
n�n

then p = n; jr = r and cr = �n�r
for r = 0; 1; :::; n with cn = �0 = 0: Hence the greatest corner of �A(x) is

max
r=0;:::;n�1

�n�r
n� r

or, equivalently

max
k=1;:::;n

�k
k
: (5.11)

We are ready to prove a remarkable property of characteristic maxpoly-
nomials resembling the one in conventional linear algebra. As a convention,
the greatest corner of a maxpolynomial with no corners (that is � (A) = ";
see Proposition 5.3.3) is by de�nition ":
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Theorem 5.3.4 [62] If A = (aij) 2 Rn�n then the greatest corner of
�A(x) is � (A) :

Proof. The statement is evidently true if � (A) = ": Thus assume now that
� (A) > "; hence at least one corner exists. Let � be the greatest corner of
�A(x) and k 2 f1; :::; ng ; then �k = maper (B) ; where B 2 Pk (A) : We
have

maper (B) = w (�;B)

= w (�1; B)
 :::
 w (�s; B)

for some � 2 ap (B) and its constituent cycles �1; :::; �s: We also have

w (�j ; B) � (� (A))l(�j)

for all j = 1; :::; s: Hence

�k = maper (B) � (� (A))l(�1)+:::+l(�s) = (� (A))k

and so
�k
k
� � (A) ;

yielding using (5.11):
� � � (A) :

Suppose now � (A) = w(�;A)
l(�) ; � = (i1; :::; ir) ; r 2 f1; :::; ng : Let B =

A (i1; :::; ir) : Then

�r � maper
�
B
�
� w(�;A) = (� (A))

l(�)
= (� (A))

r
:

Therefore
�r
r
� � (A) ;

yielding by (5.11):
� � � (A) ;

which completes the proof.

Example 5.3.5 The principal eigenvalue of

A =

0@ 2 1 4
1 0 1
2 2 1

1A
is � (A) = 3: The characteristic maxpolynomial is

�A(x) = x3 � 2
 x2 � 6
 x� 7
= (x� 1)
 (x� 3)2 ;

and the greatest corner is 3:
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5.3.3 Finding all essential terms of a characteristic
maxpolynomial

As already mentioned in Subsection 2.2.3, no polynomial method is known
for �nding all coe¢ cients of a characteristic maxpolynomial or, equivalently,
to solve the job rotation problem. Recall (see Subsection 2.2.3) that this
question is equivalent to the best principal submatrix problem (BPSM),
which is the task to �nd the greatest optimal values �k for the assignment
problem of all k � k principal submatrices of A; k = 1; :::; n. It will be
convenient now to denote by BPSM(k) the task of �nding this value for a
particular integer k:
We will use the functional interpretation of a characteristic maxpoly-

nomial to derive a method for �nding coe¢ cients of this maxpolynomial
corresponding to all essential terms. Recall that as every maxpolynomial,
the characteristic maxpolynomial is a piecewise linear and convex function
which can be written using conventional notation as

�A(x) = max(�n; �n�1 + x; �n�2 + 2x; :::; �1 + (n� 1)x; nx):

If for some k 2 f0; :::; ng the term �n�k 
 xk is inessential, then

�A(x) =
X�

i 6=k
�n�i 
 xi

holds for all x 2 R, and therefore all inessential terms may be ignored if
�A(x) is considered as a function. We now present an O(n

2(m + n log n))
method for �nding all essential terms of a characteristic maxpolynomial
for a matrix with m �nite entries. It then follows that this method solves
BPSM(k) for those k 2 f1; :::; ng ; for which �n�k 
 xk is essential and, in
particular, when all terms are essential then this method solves BPSM(k)
for all k = 1; :::; n.
We will �rst discuss the case of �nite matrices. Let A = (aij) 2 Rn�n

be given. For convenience we will denote �A(x) by z(x) and A� x
 I by

A (x) =
�
a (x)ij

�
: Hence

z(x) := max
�

nX
i=1

a(x)i;�(i)

and

a(x)ij :=

�
max(x; aii); for i = j;
aij ; for i 6= j:

Since z(x) is piecewise linear and convex and all its linear pieces are of
the form zk(x) := kx + �n�k for k = 0; 1; :::; n and constants �n�k, the
maxpolynomial z(x) has at most n corners. Recall that zn(x) := nx; that
is �0 = 0: The main idea of the method for �nding all linear pieces of z(x)
is based on the fact that it is easy to evaluate z(x) for any real value of
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x as this is simply maper(A � x 
 I); that is the optimal value for the
assignment problem for A� x
 I: By a suitable choice of O(n) values of x
we will be able to identify all linear pieces of z(x):
Let x be �xed and � 2 ap(A(x)) = ap (a(x)ij) (recall that ap(A) denotes

the set of optimal permutations to the assignment problem for a square
matrix A; see Subsection 1.6.4). We call a diagonal entry a(x)ii of the
matrix A(x) active, if x � aii and if this diagonal position is selected by
�; that is �(i) = i. All other entries will be called inactive. If there are
exactly k active values for a certain x and permutation � then this means
that z(x) = kx+ �n�k = xk
 �n�k, that is, the value of z(x) is determined
by the linear piece with the slope k: Here �n�k is the sum of n� k inactive
entries of A(x) selected by �: No two of these inactive entries can be from
the same row or column and they are all in the submatrix, say B, obtained
by removing the rows and columns of all active elements. Since all active
elements are on the diagonal, B is principal and the n�k inactive elements
form a feasible solution to the assignment problem for B: This solution is
also optimal by optimality of �. This yields the following:

Proposition 5.3.6 [21] Let x 2 R and � 2 Pn: If z(x) = maper (A (x)) =Pn
i=1 a(x)i;�(i); i1; :::; ik are indices of all active entries and fj1; :::; jn�kg =

N�fi1; :::; ikg then A (j1; :::; jn�k) is a solution to BPSM(n�k) for A and
�n�k = maper (A (j1; :::; jn�k)) :

There may, of course, be several optimal permutations for the same value
of x selecting di¤erent numbers of active elements which means that the
value of z(x) may be equal to the function value of several linear pieces
with di¤erent slopes at x: We will pay special attention to this question in
Proposition 5.3.14 below.

Proposition 5.3.7 [21] If z(x) = zr(x) = zs(x) for some x 2 R and
integers r < s; then there are no essential terms with the slope k 2 (r; s)
and x is a corner of z(x):

Proof. Since zr(x) = �n�r + r�x = z(x) � �n�k + k�x for every k, we have
zr(x) = �n�r + rx � �n�k + kx = zk(x) for every x < x and k > r, thus
z(x) � zr(x) � zk(x) for every x < x and for every k > r.
Similarly, z(x) � zs(x) � zk(x) for every x > x and for every k < s. Hence,
z(x) � zk(x) for every x and for every integer slope k with r+1 � k � s�1:

For x � ea = min(a11; a22; :::; ann), z(x) is given by max�Pn
i=1 ai;�(i) =

maper(A) = �n. Then obviously, z(x) = z0(x) = �n for x � ea:
Now, let �� := maxij aij and let E be the matrix whose entries are all

equal to 1. For x � �� the matrix A(x)��� �E (in conventional notation)
has only nonnegative elements on its main diagonal. All o¤-diagonal ele-
ments are negative. Therefore we get z(x) = nx = zn (x) for x � ��. Note
that for �nding z(x) there is no need to compute ��.
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The intersection point of z0(x) with zn(x) is x1 = �n
n . We �nd z(x1) by

solving the assignment problem max�
Pn

i=1 a(x1)i;�(i).

Corollary 5.3.8 If z(x1) = z0(x1) then z(x) = max (z0(x); zn(x)) :

Thus, if z(x1) = z0(x1), we are done and the function z(x) has the form

z(x) =

�
z0(x); for x � x1;
zn(x); for x � x1:

(5.12)

Otherwise we have found a new linear piece of z(x). Let us call it zk(x) :=
kx+ �n�k, where k is the number of active elements in the corresponding
optimal solution and �n�k is given by �n�k := z(x1)� kx1. We remove x1
from the list.
Next we intersect zk(x) with z0(x) and with zn(x). Let x2 and x3, re-

spectively, be the corresponding intersection points. We generate a list
L := (x2; x3). Let us choose an element from the list, say x2, and determine
z(x2). If z(x2) = z0(x2), then x2 is a corner of z(x). By Proposition 5.3.7
this means that there are no essential terms of the characteristic maxpoly-
nomial with slopes between 0 and k. We delete x2 from L and process a
next point from L. Otherwise we have found a new linear piece of z(x)
and can proceed as above. Thus, for every point in the list we either �nd
a new slope which leads to two new points in the list or we detect that
the currently investigated point is a corner of L. In such a case this point
will be deleted and no new points are generated. If the list L is empty, we
are done and we have already found the function z(x). Since every point
of the list either leads to a new slope (and therefore to two new points in
L) or it is a corner of z(x); in which case this point is deleted from L, only
O (n) entries will enter and leave the list. This means the procedure stops
after investigating at most O(n) linear assignment problems. Thus we have
shown:

Theorem 5.3.9 [21] All essential terms of the characteristic maxpolyno-
mial of A 2 Rn�n can be found in O

�
n4
�
steps.

The proof of the following statement is straightforward.

Proposition 5.3.10 Let A = (aij) ; B = (bij) 2 Rn�n; r; s 2 N; ars � brs;
aij = bij for all i; j 2 N; i 6= r; j 6= s. If � 2 ap(A) satis�es � (r) = s then
� 2 ap(B):

Corollary 5.3.11 If id 2 ap(A (x)) then id 2 ap(A (x)) for all x � x:

Remarks:
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1. A diagonal element of A(y) may not be active for some y with y > x
even if it is active in A(x). For instance, consider the following 4� 4
matrix A: 0BB@

0 0 0 29
0 8 20 0
0 0 12 28
29 28 0 16

1CCA :

For x = 4 the unique optimal permutation is � = (1)(2; 3; 4) of value
80, for which the �rst diagonal element is active. For y = 20 the
unique optimal permutation is � = (1; 4)(2)(3) of value 98, in which
the second and third, but not the �rst, diagonal elements of the matrix
are active.

2. If an intersection point x is found by intersecting two linear functions
with the slopes k and k + 1 respectively, this point is immediately
deleted from the list L since it cannot lead to a new essential term
(as there is no slope strictly between k and k + 1).

3. If at an intersection point y the slope of z(x) changes from k to l
with l�k � 2, then an upper bound for �n�r related to an inessential
term rx+ �n�r, k < r < l, can be obtained by z(y)� ry. Due to the
convexity of the function z(x) this is the least upper bound on �n�r
which can be obtained by using the values of z(x).

Taking into account our previous discussion, we arrive at the following
algorithm. The values x which have to be investigated are stored as triples
(x; k(l); k(r)) in a list L. The interpretation of such a triple is that x has
been found as the intersection point of two linear functions with the slopes
k(l) and k(r), k(l) < k(r).

Algorithm 5.3.12 ESSENTIAL TERMS
Input: A = (aij) 2 Rn�n:
Output: All essential terms of the characteristic maxpolynomial of A; in
the form kx+ �n�k:

1. Solve the assignment problem with the cost matrix A and set �n :=
maper(A) and z0(x) := �n.

2. Determine x1 as the intersection point of z0(x) and zn(x) := nx.

3. Let L := f(x1; 0; n)g.

4. If L = ;, stop. The function z(x) has been found. Otherwise choose
an arbitrary element (xi; ki(l); ki(r)) from L and remove it from L.

5. If ki(r) = ki(l) + 1, then (see Remark 2 above) go to Step 4. (xi is a
corner of z(x); for x close to xi the function z(x) has slope ki(l) for
x < xi, and ki(r) for x > xi.)
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6. Find z(xi) = maper(A(xi)). Take an arbitrary optimal permutation
to the assignment problem for the matrix A(xi) and let ki be the
number of active elements in this solution. Set �n�ki := z(xi)� kixi.

7. Set zi(x) := kix+ �n�ki .

8. Intersect zi(x) with the lines having slopes ki(l) and ki(r). Let y1 and
y2 be the intersection points, respectively. Add the triples (y1; ki(l); ki)
and (y2; ki; ki(r)) to the list L and go to Step 4. [See a re�nement of
this step after Proposition 5.3.14.]

Example 5.3.13 Let

A :=

0BB@
0 4 �2 3
2 1 3 �1

�2 �3 1 0
7 �2 8 4

1CCA :

We solve the assignment problem for A by the Hungarian method and trans-
form A to a normal form. The asterisks indicate entries selected by an
optimal permutation: 0BB@

�4 0 �6 �1
�1 �2 0 �4
�3 �4 0 �1
�1 �10 0 �4

1CCA ;

0BB@
�3 0� �6 0
0� �2 0 �3
�2 �4 0 0�

0 �10 0� �3

1CCA :

Thus z0(x) = 14.
Now we solve 14 = 4x and we get x1 = 3:5. By solving the assignment

problem for x1 = 3:5 we get:0BB@
3:5 4 �2 3
2 3:5 3 �1

�2 �3 3:5 0
7 �2 8 4

1CCA ;

0BB@
�0:5 0 �6 �1
�1:5 0 �0:5 �4:5
�5:5 �6:5 0 �3:5
�1 �10 0 �4

1CCA ;
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0 0 �6 0

�1 0 �0:5 �3:5
�5 �6:5 0 �2:5

�0:5 �10 0 �3

1CCA ;

0BB@
0 �0:5 �6:5 0�

�0:5 0� �0:5 �3
�4:5 �6:5 0� �2
0� �10 0 �2:5

1CCA :

Thus z2(3:5) = 17 and we get z2(x) := 2x + 10. Intersecting this function
with z0(x) and z4(x) yields the two new points x2 := 2 (solving 14 = 2x+10)
and x3 := 5 (solving 2x+10 = 4x). Investigating x = 2 shows that the slope
changes at this point from 0 to 2. Thus we have here a corner of z(x).
Finding the value z(5) amounts in solving the assignment problem with the
cost matrix 0BB@

5 4 �2 3
2 5 3 �1

�2 �3 5 0
7 �2 8 5

1CCA :

This assignment problem yields the solution z(5) = 20 = z4(5). Thus no
new essential term has been found and we have z(x) completely determined
as

z(x) =

8<: 14 for 0 � x � 2
2x+ 10 for 2 � x � 5
4x for x � 5:

In max-algebraic terms z(x) = 14� 10
 x2 � x4:

The following proposition enables to make a computational re�nement of
the algorithm ESSENTIAL TERMS. We refer to the assignment problem
terminology introduced in Subsection 1.6.4.

Proposition 5.3.14 Let x 2 R and let B = (bij) be a normal form of
A (x) : Let C = (cij) be the matrix obtained from B as follows:

cij =

8<: 0; if bij = 0 and (i; j) is inactive,
1; if (i; j) is active,
"; otherwise.

Then every � 2 ap(C) [� 2 ap(�C)] is an optimal solution to the assign-
ment problem for A (x) with maximal [minimal] number of active elements.

Proof. The statement immediately follows from the de�nitions of C and
of a normal form of a matrix.
If for some value of x there are two or more optimal solutions to the

assignment problem for A(x) with di¤erent numbers of active elements then
using Proposition 5.3.14 we can �nd an optimal solution with the smallest
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number and another one with greatest number of active elements. This
enables us to �nd two new lines (rather than one) in Step 6 of algorithm
5.3.12:
(a) zk(x) := kx+�n�k, where k is the minimal number of active elements

of an optimal solution to the assignment problem for A(x) and �n�k is given
by �n�k := z(x)� kx;
(b) zk0(x) := k0x + �n�k0 , where k0 is the maximal number of active

elements of an optimal solution to the assignment problem for A(x) and
�n�k0 is given by �n�k0 := z(x)� k0x:
In Step 8 of algorithm 5.3.12 we then intersect zi(x) with the line having

the slope ki(l) and zk0(x) with the line having slope ki(r).
So far we have assumed in this subsection that all entries of the matrix

are �nite. If some (but not all) entries of A are ", the same algorithm as in
the �nite case can be used except that the lowest order �nite term has to be
found since a number of the coe¢ cients of the characteristic maxpolynomial
may be ". The following theorem is useful here. In this theorem we denote

� = min (0; nAmin) ; � = max (0; nAmax) ;

where Amin [Amax] is the least [greatest] �nite entry of A: We will also
denote in this and next subsection

K = fk; �k �niteg

and
k0 = maxK: (5.13)

Clearly, the lowest-order �nite term of the characteristic maxpolynomial is
zk0(x) = �k0 
 xn�k0 :

Theorem 5.3.15 [39] If A 2 Rn�n then n � k0 is the number of active
elements in A (x) ; where x is any real number satisfying

x < � � �

and �k0 = z(x)� (n� k0)x:

Proof. It is su¢ cient to prove that if x0 is a point of intersection of two
di¤erent linear pieces of �A(x) then

x0 � � � �:

Suppose that
�r + (n� r)x0 = �s + (n� s)x0

for some r; s 2 f0; 1; :::; ng ; r > s: Then

(r � s)x0 = �r � �s:
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If Amin � 0 then �r � sAmin � nAmin = �: If Amin � 0 then �r � sAmin �
0 = �: Hence �r � �:
If Amax � 0 then �s � rAmax � 0 = �: If Amax � 0 then �s � rAmax �

nAmax = �: Hence �s � �:
We deduce that �r � �s � � � � and the rest follows from the fact that

r � s � 1 and � � � � 0:
It follows from this result that for a general matrix, k0 can be found

using O
�
n3
�
operations. Note that for symmetric matrices this problem

can be converted to the maximum cardinality bipartite matching problem
and thus solved in O

�
n2:5=

p
log n

�
time [38].

Theorem 5.3.15 enables us to modify the beginning of the algorithm ES-
SENTIAL TERMS for A 2 Rn�n by �nding the intersection of the lowest
order �nite term zk0(x) (rather than z0(x)) with x

n. Moreover, instead of

considering the classical assignment problem we rather formulate the prob-
lem in Step 6 of the algorithm as the maximum weight perfect matching
problem in a bipartite graph (N;N ;E). This graph has an arc (i; j) 2 E
if and only if aij is �nite. It is known [1] that the maximum weight per-
fect matching problem in a graph with m arcs can be solved by a shortest
augmenting path method using Fibonacci heaps in O(n(m+n log n)) time.
Since in the worst case O(n) such maximum weight perfect matching prob-
lems must be solved, we get the following result.

Theorem 5.3.16 [21] If A 2 Rn�n has m �nite entries, then all essential
terms of �A(x) can be found in O

�
n2 (m+ n log n)

�
time.

5.3.4 Special matrices

Although no polynomial method seems to exist for �nding all coe¢ cients
of a characteristic maxpolynomial for general matrices or even for matrices
over f0;�1g ; there are a number of special cases for which this problem
can be solved e¢ ciently. These include permutation, pyramidal, Hankel and
Monge matrices and special matrices over f0;�1g [38], [116], [28].
We brie�y discuss two special types: diagonally dominant matrices and

matrices over f0;�1g :

Proposition 5.3.17 If A = (aij) 2 R
n�n

is diagonally dominant then so
are all principal submatrices of A and all coe¢ cients of the characteristic
maxpolynomial can be found by the formula

�k = ai1i1 + ai2i2 + :::+ aikik ;

for k = 1; :::; n; where ai1i1 � ai2i2 � ::: � ainin :
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Proof. Let A be a diagonally dominant matrix, B = A(i1; i2; :::; ik) for
some indices i1; i2; :::; ik and suppose that id =2 ap(B): Take any � 2 ap(B)
and extend � to a permutation � of the set N by setting �(i) = i for every
i =2 fi1; i2; :::; ikg: Then obviously � is a permutation of a weight greater
than that of id 2 Pn; a contradiction. The formula follows.
Matrices over T = f0;�1g have implications for problems outside max-

algebra and in particular for the conventional permanent, which for a real
matrix A = (aij) we denote as usual by per (A) ; that is

per (A) =
X

�2Pn

Y
i2N

ai;�(i):

If A = (aij) 2 Tn�n then �k = 0 or �k = �1 for every k = 1; :::; n:
Clearly, �k = 0 if and only if there is a k � k principal submatrix of A
with k independent zeros, that is with k zeros selected by a permutation
or, equivalently, k zeros no two of which are either from the same row or
from the same column.
It is easy to see that if A = (aij) 2 Tn�n then B = 2A = (2aij ) = (bij)

is a zero-one matrix. If � 2 Pn thenY
i2N

bi;�(i) =
Y
i2N

2ai;�(i) = 2
P

i2N ai;�(i) :

Hence per(B) > 0 is equivalent to

(9� 2 Pn)(8i 2 N) bi;�(i) = 1:

But this is equivalent to

(9� 2 Pn)(8i 2 N) ai;�(i) = 0:

Thus, the task of �nding the coe¢ cient �k of the characteristic maxpoly-
nomial of a square matrix over T is equivalent to the following problem
expressed in terms of the classical permanents:
PRINCIPAL SUBMATRIX WITH POSITIVE PERMANENT: Given

an n � n zero-one matrix A and a positive integer k ( k � n); is there a
k� k principal submatrix B of A with positive (conventional) permanent?

Another equivalent version for matrices over T is graph-theoretical: Since
every permutation is a product of cycles, �k = 0 means that in DA (and
FA) there is a set of pairwise node-disjoint cycles covering exactly k nodes.
Hence deciding whether �k = 0 is equivalent to the following:
EXACT CYCLE COVER:Given a digraph D with n nodes and a positive

integer k ( k � n); is there a set of pairwise node-disjoint cycles covering
exactly k nodes of D?
Finally, it may be useful to see that the value of k0 de�ned by (5.13) can

explicitly be described for matrices over f0;�1g:
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Theorem 5.3.18 [28] If A 2 Tn�n then k0 = n+maper (A� (�1)
 I) :

Proof. Since all �nite �k are 0 in conventional notation we have:

�A(x) = max
k2K

(n� k)x:

Therefore, for x < 0:

�A(x) = x:min
k
(n� k)

= x: (n� k0) ;

from which the result follows by setting x = �1:

5.3.5 Cayley-Hamilton in max-algebra

A max-algebraic analogue of the Cayley-Hamilton Theorem was proved in
[119] and [140], see also [9]. Some notation used here has been introduced
in Subsection 1.6.4.
Let A = (aij) 2 Rn�n and v 2 R. Let us denote

p+(A; v) =
��f� 2 P+n ;w(�;A) = vg

��
and

p�(A; v) =
��f� 2 P�n ;w(�;A) = vg

�� :
The following equation is called the (max-algebraic) characteristic equation
for A (recall that max ; = "):

�n �
X�

k2J
cn�k 
 �k = c1 
 �n�1 �

X�

k2J
cn�k 
 �k;

where

ck = max

8<:v; X
B2Pk(A)

p+(B; v) 6=
X

B2Pk(A)

p�(B; v)

9=; ; k = 1; :::; n;

dk = (�1)k
0@ X
B2Pk(A)

p+(B; ck)�
X

B2Pk(A)

p�(B; ck)

1A ; k = 1; :::; n

and

J = fj; dj > 0g; J = fj; dj < 0g:

Theorem 5.3.19 (Cayley-Hamilton in max-algebra) Every real square ma-
trix A satis�es its max-algebraic characteristic equation.
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An application of this result in the theory of discrete-event dynamic
systems can be found in Section 6.4.
In general it is not easy to �nd a max-algebraic characteristic equation for

a matrix. However, unlike for characteristic maxpolynomials it is relatively
easy to do so for matrices over T = f0;�1g :

Theorem 5.3.20 [28] If A 2 Tn�n then the coe¢ cients dk in the max-

algebraic characteristic equation for A are the coe¢ cients at �n�k of the
conventional characteristic polynomial for the matrix 2A.

Proof. If A 2 Tn�n then all �nite ck are 0: Note that if k 2 N and
maper (B) = " for all B 2 Pk (A) then the term ck
�n�k does not appear
on either side of the equation. If B = (bij) 2 T k�k then p+(B; 0) is the
number of even permutations that select only zeros from B: Let us denote
the matrix

�
2bij
�
as 2B : This matrix is zero-one, zeros corresponding to �1

in B and ones corresponding to zeros in B: Thus p+(B; 0) is the number
of even permutations that select only ones from 2B : Similarly for p�(B; 0):
Since 2B is zero-one, all terms in the standard determinant expansion of
2B are either 1 (if the corresponding permutation is even and selects only
ones), or �1 (if the corresponding permutation is odd and selects only
ones), or 0 (otherwise). Hence det 2B = p+(B; 0)� p�(B; 0): Since

dk = (�1)k
X

B2Pk(A)

�
p+(B; 0)� p�(B; 0)

�
;

it follows that
dk = (�1)k

X
B2Pk(A)

det 2B ;

which is the coe¢ cient at �n�k of the conventional characteristic polyno-
mial of the matrix 2A:

5.4 Exercises

Exercise 5.4.1 Find the standard form of

p (z) = 3
 z2:5 � 2
 z4:7 � 4
 z6:2 � 1
 z8:3

and then factorize it using RECTIFICATION and RESOLUTION. [1 

z2:5


�
2� 1
 z2:2 � 3
 z3:7 � z5:8

�
; 1
z2:5


�
� 1
3:7 � x

�3:7
� 3
2:1 � z

�2:1
]

Exercise 5.4.2 Find the characteristic maxpolynomial and characteristic
equation for the following matrices; factorize the maxpolynomial and check
whether �A(x) = LHS � RHS of the maxpolynomial equation:
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(a) A =

0@ 3 �2 1
4 0 5
3 1 2

1A : [�A(x) = 9� 6
 x� 3
 x2 � x3 = (3� x)
3
;

�3 � 9 = 3
 �2 � 6
 �]

(b) A =

0@ 1 0 �3
2 3 1
4 �2 0

1A : [�A(x) = 5�4
x�3
x2�x3 = (1� x)
2


(3� x) ; �3 � 4
 � = 3
 �2 � 5]

(c) A =

0@ 1 2 5
�1 0 3
1 1 1

1A : [�A(x) = 6�6
x�1
x2�x3 = (3� x)
2


(0� x) ; �3 = 1
 �2 � 6
 �]

Exercise 5.4.3 A square matrix A is called strictly diagonally dominant
if ap(A) = fidg. Find a formula for the characteristic equation of strictly
diagonally dominant matrices.

[�n� �2
 �n�2� �4
 �n�4� ::: = �1
 �n�1� �3
 �n�3� �5
 �n�5� :::

where �k = the sum of k greatest diagonal values]
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6
Linear independence and rank. The
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We introduced a concept of linear independence in Section 3.3 in geometric
terms. For �nite systems of vectors (such as columns of a matrix) this
de�nition reads:
Vectors a1; :::; an 2 R

m
are called linearly dependent (LD) if

ak =
X�

i2N�fkg
�i 
 ai

for some k 2 N and �i 2 R, i 2 N �fkg : The vectors a1; :::; an are linearly
independent (LI) if they are not linearly dependent. We presented e¢ cient
methods for checking linear independence and for �nding the coe¢ cients
of linear dependence in Section 3.3. That section also contains results on
anomalies of linear independence. For these and other reasons various al-
ternative concepts of linear independence have been studied. In most cases
they would be equivalent to the above mentioned de�nition if formulated
in linear algebra, however in max-algebra they are nonequivalent.
We will discuss and compare two other concepts of independence in this

chapter: strong linear independence [60] and Gondran-Minoux indepen-
dence [98]. It will be of particular interest to see and compare these con-
cepts in the setting of square matrices, that is to compare regularity, strong
regularity and Gondran-Minoux regularity.
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6.1 Strong linear independence

In Chapter 3 we introduced the notation

S(A; b) = fx 2 Rn;A
 x = bg

for A 2 Rm�n and b 2 Rm: Now we also denote for A 2 Rm�n :

T (A) = fjS(A; b)j ; b 2 Rmg:

The set T (A) will be called the type of A: Note that the de�nition of
T (A) uses �nite vectors b (see Subsection 3.1).
A set C � Rn is said to be max-convex if � 
 x � � 
 y 2 C for every

x; y 2 C;�; � 2 R with �� � = 0:

Lemma 6.1.1 The set S(A; b) is max-convex for every A 2 Rm�n and
b 2 Rm:

Proof. A
 (�
 x� � 
 y) = �
A
 x� � 
B 
 y = (�� �)
 b = b
Regularity and linear independence are closely related to the number of

solutions of max-linear systems. Similarly as in conventional linear algebra
the number of solutions to a max-linear system can only be 0; 1 or 1 :

Theorem 6.1.2 [24] jS(A; b)j 2 f0; 1;1g for any A 2 Rm�n and b 2 Rm:

Proof. We only need to prove that if a system A 
 x = b has more than
one solution then it has an in�nite number of solutions. Suppose A
x = b;
A
y = b and x 6= y for some x; y 2 Rn: Then by Lemma 6.1.1 �
x��
y
is also a solution for any �; � 2 R such that �� � = 0: Let without loss of
generality xk < yk and take � = 0 and � between xk 
 y�1k and 0: Then
� � � = 0; � 
 x � � 
 y is di¤erent from both x and y and there is an
in�nite number of such vectors.
For reasons explained at the beginning of Chapter 3, we will concentrate

on doubly R-astic matrices.

Lemma 6.1.3 If A 2 Rm�n is doubly R-astic and f1;1g � T (A) then
T (A) = f0; 1;1g:

Proof. Let A 2 Rm�n be doubly R-astic and f1;1g � T (A) : Suppose that
every column of A has only one �nite entry. Then m � n because there are
no " rows. If m = n then A is a generalized permutation matrix for which
T (A) = f1g : If m < n then A contains an m�m generalized permutation
submatrix. By choosing the remaining n � m variables su¢ ciently, small
we get T (A) = f1g :
Thus A has a column with at least two �nite entries. Therefore the

number of �nite entries in A is more than n.
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Suppose that in every row there is a �nite entry unique in its column.
Then m � n: If m < n then a contradiction is obtained as above, hence
m = n; there are only m �nite entries, a contradiction. Therefore there is a
row, say the kth; whose every �nite entry is nonunique in its column. Hence

there is a value, say c; such that c 
 akj <
X�

i 6=k
aij for all j 2 N: Then

by Corollary 3.1.2 the system A 
 x = b has no solution where bk = c�1

and bi = 0 for i 6= k:
We can deduce full list of types for doubly R-astic matrices.

Proposition 6.1.4 Each of the sets f1g ; f1g ; f0; 1g; f0;1g; f0; 1;1g
is the type of a doubly R-astic matrix and there are no other types of doubly
R-astic matrices.

Proof. If A 2 Rm�n is doubly R-astic and x 2 Rn then A 
 x 2 Rm
and x 2 S (A;A
 x) ; thus T (A) = f0g is obviously impossible. Due to
Theorem 6.1.2 and Lemma 6.1.3, which includes the type f1;1g ; it remains
to show that the remaining �ve cases are all possible. The examples of
doubly R-astic matrices are (in the order stated in the Proposition):

I;

�
0 " 0
" 0 0

�
;

0@ 0 "
" 0
0 0

1A ;

�
0 0
0 0

�
;

�
1 0
0 0

�
:

The types T (A) of matrices in conventional linear algebra are f1g ; f1g ;
f0; 1g; f0;1g: They correspond to the following cases expressed using the
linear-algebraic rank: r (A) = m = n; r (A) = m < n; r (A) = n < m;
r (A) < min (m;n) :
This comparison is even more striking if we consider �nite matrices A in

max-algebra with m � 2. For such matrices we can always �nd a b such
that A
 x = b has no solution and another b for which the system has an
in�nite number of solutions. More precisely:

Theorem 6.1.5 [24] T (A) is either f0;1g or f0; 1;1g for any A 2
Rm�n; m � 2:

Proof. If b = a1 then A 
 x = b has an in�nite number of solutions x;
where x1 = 0 and x2; :::; xn are su¢ ciently small.
If b1 < min

�
a1j 
 a�1ij ; i 2M; i 6= 1; j 2 N

	
and bi = 0 for all i > 1 then

A
 x = b has no solution since then b�11 
 a1j > aij for every i 2M; i 6= 1
and j 2 N; thus Mj = f1g for all j 2 N; implying that there is no solution
by Corollary 3.1.2.
We say that the columns of A 2 Rm�n are strongly linearly independent

(SLI) if 1 2 T (A); that is the system A
x = b has a unique solution for at
least one b 2 Rm; otherwise they are called strongly linearly dependent. A
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square matrix with strongly linearly independent columns is called strongly
regular.
The next three statements are indicating some similarity between max-

algebra and conventional linear algebra.

Lemma 6.1.6 If A 2 Rm�n has SLI columns then A is doubly R-astic and
if y is the unique solution to A
 x = b for some b then y is �nite.

Proof. The statement follows straightforwardly from the de�nitions.

Theorem 6.1.7 A doubly R-astic matrix A 2 Rm�n has strongly linearly
independent columns if and only if it contains a strongly regular n � n
submatrix.

Proof. Suppose that A is doubly R-astic and the unique solution to A
x =
b is x 2 Rn: It also follows from Corollary 3.1.3 that for every j 2 N there
is at least one i 2 Mj such that i =2 Mk for all k 6= j: Let us denote this
index i by ij (take any in the case of a tie). Consider the subsystem with
row indices i1; i2; :::; in (and with all column indices). This is an n � n
system with a unique column maximum in every column and in every row.
Hence again by Corollary 3.1.3 this system has a unique solution and so A
contains an n� n strongly regular submatrix.
Suppose now that A0 2 Rn�n is a strongly regular submatrix of A: Then

there exists a b0 2 Rn such that A0 
 x = b0 has a unique solution, say z:
Take b = A
 z: Then b 2 Rm and the system A
 x = b has a solution. If
it had more than one solution then the subsystem A0 
 x = b0 would also
have more than one solution. Hence A
x = b has a unique solution, which
completes the proof.

Corollary 6.1.8 If a matrix A 2 Rm�n has strongly linearly independent
columns then m � n:

The question of checking whether the columns of a given matrix are
SLI may be of interest. It seems that currently no polynomial method for
answering this question exists, see Chapter 11. On the other hand it is
possible to check strong regularity of an n�n matrix in O

�
n3
�
time. This

is presented in the next section and it enables us, using Theorem 6.1.7, to
decide SLI (with nonpolynomial complexity) by checking n�n submatrices
for strong regularity.

6.2 Strong regularity of matrices

6.2.1 A criterion of strong regularity

Recall that A 2 Rn�n is called strongly regular if the system A 
 x = b
has a unique solution for some b 2 Rn: Our aim now is to characterize



6.2 Strong regularity of matrices 137

strongly regular matrices and the sets of vectors b for which A 
 x = b
has a unique solution. Recall that a strongly regular matrix is doubly R-
astic (Lemma 6.1.6) and we will therefore assume throughout that A has
this property. By the same lemma we need to consider f(x) = A 
 x as
a mapping Rn �! Rn: The set fA 
 x;x 2 Rng is the set of images of
this mapping. We will therefore call this set the image set and denote it by
Im(A): Clearly, Im(A) � Col (A) and Col (A) = Im(A) [ f"g if A is �nite.
We also de�ne

SA = fb 2 Rn;A
 x = b has a unique solutiong :
The set SA is called the simple image set of A. The elements of Im(A)

and SA will be called images and simple images, respectively. Observe that
SA � Im(A) for every A and SA 6= ; if and only if A is strongly regular.
A unique column maximum in every column and in every row is a feature

that characterizes every uniquely solvable square system. To see this just
realize that (see Corollary 3.1.3) A
x = b has a unique solution for b 2 Rn
if and only if the sets M1 (A; b) ; :::;Mn (A; b) form a minimal covering of
the set N = f1; :::; ng: It is easily seen that this is only possible if all the
sets M1 (A; b) ; :::;Mn (A; b) are one-element and pairwise-disjoint.
If a square matrix has a unique column maximum in every column and in

every row then the column maxima determine a permutation of the set N
whose weight is strictly greater than the weight of any other permutation
and thus this matrix has strong permanent (see Subsection 1.6.4). In other
words, if A is a square matrix and A 
 x = 0 has a unique solution then
A has strong permanent. However, a normalization of a system A
 x = b
means to multiply A by a diagonal matrix from the left. Lemma 1.6.32
states that this does not a¤ect ap(A) and so we have proved:

Proposition 6.2.1 If A 2 Rn�n is strongly regular then A has strong
permanent.

The converse is also true (see the next theorem) and therefore verifying
that a matrix is strongly regular is converted to the checking that it has
strong permanent. This can be done by checking that a digraph is acyclic
(see Subsection 1.6.4) and therefore is solvable using O

�
n3
�
operations.

Theorem 6.2.2 (Criterion of strong regularity) A square matrix over
R is strongly regular if and only if it has strong permanent.

This result has originally been proved in [37] for �nite matrices over lin-
early ordered commutative groups, however it is the aim of this subsection
to present a simpler proof, which is similar to that in [26]. We refer to
terminology introduced in Subsection 1.6.4 and start with a few lemmas
and a theorem that may be of interest also on their own:

Lemma 6.2.3 If A 2 Rn�n is strongly regular then maper (A) is �nite.
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Proof. The statement immediately follows from Proposition 6.2.1.

Lemma 6.2.4 If A � B then A is strongly regular if and only if B is
strongly regular.

Proof. Permutations of the rows and columns of A as well as 
 multiplying
them by �nite constants does not a¤ect the existence of a unique solution
to a max-linear system.
Due to Corollary 1.6.38 and (1.29) we may now assume without loss of

generality that the doubly R-astic matrix whose strong regularity we wish
to check is strongly de�nite.

Lemma 6.2.5 If A = (aij) 2 R
n�n

is strongly de�nite and b 2 SA then
B =

�
b�1i 
 aij

�
has column maxima only on the diagonal.

Proof. A
x = b has a unique solution, thus by Corollary 3.1.3 the column
maxima are unique and determine a permutation, say �: Hence, if � 6= id
then w(�;A)> w(id; A); which is a contradiction since A is strongly de�nite
and therefore diagonally dominant by (1.29).
If A is a square matrix then eA will stand for the matrix obtained from

A after replacing all diagonal entries by ":

Theorem 6.2.6 If A 2 Rn�n is strongly de�nite then

SA =
n
b 2 Rn; eA
 b � g 
 b for some g < 0

o
:

Proof. Let A = (aij) 2 R
n�n

be strongly de�nite and eA = (eaij): Then we
have:

b is a simple image of A

() A
 x = b has a unique solution

() B =
�
b�1i 
 aij

�
has column maxima only on the diagonal

(Lemma 6.2.5)

()
�
b�1i 
 aij 
 bj

�
is strictly normal

() (8i 6= j)
�
b�1i 
 aij 
 bj < 0

�
() (9g < 0) (8i; j)

�
b�1i 
 eaij 
 bj � g

�
() (9g < 0) (8i; j) (eaij 
 bj � g 
 bi)

() (9g < 0) (8i)
�
max
j
(eaij 
 bj) � g 
 bi

�
() (9g < 0)

� eA
 b � g 
 b
�
:
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Corollary 6.2.7 If A 2 Rn�n is strongly de�nite then A is strongly regular
if and only if the set n

b 2 Rn; eA
 b � g 
 b
o

is nonempty for some g < 0:

For the proof of our principal result, Theorem 6.2.2, we need to prove a
few more properties:

Lemma 6.2.8 If A 2 Rn�n is strongly de�nite then A has strong perma-
nent if and only if every cycle in D eA is negative.
Proof. If A is strongly de�nite then w(�;A) � 0 = w(id; A) for every
� 2 Pn: If � 2 Pn then w(�;A) = w(�1; A)
 :::
w(�k; A), where �1; :::; �k
are the constituent cycles. Hence A has strong permanent if and only if
all cycles of length two or more in DA are negative. This is equivalent to
saying that all cycles in D eA are negative.

Lemma 6.2.9 If A 2 Rn�n and B = A 
 Q where Q is a generalized
permutation matrix then SA = SB : That is the simple image set of a matrix
is una¤ected by adding constants to its columns.

Proof. (A
Q)
 x = A
 (Q
 x) hence

(A
Q)
 x = b

has a unique solution if and only if

A
 z = b

has a unique solution and x = Q�1 
 z.
We are ready to prove Theorem 6.2.2.

Proof. By Proposition 1.6.40 and Lemma 6.2.9 we may assume without
loss of generality that A is strongly de�nite.
Due to Proposition 6.2.1 it remains to prove the "if" part.
By Lemma 6.2.8 every cycle in D eA is negative. Hence �( eA) < 0:
If eA 6= " then by Theorem 1.6.18 for any g � �( eA) and g > " there is a

solution x 2 Rn to eA
 x � g 
 x: If eA = " then eA
 x � g 
 x is satis�ed
by any g and x 2 Rn: Hence the statement now follows by Corollary 6.2.7
by taking g = �( eA) if �( eA) > " and any g 2 R; g < 0; otherwise.

Corollary 6.2.10 If A 2 Rn�n is strongly de�nite then A is strongly reg-
ular if and only if �( eA) < 0:
Due to Theorems 1.6.18 and 6.2.6 we also have:
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Corollary 6.2.11 Let A 2 Rn�n be strongly de�nite and strongly regular.
If eA 6= " then

SA =
n
�
�
g�1 
 eA�
 x;x 2 Rn; �( eA) � g < 0; g 6= "

o
:

If eA = " then SA = Rn:

Example 6.2.12 Let

A =

0@ 1 2 3
1 0 5
5 6 3

1A :

Then the weights of all permutations are 4; 12; 10; 8; 12; 6; jap(A)j = 2; A
does not have strong permanent and hence is not strongly regular. For ma-
trices of higher orders this would be decided algorithmically by checking
whether the associated digraph is acyclic after a transformation to a nor-
mal form. We illustrate on the current matrix how this might be done:

A �! B =

0@ 2 3 1
0 5 1
6 3 5

1A
�! C =

0@ 0 �2 �4
�2 0 �4
4 �2 0

1A
�! G =

0@ 0 0 0
�4 0 �2
0 �4 0

1A :

Here B is a diagonally dominant matrix obtained from A by moving the
�rst column to become the last; C is strongly de�nite, obtained from B
by subtracting the diagonal elements from their columns and G is normal,
obtained from C using the Hungarian method by adding 4 and 2 to the
�rst and second row, respectively and subtracting 4 and 2 from the �rst and
second column, respectively. The digraph Z eG contains arcs (1; 2); (1; 3) and
(3; 1) and thus also the cycle (1; 3; 1) : This con�rms that A does not have
strong permanent (Theorem 1.6.39).

Example 6.2.13 Let A =

0@ 1 2 3
1 0 5
5 4 3

1A : Then the weights of all permu-

tations are 4; 12; 8; 8; 10; 6; jap(A)j = 1; A has strong permanent and hence
is strongly regular. The unique optimal permutation is � = (1; 2; 3): As in
the previous example we now illustrate how this would be done algorithmi-
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cally by transforming A to a normal form:

A �! B =

0@ 2 3 1
0 5 1
4 3 5

1A
�! C =

0@ 0 �2 �4
�2 0 �4
2 �2 0

1A
�! G =

0@ 0 0 �2
�4 0 �4
0 �2 0

1A :

Here B = A
Q1, where Q1 =

0@ " " 0
0 " "
" 0 "

1A ;

C = B 
Q2 where Q2 = diag(�2;�5;�5);
G = P 
 C 
Q3; where P = diag(2; 0; 0) and Q3 = diag(�2; 0; 0).
The digraph Z eG contains arcs (1; 2) and (3; 1) and is therefore acyclic

which con�rms that A is strongly regular.
Since C = A
Q, where Q is the generalized permutation matrix Q1
Q2;

by Lemma 6.2.9 we have SA = SC and we can �nd a simple image of A as
suggested by Corollary 6.2.11: Set g = �( eC) = �1 (say) and calculate

�
�
g�1 
 eC� = �

0@ " �1 �3
�1 " �3
3 �1 "

1A =

0@ 0 �1 �3
0 �1 �3
3 2 0

1A :

The column space of �
�
g�1 
 eC� is one-dimensional and every multiple

of the vector (0; 0; 3)T is a simple image of both C and A:

6.2.2 The simple image set

The simple image set (SIS) of strongly de�nite matrices is fully described
by Theorem 6.2.6 and Corollary 6.2.11. We will now present some fur-
ther properties of simple image sets [26], in particular their relation to
eigenspaces.
Let us �rst consider strongly de�nite matrices. Since

Ak+1 
 x = Ak 
 (A
 x) ;

we have Im(Ak+1) � Im(Ak) for every k natural. It follows then from
Proposition 1.6.12 that for a strongly de�nite matrix A

Im (A) � Im
�
A2
�
� Im

�
A3
�
� :::

::: � Im
�
An�1

�
= Im (An) = Im

�
An+1

�
= ::: = V (A);
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R4

Im(A2)SA Im(A3)Im(A)

FIGURE 6.1. SA = int(V (A))

see Figure 6.1. It turns out that if A is strongly de�nite then A is strongly
regular if and only if V (A) has nonempty interior, which is then SA: More
precisely, we have the following result, whose proof is omitted here.

Theorem 6.2.14 [26] If A 2 Rn�n is strongly de�nite and strongly regular
then SA = int(V (A)) or, equivalently, SA = int

�
Im
�
Ak
��
for every k �

n� 1:

Recall that by Proposition 1.6.40 for any square matrix A 2 Rn�n there is
a generalized permutation matrix Q so that A
Q is strongly de�nite. Using
Lemma 6.2.9 we can remove the assumption that A is strongly de�nite and
deduce the following:

Corollary 6.2.15 If A 2 Rn�n is strongly regular then

SA = int(V (A
Q))

or, equivalently, SA = int
�
Im
�
(A
Q)k

��
for every k � n� 1; where Q

is any permutation matrix such that A
Q is strongly de�nite.

Example 6.2.16 Consider the matrix A of Example 6.2.13. By Corollary
6.2.15 we deduce that SA = int (V (C)) :

Lemma 6.2.17 If A 2 Rn�n is strongly de�nite then the set of �nite
eigenvectors of A is convex.

Proof. If A is strongly de�nite then �(A) = f0g : By Lemma 1.6.14 we
then have V (A) = V �0 (A) : The latter is convex by Lemma 1.6.20.

Theorem 6.2.18 Let A 2 Rn�n be strongly de�nite. Then A is strongly
regular if and only if the topological dimension of V (A) is n:
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Proof. Let A 2 Rn�n be strongly de�nite. It follows from Theorem 6.2.14
that A is strongly regular if and only if int(V (A)) 6= ;: But V (A) for
strongly de�nite matrices is convex (Lemma 6.2.17) and thus this property
is equivalent to topological dimension of V (A) being n [125].
Recall that pd(A) stands for the (max-algebraic) dimension of the prin-

cipal eigenspace of A, that is the maximal number of nonequivalent funda-
mental eigenvectors of A or, equivalently, the number of critical components
of C(A):

Theorem 6.2.19 If A 2 Rn�n be strongly de�nite. Then A is strongly
regular if and only if pd(A) = n:

Proof. If A is not strongly regular then DA and therefore also D�(A)

contains a zero cycle of length two or more. By Theorem 4.3.3 then at least
two columns of �(A) are multiples of each other. Hence pd(A) < n:
If A is strongly regular then the critical cycles are exactly loops at all

nodes and so C(A) has n critical components. Hence pd(A) = n:
For a strongly de�nite matrix A 2 Rn�n it follows from Theorems 6.2.18

and 6.2.19 that pd(A) = n if and only if the topological dimension of the
principal eigenspace is n: In fact equality holds between these two types of
dimension, see Exercise 6.6.5.

6.2.3 Strong regularity in linearly ordered groups

In this subsection we use terminology and notation introduced in Section
1.4.
A generalization of Theorem 6.2.2 to linearly ordered commutative groups

is straightforward provided that the group is radicable. It is less straight-
forward but still possible to prove this theorem when the underlying group
is dense, but it is not true for sparse groups such as G3. For instance the
matrix A =

�
1 0
0 0

�
over the additive group of integers has strong per-

manent but it is not possible to add integer constants to its rows so that
both column maxima would be strict and in di¤erent rows.
An alternative criterion for sparse groups is based on the existence of the

smallest positive element, which we denote here as �. Observe that if we
denote for A 2 Rn�n and g < 0 :

Ug (A) = fb 2 Rn;A
 b � g 
 bg

then
g1 � g2 =) Ug1 (A) � Ug2 (A) :

Using Corollary 6.2.7 we deduce:
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Theorem 6.2.20 If G is a sparse linearly ordered commutative group, � is
the smallest positive element of this group and A is an n�n strongly de�nite
matrix over G then A is strongly regular if and only if U��1

� eA� 6= ; or,
equivalently, there is no positive cycle in D�
 eA:
Example 6.2.21 Consider the matrix A =

�
0 0

�2 0

�
. In G3 (see Sec-

tion 1.4) � = 1 and �
 eA = � " 1
�1 "

�
; hence A is strongly regular. In

G4 we have � = 2 and �
 eA = � " 2
0 "

�
; hence there is a positive cycle

in D�
 eA and thus A is not strongly regular.

6.2.4 Matrices similar to strictly normal matrices

We continue our analysis in the principal interpretation and discuss the
question raised in Subsection 1.6.4: Which matrices are similar to strictly
normal ones? Recall that every matrix is similar to a normal matrix (The-
orem 1.6.37) and normal matrices are strongly de�nite.
So, assume that A = (aij) 2 R

n�n
is strongly de�nite and that b 2 Rn

is a vector for which the system A 
 x = b has a unique solution, thus
ap(A) = fidg. Let

B = diag(b�11 ; b�12 ; :::; b�1n )
A
 diag(b1; b2; :::; bn):

Then ap(B) = ap(A) = fidg and B has a unique column maximum in
every row and column and it also has zero diagonal. Hence B is strictly
normal. We deduce that strong regularity is a su¢ cient condition for a
matrix to be similar to a strictly normal one.
Conversely, if A is strongly de�nite and

diag(c1; :::; cn)
A
 diag(b1; b2; :::; bn)

is strictly normal then ci 
 bi = 0 for all i 2 N; yielding ci = b�1i for all
i 2 N: Therefore in

diag(b�11 ; b�12 ; :::; b�1n )
A
all column maxima are on the diagonal only and thus A 
 x = b has a
unique solution. We have proved:

Theorem 6.2.22 Let A 2 Rn�n be strongly de�nite. Then

diag(c1; :::; cn)
A
 diag(b1; b2; :::; bn)

is strictly normal if and only if ci = b�1i for all i 2 N and the system
A
 x = b has a unique solution.
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Corollary 6.2.23 Let A 2 Rn�n be a matrix with �nite maper (A) : Then
A is similar to a strictly normal matrix if and only if A has strong perma-
nent or, equivalently, if and only if A is strongly regular.

6.3 Gondran-Minoux independence and regularity

Another concept of linear independence in max-algebra is Gondran-Minoux
independence. In this section we restrict our attention to �nite matrices.
We say that the vectors a1; :::; an 2 Rm are Gondran-Minoux dependent
(GMD) if X

j2S

�
�j 
 aj =

X
j2T

�
�j 
 aj (6.1)

holds for some �1; :::; �n 2 R and two nonempty, disjoint subsets S and T of
the set N: If the vectors are not GMD then we call them Gondran-Minoux
independent (GMI). A square matrix with Gondran-Minoux independent
columns is called Gondran-Minoux regular.
In the formulation of a Gondran-Minoux regularity criterion below we

use the symbols introduced in Subsection 1.6.4.

Theorem 6.3.1 (Gondran-Minoux [99], [25]) Let A 2 Rn�n: Then the
following hold:

(a) A is Gondran-Minoux regular if and only if either ap(A) � P+n or
ap(A) � P�n (equivalently, either ap+(A) = ; or ap�(A) = ;);

(b) If permutations � 2 ap+(A); � 2 ap�(A) are known then the sets S
and T and all �j in (6.1) can be found using O

�
n2
�
operations.

Proof. (a) Suppose that (6.1) holds for nonempty, disjoint subsets S and T
of the setN and �1; :::; �n 2 R:We prove that ap+(A) 6= ; and ap�(A) 6= ;.
The converse will follow from part (b).
By Lemma 1.6.43 it is su¢ cient to prove that ap+(B) 6= ; and ap�(B) 6=

; for some matrix B; A � B: Let us permute the columns of the matrix
A
 diag (�1; :::; �n) so that S = f1; :::; kg for some k: Denote the obtained
matrix by A0 =

�
a0ij
�
and its columns by a01; :::; a

0
n: ThenX

j�k

�
a0j =

X
j>k

�
a0j :

Let us denote this vector by c = (c1; :::; cn)
T
: Let B = (bij) be any matrix

obtained from the matrix
�
c�1i 
 a0ij

�
by permuting its rows so that id 2

ap(B): Then B has the following two properties:

bij � 0 for all i; j 2 N
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and
(8i) (9j1 � k) (9j2 > k) bij1 = 0 = bij2 :

We construct a sequence of indices as follows: Let i1 = 1; if ir has already
been de�ned and ir � k then ir+1 is any j > k such that birj = 0 and if
ir > k then ir+1 is any j � k such that birj = 0: By �niteness of N; ir = is
for some r; s and s < r: Let r; s be the �rst such indices and set

L = fis; is+1; :::; ir�1g :

Clearly, if is � k then is+1 > k; is+2 � k; ::: and hence (using a similar
reason if is > k) the size of L is even. Set � (it) = it+1 for t = s; s+1; :::; r�1
and � (i) = i for i 2 N � L: Hence

w(�;B) =
Y


i=2L
bii 


Y


i2L
bi;�(i)

=
Y


i=2L
bii 


Y


i2L
0

�
Y


i2N
bii

= w(id;B)

� w(�;B):

Hence � 2 ap(B) and � 2 P�n ; thus � 2 ap�(B) an id 2 ap+(B):
(b) Suppose now that � 2 ap+(A); � 2 ap�(A) are known. By Theorem

1.6.35 a matrix A0 � A with maper (A0) = 0 and A0 � 0 can be found
in O (n) time. We can then permute the columns of A0 in O

�
n2
�
time so

that for the obtained matrix A00 we have �0 = id 2 ap(A00) and thus A00 is
normal. A permutation �0 2 ap�(A00) can be derived from � in O (n) time.
At least one of the constituent cyclic permutations of �0 is of odd parity
and thus of even length (see Subsection 1.6.4) and it can also be found
in O (n) time. By a simultaneous permutation of the rows and columns of
A00 in O

�
n2
�
time we produce a matrix where this odd cycle is (1; 2; :::; k)

for some even integer k � 2: We denote the obtained normal matrix as
B = (bij) : The matrix B has the form:

1 2 3 ... k k+1 ... n
1 0 0
2 0 0
3 0
...

. . . 0
k 0 0
k+1 0

...
. . .

n 0



6.3 Gondran-Minoux independence and regularity 147

Let us assign indices 1; 3; :::; k � 1 to S; 2; 4; :::; k to T and set �1 = ::: =
�k = 0: If k = n then (6.1) is satis�ed for B: Suppose now that k < n: We
will set all �k+1; :::; �n to certain nonpositive values and therefore (6.1) will
hold for the �rst k equations independently of the choice of these values
and of the assignment of the columns to S and T: To ensure equality in the
rows k + 1; :::; n we �rst compute for all i = k + 1; :::; n :

Li =
X
j2S

�
bij 
 �j

and
Ri =

X
j2T

�
bij 
 �j :

Let us denote
I = fi > k;Li 6= Rig :

If I = ; and S [ T = N then we have (6.1) for B: If S [ T 6= N we set for
every j 2 N � S [ T :

�j = min
i
Li

and assign j to S or T arbitrarily; the statement then follows for B.
If I 6= ; then let s 2 I be any index satisfying

Ls �Rs = max
i2I

(Li �Ri) : (6.2)

Set S0 = S [ fsg and T 0 = T if Ls < Rs and set S0 = S and T 0 = T [ fsg
if Ls > Rs: In both cases take �s = Ls �Rs: Let us denote

L0i =
X
j2S0

�
bij 
 �j

and
R0i =

X
j2T 0

�
bij 
 �j :

Since
bss 
 �s = �s = Ls �Rs

we then get L0s = R0s: At the same time

bis 
 �s � �s = Ls �Rs (6.3)

holds for all i > k and therefore Li = Ri � Ls �Rs implies L0i = R0i:
Let

I 0 = fi > k;L0i 6= R0ig :
As above we assume that I 0 6= ;: Let q 2 I 0 be de�ned by

L0q �R0q = max
i2I0

(L0i �R0i) :
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Then

L0q �R0q � Ls �Rs (6.4)

because either L0q � R0q = bqs 
 �s and then (6.4) follows from (6.3) or,
L0q�R0q > bqs
�s; implying L0i = Li and R0i = Ri; yielding q 2 I and thus
(6.4) follows from (6.2). This also shows that if we continue in this way
after resetting S0 �! S; T 0 �! T;L0i �! Li,R0i �! Ri; I

0 �! I; q �! s
then the process will be monotone (Ls � Rs will be nonincreasing) and
therefore once Li = Ri � Ls � Rs; it will always imply L0i = R0i (but note
that if Li = Ri < Ls � Rs then the ith equation may be violated at the
end of the current iteration). Hence after at most n� k repetitions we will
have I = ; and we proceed as explained above for this case.
All computations necessary for assigning j and setting �j are O (n),

hence the overall computational complexity is O
�
n2
�
: In order to get (6.1)

for A; we only need to carry out the inverse permutations of the rows and
columns of B to get this identity for A00 and A0 and similarly the inverse
transformation of A0; which will yield the result for A: All these operations
are O

�
n2
�
:

Example 6.3.2 We illustrate the method for �nding the decomposition
(6.1) presented in the previous proof on the following 9 � 9 matrix where
the transformation to B has already been made (with an even cycle of length
k = 4). Note that the entries in the last row are �j :

S T S T
0 0

0 0
0 0

0 0
-8 -3 -4 -4 0 -1 -1
-5 -8 -6 -5 -1 0 -6
-1 -3 -7 -4 0 -2 0
0 0 -3 -5 -2 -4 -3 0
-6 -7 -8 -7 -2 -1 -4 0
0 0 0 0 -2 -3 -1 -4 -4

By applying the procedure we obtain successively:

I = f5; 7; 9g ; s = 7; T := T [ f7g ; �7 = �1;
I = f5; 9g ; s = 5; S := S [ f5g ; �5 = �2;
I = f6; 9g ; s = 6; T := T [ f6g ; �6 = �3;
I = ;; S := S [ f8; 9g ; �8 = �9 = �4 (say).
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Hence S = f1; 3; 5; 8; 9g ; T = f2; 4; 6; 7g : The sets Li; Ri develop in indi-
vidual iterations as follows:

Li Ri
0 0
0 0
0 0
0 0
-4 -3
-5 -5
-1 -3
0 0
-6 -7

;

Li Ri
0 0
0 0
0 0
0 0
-4 -2
-5 -5
-1 -1
0 0
-6 -5

;

Li Ri
0 0
0 0
0 0
0 0
-2 -2
-3 -5
-1 -1
0 0
-4 -5

;

Li Ri
0 0
0 0
0 0
0 0
-2 -2
-3 -3
-1 -1
0 0
-4 -4

:

As a consequence of Theorems 6.3.1 and 1.6.44 we have:

Corollary 6.3.3 [25] Let A 2 Rn�n and let B be any normal form of A:
Then A is Gondran-Minoux regular if and only if ZB does not contain an
even cycle.

Using Theorem 1.6.44 and subsequent Remark 1.6.45 we deduce:

Corollary 6.3.4 The problem of deciding whether a given matrix A 2
Rn�n is Gondran-Minoux regular can be solved using O

�
n3
�
operations.

Corollary 6.3.5 Every strongly regular matrix is Gondran-Minoux regu-
lar.

The analogue of Theorem 6.1.7 is not true for Gondran-Minoux inde-
pendence; this is demonstrated by a counterexample in [4]. In this example
a 6� 7 matrix is presented whose rows are Gondran-Minoux independent
but none of the 6� 6 submatrices is Gondran-Minoux regular.
Nevertheless we can prove an analogue of Corollary 6.1.8:

Theorem 6.3.6 If a matrix A 2 Rm�n has Gondran-Minoux independent
columns then m � n:

Proof. Let A = (aij) 2 Rm�n and m < n: We shall show that A has
Gondran-Minoux dependent columns.
Since the Gondran-Minoux independence of columns is not a¤ected by


 multiplying the columns by constants, we may assume without loss of
generality that the last row of A is zero. Let B be an m � m submatrix
of A with greatest value of maper(B). We may assume that B consists of
the �rst m columns of A and that id 2 ap(B) (if necessary, we appropri-
ately permute the columns of A). Let C be the n � n matrix obtained by
adding n � m zero rows to A. Then clearly maper(C) = maper(B) and
ap(C) contains any permutation that is an extension of id from ap(B) to
a permutation of N . As A already had one zero row and we have added
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B
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 C A

FIGURE 6.2. To Theorem 6.3.6

at least another one, C has at least two zero rows, thus ap(C) contains at
least one pair of permutations of di¤erent parities (see Figure 6.2).
Hence, by Theorem 6.3.1 C is not Gondran-Minoux regular and if we

denote the columns of C by c1; :::; cn thenX
j2S

�
�j 
 cj =

X
j2T

�
�j 
 cj

holds for some real numbers �j and two nonempty, disjoint subsets S and
T of the set N: This vector equality restricted to the �rst m components
then yields the Gondran-Minoux dependence of the columns of A.

6.4 An application to discrete-event dynamic

systems

In this section we present an application of the max-algebraic Cayley-
Hamilton Theorem (Theorem 5.3.19) and Gondran-Minoux Theorem (The-
orem 6.3.1) in the theory of discrete-event dynamic systems.
Given A 2 Rn�n and b; c 2 Rn; the sequence fgjg1j=0, where

gj = cT 
Aj 
 b

for all j = 0; 1; 2; :::; is called a discrete-event dynamic system (DEDS) with
starting vector b and observation vector c. The scalars gj are called Markov
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parameters of the system and the triple (A; b; c) is called a realization of
the DEDS of dimension n:
Suppose that (A; b; c) is a realization of a DEDS fgjg1j=0 ; and consider

the Hankel matrices

Hr =

0BB@
g0 g1 ::: gr
g1 g2 ::: gr+1
::: ::: ::: :::
gr gr+1 ::: g2r

1CCA
for r = 0; 1; ::: . By Theorem 5.3.19 there exist �0; �1; :::; �n 2 R and
disjoint sets S; T � f0; 1; :::; ng such thatX

j2S

�
�j 
Aj =

X
j2T

�
�j 
Aj :

If we multiply this equation by Ak (k positive integer) and then by cT from
the left and by b from the right we obtainX

j2S

�
�j 
 gj+k =

X
j2T

�
�j 
 gj+k

for any positive integer k: HenceX
j2S

�
�j 
 hj =

X
j2T

�
�j 
 hj ;

where h0; h1; :::; hr are the columns of Hr: Using Theorem 6.3.1 we deduce:

Theorem 6.4.1 Let G = fgjg1j=0 be a real sequence and r > 0 an integer.
If either ap+(Hr) = ; or ap�(Hr) = ; then no realization of G of dimension
r or less exists.

The minimal-dimensional realization problem (that is the task of �nding
a realization of a given sequence of Markov parameters of minimal dimen-
sion) seems to be unresolved and hard for general sequences, however using
Theorem 6.4.1 it is possible to solve this question for some types of DEDS,
such as for convex sequences. Let us recall that a sequence fgjg1j=0 is called
convex if

gj + gj�2 � 2gj�1

for every natural number j � 2: The following is providing a useful tool:

Proposition 6.4.2 [67] If fgjg1j=0 is convex then

(a) id 2 ap (Hr) for every r = 0; 1; ::: ;
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(b) If ap (H0) = ap (H1) = ::: = ap (Hr�1) = fidg and ap (Hr) 6= fidg
then

ap (Hr) = fid; (1) (2) ::: (r � 1) (r; r + 1)g :

Corollary 6.4.3 If fgjg1j=0 is convex then n = min fr; ap (Hr) 6= fidgg if
and only if n is the least integer satisfying

g2n + g2n�2 = 2gn�1:

It is easily seen that for A = diag (d1; :::; dn) ; b = 0; c = (c1; :::; cn)
T the

DEDS is fgjg1j=0 ; where

gj =
X
i2N

�
ci 
 dji

or, in conventional notation

gj = max
i2N

(ci + jdi) :

Hence the sequence fgjg1j=0 is convex and has a constant slope starting
from some j = j0: This indicates that for a convex sequence of Markov
parameters which ultimately has a constant slope and the transient (that
is the beginning of the sequence before the slope becomes constant) is
strictly convex, a realization of dimension dj0=2e + 1 can be found [67].
For such sequences, in conjunction with Corollary 6.4.3 this provides a
minimal-dimensional realization.
The minimal-dimensional realization problem for general convex sequences

can also be e¢ ciently solved [87]. The basic principles are the same but the
proof of minimality is more evolved and requires di¤erent methodology.

6.5 Conclusions

In Section 3.3 and this chapter we have studied three concepts of indepen-
dence in max-algebra: linear independence, strong linear independence and
Gondran-Minoux independence. From the presented theory it follows that
linear independence implies strong linear independence and strong linear
independence implies Gondran-Minoux independence. For square matrices
these three concepts turn to regularity, strong regularity and Gondran-
Minoux regularity.
Following the resolution of the even cycle problem now all three types

of regularity for an n � n matrix can be checked in O
�
n3
�
time, how-

ever, checking SLI and GMI in polynomial time seems to be an unresolved
problem (see Chapter 11).
Note that further theory of strong regularity can be found in [113].
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6.6 Exercises

Exercise 6.6.1 For each of the following matrices decide whether they are
strongly regular and whether they are Gondran-Minoux regular:

(a) A =

0@ 1 2 4
�4 0 2
1 3 1

1A [strongly regular, hence also Gondran-Minoux

regular]

(b) A =

0@ 1 2 5
�4 0 2
1 3 1

1A [Gondran-Minoux regular but not strongly reg-

ular]

(c) A =

0@ 1 2 5
�1 0 3
1 1 1

1A [Not Gondran-Minoux regular, hence also not

strongly regular]

Exercise 6.6.2 Decide whether the matrix below has strongly linearly in-
dependent columns:

A =

0BB@
1 2 5

�4 0 2
1 3 1
1 3 0

1CCA
[It has, consider the 3� 3 submatrix consisting of rows 1; 3; 4]

Exercise 6.6.3 In the following matrix A �nd a 3 � 3 submatrix whose
max-algebraic permanent is greatest without checking all 3� 3 submatrices
(a solution to this question can be found by inspection):

A =

0BBBB@
1 3 0
2 �1 4
5 6 3
1 2 2
4 1 3

1CCCCA :

(Hint: Subtract the column maximum from each column.)

Exercise 6.6.4 Prove the statement: Let A 2 Rn�n and M be any maxi-
mal set of nonequivalent eigennodes of A. Then the submatrix

�((� (A))
�1 
A)[M ]

is strongly regular.



154 6. Linear independence and rank. The simple image set.

Exercise 6.6.5 Let A 2 Rn�n be strongly de�nite. Prove that pd(A) is
equal to the topological dimension of the principal eigenspace. (Hint: Show
that the topological dimension is equal to the number of strongly connected
components of the critical digraph. [137])

Exercise 6.6.6 A real square matrix is called typical if no two entries have
the same fractional part. Prove the statement: If A is typical and Im(A)
contains an integer vector then A is strongly regular.

Exercise 6.6.7 Consider systems Ax = b in nonnegative linear algebra
(the matrix and both vectors are nonnegative, with conventional addition
and multiplication). Show that

(a) T (A) are the same as in max-algebra;

(b) If A is positive, the possible types of T (A) are f0;1g; f0; 1g and
f0; 1;1g.

(Hint: Consider convex sets in the plane.)

Exercise 6.6.8 (Izhakian linear dependence) Let A 2 Rn�n. Show that
A is not strongly regular if and only if the following condition is satis�ed:
there exists x such that the maximum in each expression (A
 x)i is attained
twice.
(Hint: Use the method used in the proof of Theorem 6.3.1.)
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7
Two-sided max-linear systems

Unlike in conventional linear algebra, moving from the task of �nding a
solution to a one-sided max-linear system of the form

A
 x = b

to �nding a solution to a two-sided system

A
 x� c = B 
 x� d; (7.1)

where A;B 2 Rm�n and c; d 2 Rm; means a signi�cant change of di¢ culty
of the problem. Instead of �nding a pre-image of a max-linear mapping we
now have to �nd a vector in the intersection of two column spaces without
the possibility of converting this task to the �rst one. The good news is
that the solution set to (7.1) is �nitely generated (Theorem 7.6.1), and that
we feel reasonably con�dent in being able to solve such systems, see the
pseudopolynomial Alternating Method of Section 7.3 and the corresponding
Matlab codes downloadable from

http://web.mat.bham.ac.uk/P.Butkoviµc/software/index.htm.

Yet, a basic question remains open to date: are two-sided systems polyno-
mially solvable? It follows from the results in [14] that two-sided systems
are polynomially equivalent to mean payo¤games, a well-known hard prob-
lem in NP \Co�NP . Thus, there is good reason to hope that the answer
to the question is a¢ rmative.



156 7. Two-sided max-linear systems

If c = d = " in (7.1) then this system has the form A
 x = B
 x and is
called homogenous, otherwise it is nonhomogenous. A system of the form

A
 x = B 
 y; (7.2)

where A 2 Rm�n and B 2 Rm�k is a special homogenous system and
will be called a system with separated variables. In fact we can transform
nonhomogenous systems into homogenous and these in turn into systems
with separated variables (see Section 7.4). We will, of course, be interested
in nontrivial solutions, that is when x 6= " for homogenous systems and
when

�
x
y

�
6= " for systems with separated variables. In some cases (such as

the Alternating Method) we wil restrict our attention to �nite solutions.
We start by presenting a few easily solvable special cases, then we con-

tinue with the Alternating Method for solving the systems with separated
variables with a proof of pseudopolynomial computational complexity and
then we show how to convert general systems to systems with separated
variables. A proof of �nite generation of the solution set concludes this
chapter. Nonhomogenous systems are also studied in Chapter 10 in con-
nection with max-linear programs.
Note that the generalized eigenproblem

A
 x = �
B 
 x;

which will be studied in Chapter 9, may be seen as a generalization of both
the eigenproblem and two-sided linear systems. It is providing, among other
bene�ts, useful information about the two-sided systems. For instance, it
follows that compared to the general case a randomly considered system
A
 x = B 
 x is less likely to have a nontrivial solution if both A and B
are symmetric.
An alternative approach to solving two-sided systems can be found in

[148].

7.1 Basic properties

For A;B 2 Rm�n and c; d 2 Rm we denote

S (A;B; c; d) =
n
x 2 Rn;A
 x� c = B 
 x� d

o
and

S (A;B) =
n
x 2 Rn;A
 x = B 
 x

o
:

Proposition 7.1.1 For any A;B 2 Rm�n and c; d 2 Rm the set S (A;B; c; d)
is max-convex and the set S (A;B) is a subspace.
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Proof. Let �; � 2 R and �� � = 0: Then
A
 (�
 x� � 
 y)� c =

= A
 (�
 x� � 
 y)� �
 c� � 
 c =
= �
 (A
 x� c)� � 
 (A
 y � c) =
= �
 (B 
 x� d)� � 
 (B 
 y � d) =
= B 
 (�
 x� � 
 y)� �
 d� � 
 d =
= B 
 (�
 x� � 
 y)� d:

Hence S (A;B; c; d) is max-convex; the second statement is proved simi-
larly.

Corollary 7.1.2 The solution set of a homogenous system with separated
variables is a subspace.

If A has an " row, say the kth then in a solution
�
x
y

�
to (7.2) yj = " if

bkj > ": All such variables yj and the kth equation may removed from the
system. Similarly, if B has an " row. If one of A and B has an " column
then any such column may be removed from the system with no a¤ect on
the solution set. We may therefore assume without loss of generality that
A and B are doubly R-astic.

7.2 Easily solvable special cases

In some situations it is not di¢ cult to solve two-sided systems. For instance
all solutions (if any) to the systems of the form

A
 x = �
 x;

where A 2 Rn�n and � 2 R is given, can easily be found using the tech-
niques of Chapter 4. This readily generalizes to the systems

A
 x = P 
 x;

where A 2 Rn�n and P is a generalized permutation matrix since the
inverse to P exists. Let us discuss now a few other, less trivial, yet simple
cases.

7.2.1 A classical one

Special two-sided systems have been studied already in early works on
max-algebra [100], [97], see also [9]. The best known example perhaps is
the system

x = A
 x� b: (7.3)
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If �(A) � 0 then �(A) = I � A � A2 � ::: � An�1 by Proposition 1.6.10
and hence

A
�(A)
 b� b =
�
A�A2 � :::�An

�

 b� b

=
�
I �A�A2 � :::�An

�

 b

= (I � � (A))
 b
= �(A)
 b;

proving that �(A)
 b is a solution to (7.3). This solution is unique when
�(A) < 0 [9], [102].

7.2.2 Idempotent matrices

Another special case is related to idempotent matrices, that is square ma-
trices A 2 Rn�n such that

A
A = A:

If A is idempotent then �(A) = A and so �(A) � 0 by Proposition 1.6.10.
Also, A is de�nite if A 6= " since then A 
 v = v for some column v 6= ";
which means that 0 2 �(A):
In the next statement we consider �nite matrices.

Theorem 7.2.1 [23] If A;B 2 Rn�n are increasing and idempotent then
the following are equivalent:

(a) A
 x = B 
 y is satis�ed by some x; y 2 Rn; x; y 6= ":

(b) A�B is de�nite.

(c) A
 x = B 
 x is satis�ed by some x 2 Rn; x 6= ":

Proof. (a)=)(b) The vector z = A
 x = B 
 y is �nite and

(A�B)
 z = A
 z �B 
 z
= A
 (A
 x)�B 
 (B 
 y)
= A
 x�B 
 y
= z � z = z:

(b)=)(c) If A�B is de�nite then for some z 2 Rn we have

z = (A�B)
 z = A
 z �B 
 z;

hence A
z � z;B
z � z but these inequalities are satis�ed with equality
because A;B are increasing. Thus (c) follows.
(c)=)(a) Trivial.
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Corollary 7.2.2 If A;B 2 Rn�n and all nodes of DA and DB are critical
then

V (�(A�)� �(B�)) = V (A) \ V (B)
and thus a common eigenvector for A and B can easily be found.

Proof. Since all nodes in DA are critical, �(A�) is increasing; similarly
�(B�): Both �(A�) and �(B�) are idempotent and so a common eigenvector
z satis�es

z = �(A�)
 x = �(B�)
 y
for some x; y 2 Rn: It follows from the proof of Theorem 7.2.1 that

z 2 V (�(A�)� �(B�)) ;

and conversely. The statement now follows.

7.2.3 Commuting matrices

We also brie�y discuss the case of commuting matrices.

Theorem 7.2.3 If A;B 2 Rn�n and A 
 B = B 
 A then the two-sided
max-linear system with separated variables

A
 x = B 
 y

has a nontrivial solution and this solution can be found by solving the eigen-
problem for one of A and B.

Proof. If Ak = " then set y = "; xk = 0 and xj = " for j 6= k: Similarly, if
B has an " column.
Suppose now that both A and B are column R-astic. Let z 2 V (A; �) ;

� 2 R; z 6= "; then by Lemma 4.7.1 B 
 z 2 V (A; �) and B 
 z 6= " since
B is column R-astic. Also, � > " because A is column R-astic. Therefore
we have �
 z 6= " and

A
 (B 
 z) = �
 (B 
 z) = B 
 (�
 z) :

It remains to set x = B 
 z and y = �
 z:
Note that it follows from the proof of Theorem 7.2.3 that a solution (x; y)

with x 6= " and y 6= " exists, provided that both A and B are commuting
column R-astic matrices.

Corollary 7.2.4 If A;B 2 Rn�n; A 
 B = B 
 A and ' (t) ;  (t) are
max-polynomials then the two-sided max-linear system

' (A)
 x =  (B)
 y

has a nontrivial solution, and this solution can be found by solving the
eigenproblem for one of ' (A) and  (B).

Proof. If A
B = B 
A then also ' (A)
  (B) =  (B)
 ' (A) :
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7.2.4 Essentially one-sided systems

If in a system (7.2), where A and B are doubly R-astic, one of the vectors
x; y is one-dimensional, then we have an essentially one-sided system and
solution methods from Chapter 3 can be applied immediately. However, in
this case we can describe the unique scaled basis of this set. This will be
useful in the context of attraction spaces (Section 8.5).
Let us assume without loss of generality that y is one-dimensional. Thus

B is a one-column matrix. Since B is assumed to be doubly R-astic, it is
�nite. We may then assume that B = 0 and the system is

A
 x = y:

Note that by eliminating the variable y and equating all left-hand sides we
can write this system equivalently as a chain of equationsX�

j2N
a1jxj =

X�

j2N
a2j 
 xj = : : : =

X�

j2N
amj 
 xj : (7.4)

Since A is doubly R-astic, we have maxi2M aij > " for every j 2 N: Using
the substitution

zj =

�
max
i2M

aij

��1

 xj ; j 2 N; (7.5)

we can now assume that the system is

A
 z = y; (7.6)

where all column maxima in A are 0 (and y is a single variable). By Theorem

3.1.1
�
z
y

�
2 Rn+1 is a scaled solution to (7.6) if and only if y = 0; z � 0

and for the sets

Mj = fi 2M ; aij = 0g ; j 2 N;

we have [
j:xj=0

Mj =M: (7.7)

Let us denote the solution set to (7.6) by S: It turns out that zero is the
only possible value of any �nite component of a scaled extremal in S:

Proposition 7.2.5 [134] Let
�
z
0

�
2 S be a scaled vector and " < zj < 0

for some j 2 N . Then
�
z
0

�
is not an extremal of S:
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Proof. Let K< := fj 2 N ; " < zj < 0g and K0 := fj 2 N ; zj = 0g, and

de�ne vectors
�
v0

0

�
2 Rn+1 and

�
v(k)
0

�
2 Rn+1 for each k 2 K< by

v0j =

(
0; if j 2 K0

"; otherwise
; vj(k) =

(
0; if j 2 K0 [ fkg
"; otherwise

:

Observe that both
�
v0

0

�
and

�
v(k)
0

�
for any k 2 K<, are (at least

two) solutions to (7.4), di¤erent from
�
z
0

�
. We have:

�
z
0

�
=

�
v0

0

�
�
X�

k2K<
zk 


�
v(k)
0

�
;

hence
�
z
0

�
is not an extremal.

We have seen above that
�
z
y

�
2 Rn+1 is a scaled solution to (7.6) if

and only if y = 0; z � 0 and (7.7) holds, that is the sets Mj ; j 2 K form a
covering of M; where

K = fj 2 N ; zj = 0g :

Recall that a covering is called minimal if it does not contain any proper
subcovering. We will now also say that a covering is nearly minimal if it
contains no more than one proper subcovering. Hence, a coveringMj ; j 2 K
is nearly minimal if and only if there exists no more than one r 2 K such
that Mj ; j 2 Knfrg is also a covering. Recall that by ej (j 2 N) we denote
the vector that has the jth coordinate zero and all other are ".

Proposition 7.2.6 [134] The unique scaled basis of S consists of the vec-

tors of the form
�
vK

0

�
; where vK =

X�

j2K
ej, and Mj ; j 2 K is a

nearly minimal covering of M .

Proof. By Corollary 3.3.11 we only need to prove that a vector is an

extremal in S if and only if it is
�
vK

0

�
for a nearly minimal covering of

M:

Let
�
v
0

�
be an extremal of S: By Proposition 7.2.5, all its �nite com-

ponents are zero and thus v = vK for some K � N; such that Mj ; j 2 K is
a covering of M . If K is not nearly minimal, then there exist r and s such
that Mj ; j 2 K[r] := Knfrg and Mj ; j 2 K[s] := Knfsg are both cover-
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ings of M . Then
�
vK[r]

0

�
and

�
vK[s]

0

�
are both solutions to (7.6) and�

vK

0

�
=

�
vK[r]

0

�
�
�
vK[s]

0

�
; hence

�
vK

0

�
is not an extremal.

Conversely, if
�
vK

0

�
is a scaled solution but not an extremal, then

there exist
�
u
0

�
6=
�
vK

0

�
and

�
w
0

�
6=
�
vK

0

�
such that

�
vK

0

�
=�

u
0

�
�
�
w
0

�
. Evidently

�
u
0

�
�
�
vK

0

�
and

�
w
0

�
�
�
vK

0

�
.

By Proposition 7.2.5 we can represent
�
u
0

�
and

�
w
0

�
as combinations

of solutions to (7.6) over f0; "g. These solutions correspond to coverings,
which are proper subcoverings ofMj ; j 2 K. At least two of these coverings
are di¤erent from each other, hence K is not nearly minimal.
Thus, the problem of �nding the unique scaled basis of system (7.6) is

equivalent to the problem of �nding all nearly minimal subcoverings of
Mj ; j 2 N:
The following special case will also be useful. Here we denote for every

i 2M :
Li = fj 2 N ; aij = 0g :

Corollary 7.2.7 If L1; : : : ; Lm are pairwise disjoint, then the unique scaled

basis of S is the set of vectors
�
vK

0

�
; where vK =

X�

j2K
ej, and K is

an index set which contains exactly one index from each set Li (i 2M).

Proof. In this case there are no nearly minimal coverings of M other than
minimal. If K is an index set which contains exactly one index from each
set Li (i 2M) then Mj ; j 2 K is a minimal covering of M .

7.3 Systems with separated variables - the
Alternating Method

Consider the problem of solving max-linear systems with separated vari-
ables:
Given A 2 Rm�n and B 2 Rm�k �nd x 2 Rn; y 2 Rk such that

A
 x = B 
 y: (7.8)

The method we will present �nds a �nite solution to (7.8) or decides that
no such solution exists. We will therefore assume in this section that "solu-
tion" means �nite solution. As explained at the beginning of this chapter,
we may assume without loss of generality that A and B are doubly R-astic.
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Note that the product of a doubly R-astic matrix and a �nite vector is a
�nite vector.
The algebraic method for solving one-sided systems (Section 3.2) will be

helpful for solving (7.8). Recall that for any A 2 Rm�n and b 2 Rmthe
vector x = A� 
0 b (the principal solution) is the greatest solution to A

x � b; and A 
 x = b has a solution if and only if x is a solution. So
a rather natural idea is starting from some x = x (0) to take for y (0)
the principal solution to B 
 y = A 
 x (0), then for x (1) the principal
solution to A 
 x = B 
 y (0) ; for y (1) the principal solution to B 
 y =
A 
 x (1) and so on. It is probably not immediately obvious whether the
sequences fx (k)g1k=0 ; fy (k)g

1
k=0 yield anything useful. We will show that

under reasonable assumptions they either converge to a solution to (7.8) or
we can deduce that there is no solution. But �rst we formally present the
algorithm. This section is based on [68].

Algorithm 7.3.1 ALTERNATING METHOD
Input: A 2 Rm�n, B 2 Rm�k; doubly R-astic.
Output: A solution (x; y) to (7.8) or an indication that no such solution

exists.
Let x (0) 2 Rn be any vector.
r := 0
again:
y (r) := B� 
0 (A
 x (r))
x (r + 1) := A� 
0 (B 
 y (r))
If xi (r + 1) < xi (0) for every i 2 N then stop (�no solution�)
If A
 x (r + 1) = B 
 y (r) then stop (�(x (r + 1) ; y (r)) is a solution�)
Go to again

Example 7.3.2 Let

A =

0@ 3 �1 0
1 1 0

�1 1 2

1A ; B =

0@ 1 1
3 2
3 1

1A :

Then

A� =

0@ �3 �1 +1
+1 �1 �1
0 0 �2

1A ; B� =

�
�1 �3 �3
�1 �2 �1

�
:

Set (randomly) x (0) = (5; 3; 1)T : The algorithm then �nds

r = 0 : x (0) =

0@ 5
3
1

1A ; A
 x (0) =

0@ 8
6
4

1A ; y (0) =

�
1
3

�
;

B 
 y (0) =

0@ 4
5
4

1A ;
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r = 1 : x (1) =

0@ 1
3
2

1A ; A
 x (1) =

0@ 4
4
4

1A ; y (1) =

�
1
2

�
;

B 
 y (1) =

0@ 3
4
4

1A ;
r = 2 : x (2) =

0@ 0
3
2

1A ; A
 x (2) =

0@ 3
4
4

1A :

Since A 
 x (2) = B 
 y (1) ; the algorithm stops yielding the solution
(x (2) ; y (1)) :

In order to prove correctness of the Alternating Method, �rst recall that
by Corollary 3.2.4 the following hold for any matrices U; V;W of compatible
sizes:

U 
 (U� 
0W ) �W; (7.9)

U 
 (U� 
0 (U 
W )) = U 
W: (7.10)

The following operators will be useful:

� : y �! A� 
0 (B 
 y)

and
 : x �! B� 
0 (A
 x) :

Hence the Alternating Method generates the pair-sequence f(x (r) ; y (r))gr=0;1;:::
satisfying

x (r + 1) = � (y (r)) ; (7.11)

y (r) =  (x (r)) : (7.12)

Let x 2 Rn; y 2 Rk. We shall say that (x; y) is stable if (x; y) = (� (y) ;  (x)) :

Lemma 7.3.3 Every stable pair (x; y) is a solution.

Proof. If (x; y) is stable then using (7.9) we have

A
 x = A
 � (y)
= A
 (A� 
0 (B 
 y))
� B 
 y
= B 
  (x)
= B 
 (B� 
0 (A
 x))
� A
 x;

implying equality between all terms and hence also the lemma statement.

A solution that is stable will be called a stable solution.
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Lemma 7.3.4 If (x; y) is a solution then (� (y) ;  (x)) is a stable solution.

Proof. If (x; y) is a solution then using (7.10) we have

 (� (y)) = B� 
0 (A
 (A� 
0 (B 
 y)))
= B� 
0 (A
 (A� 
0 (A
 x)))
= B� 
0 (A
 x)
=  (x) :

Similarly, � ( (x)) = � (y) ; whence (� (y) ;  (x)) is stable and therefore a
solution.
The next two lemmas present important monotonicity features of the

Alternating Method, which will be crucial for the proof of performance.

Lemma 7.3.5 The sequence fA (x (r))gr=0;1;::: is nonincreasing.

Proof. Applying (7.9) to (7.11) and (7.12) we get

A
 x (r + 1) � B 
 y (r) � A
 x (r) :

Lemma 7.3.6 The sequence fx (r)gr=0;1;::: is nonincreasing.

Proof. x (r + 1) = � (y (r)) = � (B� 
0 (A
 x (r))) : This implies that
x (r + 1) is an isotone function of the nonincreasing A
 x (r) :
The next lemma and theorem are a further preparation for the proof of

correctness of the Alternating Method.

Lemma 7.3.7 If a solution exists then the sequence fx (r)gr=0;1;::: is lower-
bounded for any x (0) :

Proof. For any stable solution (x; y) and � 2 R it is immediate that
� 
 (x; y) is also a stable solution, and � may be chosen small enough
so that � 
 x � x (0) : By Lemma 7.3.4 if a solution exists then a stable
solution (u; v) exists such that x (0) � u: And if x (r) � u for some r then
by (7.9) and isotonicity we have

x (r + 1) = (� �  ) (x (r)) � (� �  ) (u) = � (v) = u

and the result follows by induction.

Theorem 7.3.8 If all components of x (r) or y (r) have properly decreased
after a number of steps of the Alternating Method then (7.8) has no solu-
tion.
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Proof. In the proof of Lemma 7.3.7 the value of � may be taken so that
� 
 x � x (0) but with equality in at least one component. Lemmas 7.3.6
and 7.3.7 then imply that that component of x (r) remains �xed in value
for all r � 0: Moreover it is clear that analogues of Lemmas 7.3.5, 7.3.6
and 7.3.7 are provable for the sequence fy (r)gr=0;1;::: :
We are ready to prove the correctness of the Alternating Method and

deduce corollaries.

Theorem 7.3.9 The pair-sequence f(x (r) ; y (r))gr=0;1;::: generated by the
Alternating Method converges if and only if a solution exists. Convergence
is then monotonic, to a stable solution, for any choice of x (0) 2 Rn:

Proof. If (x (r) ; y (r)) �! (�; �) then (�; �) by Lemma 7.3.7 and by conti-
nuity

(�; �) = lim (x (r + 1) ; y (r)) = lim (� (y (r)) ;  (x (r))) = (� (�) ;  (�)) :

Hence (�; �) is stable, thus a stable solution by Lemma 7.3.3.
Conversely, if a solution exists the monotonic convergence of fx (r)g fol-

lows from Lemmas 7.3.6 and 7.3.7, and that of fy (r)g by isotonicity and
continuity.

If all �nite entries in (7.8) are integer, A;B are doubly R-astic and x (0)
is an integer vector then the integrality is preserved throughout the work
of the Alternating Method. Hence if a solution exists, it will be found in
a �nite number of steps. We may summarize these observations in the
following.

Theorem 7.3.10 If A 2 Zm�n and B 2 Zm�k are doubly R-astic and
a solution to (7.8) exists then the Alternating Method starting from an
x (0) 2 Zn will �nd an integer solution in a �nite number of steps.

In the integer case we may estimate the computational complexity of the
Alternating Method provided that x (0) is an integer vector and at least
one of A;B is �nite (and as before, the other one is doubly R-astic). We
will now assume without loss of generality that A is �nite.

Theorem 7.3.11 If A 2 Zm�n; B 2 Zm�k and the Alternating Method
starts with x (0) 2 Zn then it will terminate after at most

(n� 1) (1 + � 
A� 
A
 )

iterations where  = x (0) :
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Proof. Suppose �rst that a solution exists. By Theorem 7.3.8, there is a
component of ; say j ; that will not change during the run of the Alter-
nating Method; let us call such a component a sleeper. The algorithm will
halt as soon as A
x does not change - this is guaranteed to happen at the
latest when all components of x become so small compared to j that they
will not a¤ect the value of A
 x; more precisely when for every k and i

aik + xk � aij + j ;

that is when xk � ukj ; where

ukj = min
i

�
aij + j � aik

�
= (A� 
0 A)kj + j :

This inequality means that the nonsleeper xk has become dominated by
the sleeper j : Since xk is nonincreasing, the domination will persist in
subsequent iterations. Since the value of j is not known we guarantee dom-
ination for xk by considering all components as potential sleepers, that xk
is certainly dominated if it falls in value below

�k = min
j
ukj = min

j

�
(A� 
0 A)kj + j

�
= (A� 
0 A
0 )k :

Hence the fall of xk before domination is at most

wk = k � �k + 1:

There at most n � 1 nonsleepers and at every iteration at least one non-
sleeper falls by at least 1 (otherwise A 
 x does not change and the algo-
rithm stops). Hence the total number of iterations before domination is not
exceeding

(n� 1)max
k

wk = (n� 1)max
k
(k � �k + 1)

= (n� 1) (1 + �� 
 )
= (n� 1) (1 + � 
A� 
A
 ) :

If a solution does not exist then after at most (n� 1) (1 + � 
A� 
A
 )
iterations all components of x fall (since otherwise A
 x does not change,
yielding a solution) and the algorithm stops indicating infeasibility.

If C 2 Rn�n; � (C) > "; then it follows from Lemma 1.6.28 that

min
x2 Rn

x� 
 C 
 x = z� 
 C 
 z = � (C) ;

where z is any �nite subeigenvector of C: Therefore (by Theorem 7.3.11) a
plausible vector to start the Alternating Method with is a �nite subeigen-
vector of A� 
 A: Note that A� 
 A is �nite since A is �nite and thus all
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eigenvectors of A� 
 A are �nite (subeigenvectors). Then the number of
iterations is bounded by

(n� 1) (1 + �(A� 
A)) :

Let K (A) = max fjaij j ; i 2M; j 2 Ng for any matrix A 2 Rm�n: It is
easily seen that

j�(A)j � K (A) :

Also, let C = (cij) = A� 
 A: Then C is increasing and K (C) � 2K (A) ;
thus 0 � � (C) � 2K (A) : At the same time the individual (four) lines in
the main loop of the Alternating Method require

O ((mn+mk) + (mn+mk) + n+ (mn+mk +m))

operations (including comparisons). Hence the computational complexity
of the Alternating Method is

(n� 1) (1 + 2K (A))O (m (n+ k)) = O (mn (n+ k)K (A)) : (7.13)

We conclude:

Theorem 7.3.12 The Alternating Method is pseudopolynomial if applied
to instances with integer entries where one of the matrices A;B is �nite
and the other one is doubly R-astic.

The Alternating Method as stated here is not polynomial [132]. To see
this consider the system A
 x = B 
 y with

A =

0@ 1 1
0 k
0 0

1A ; B =

0@ 0 1
0 k
0 0

1A
and starting vector x0 = (k=2; 0), which is an eigenvector of A� 
 A: It
can be veri�ed that the Alternating Method will produce a sequence of
vectors starting from x0 in which the �rst component will decrease in every
iteration by 1 until it eventually reaches (0; 0)T - a solution to A
x = B
y:

Remark 7.3.13 In [136] the concept of cyclic projectors is studied. It en-
abled to generalize the Alternating Method to the case of homogenous multi-
sided systems, and to prove using the cellular decomposition idea, that the
Alternating Method converges in a �nite number of iterations to a �nite
solution of a multi-sided system with real entries, if such a solution ex-
ists. The paper also present new bounds on the number of iterations of the
Alternating Method, expressed in terms of the Hilbert projective distance.
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7.4 General two-sided systems

Following the presentation of a pseudopolynomial method for �nding a solu-
tion to systems with separated variables in the previous section, a question
arises whether the general two-sided systems can be converted to those
with separated variables. The answer is a¢ rmative and will be given next.
Consider a general two-sided system (7.1). We start with a cancellation

rule that in many cases signi�cantly simpli�es it.

Lemma 7.4.1 (Cancellation Law) Let v; w; a; b 2 R; a > b. Then for any
real x we have

v � a
 x = w � b
 x (7.14)

if and only if
v � a
 x = w: (7.15)

Proof. If x satis�es (7.14) then LHS � a
x > b
x: Hence RHS = w and
(7.15) follows. If (7.15) holds then w � a
x > b
x and thus w = w�b
x:

It follows from Lemma 7.4.1 that from a two-sided system we may always
remove a term involving a variable without changing the solution set if a
term with the same variable appears on the other side of the same equation
with a greater coe¢ cient. This is, of course, not possible if the coe¢ cients
of a variable on both sides of an equation are equal. Also conversely, if a
variable appears on one side only we may "reinstate" it on the other side
with any coe¢ cient smaller than the existing one. Thus for instance when
studying systems where every equation contains each variable on at least
one side with a �nite coe¢ cient, we may assume without loss of generality
that all coe¢ cients of such a system are �nite.
As another consequence we have that if a column (row) of A is R-astic

then we may assume without loss of generality that so is the corresponding
column (row) of B and vice versa.
If for a variable the corresponding columns in both A and B are " then

these columns and variable may be removed without a¤ecting the solution
set of (7.1). Similarly, if for some i both the ith row of A and B are " then
either this system has no solution (when ci 6= di) or is satis�ed by any x
(when ci = di). In the latter case the ith equation may be removed. Hence
we may assume without loss of generality that both A and B are doubly
R-astic.
By introducing an extra variable, say xn+1; (7.1) can be converted to a

homogenous system
~A
 z = ~B 
 z (7.16)

where ~A = (Ajc); ~B = (Bjd) and z = (z1; :::; zn+1)
T : This conversion is

supported by the following:
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Lemma 7.4.2 Let A;B 2 Rm�n and c; d 2 Rm: Then (7.1) has a solution
if and only if (7.16) has a solution with zn+1 = 0:

Proof. It follows immediately from the de�nitions.
It is easily seen that if all entries in a homogenous system are �nite then

a nontrivial solution exists if and only if a �nite solution exists. Hence we
have a slight modi�cation of Lemma 7.4.2:

Lemma 7.4.3 Let A;B 2 Rm�n and c; d 2 Rm: Then (7.1) has a solution
if and only if (7.16) has a nontrivial solution.

Consider now homogenous systems of the form

A
 x = B 
 x (7.17)

where A;B 2 Rm�n are (without loss of generality) doubly R-astic. System
(7.17) is equivalent to

A
 x = y

B 
 x = y

or, in compact form �
A
B

�

 x =

�
I
I

�

 y: (7.18)

This is a system with separated variables and both
�
A
B

�
and

�
I
I

�
are

doubly R-astic. Hence the Alternating Method may immediately be applied
to this system with guaranteed convergence as speci�ed in Theorem 7.3.9.

To achieve a complexity result based on Theorem 7.3.12 and (7.13) we
will assume that A;B 2 Zm�n: As discussed above, this case actually covers
all systems with entries from Z with every variable appearing on at least

one side of each equation with a �nite coe¢ cient. Then
�
A
B

�
is �nite

and
�
I
I

�
is doubly R-astic. Hence if we denote K (AjB) for convenience

by K and we use the fact that (7.18) has 2m equations and n+m variables
we deduce by (7.13) that the Alternating Method applied to this system
will terminate in a �nite number of steps and its computational complexity
is

O (2mn (n+m)K) = O (mn (m+ n)K) : (7.19)

We conclude:

Theorem 7.4.4 Homogenous system (7.17) with �nite, integer matrices
A;B can be solved using the Alternating Method in pseudopolynomial time.
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7.5 The square case: An application of

symmetrized semirings

Symmetrized semirings [9], [86] are sometimes useful to study two-sided
systems of equations in max-algebra. We now give a brief account of this

theory and its application to two-sided systems, although their practical
use for solving the two-sided systems is rather limited, since in general
they only provide a necessary solvability condition. Another application of
this idea is to the generalized eigenproblem (Chapter 9).
Denote S = R� R and extend � and 
 to S as follows:

(a; a0)� (b; b0) = (a� b; a0 � b0);

(a; a0)
 (b; b0) = (a
 b� a0 
 b0; a
 b0 � a0 
 b):

It is easy to check that " = (�1;�1) is the neutral element of S with
respect to � and (0;�1) is the neutral element with respect to 
.
If x = (a; a0) then �x stands for (a0; a); x�y means x�(�y), the modulus

of x 2 S is jxj = a�a0, the balance operator is x� = x�x = (jxj ; jxj). Note
that we are using the symbol j:j for both the modulus of an element of a
symmetrized semiring and for the absolute value of a real number since no
confusion should arise. The following identities are easily veri�ed from the
de�nitions:

�(�x) = x

�(x� y) = (�x)� (�y)
�(x
 y) = (�x)
 y

Lemma 7.5.1 Let x; y 2 S: Then the following hold:

(a) jx� yj = jxj � jyj ;

(b) jx
 yj = jxj 
 jyj ;

(c) j�xj = jxj :

Proof. Let x = (a; b); y = (c; d): Then jx� yj = a�c�b�d and jxj�jyj =
a� b� c� d; hence the �rst identity. Also, we have

jx
 yj = (a
 c� b
 d)� (a
 d� b
 c)
= (a� b)
 (c� d)
= jxj 
 jyj :
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Part (c) is trivial.
Let x = (a; a0); y = (b; b0). We say that x balances y (notation x5 y) if

a� b0 = a0 � b: Note that although 5 is re�exive and symmetric, it is not
transitive.
If x = (a; b) then x is called sign-positive (sign-negative), if a > b (a < b)

or x = "; x is called signed if it is either sign-positive or sign-negative; x
is called balanced if a = b, otherwise it is called unbalanced. Thus, " is the
only element of S that is both signed and balanced.

Proposition 7.5.2 Let x; y 2 S: Then x
 y is balanced if either of x; y is
balanced; x� y is balanced if both x and y are balanced.

Proof. Straightforwardly from the de�nitions.
Due to the bijective semiring morphism t �! (t;�1) we will iden-

tify, when appropriate, the elements of R and the sign-positive elements
of S of the form (t;�1). Conversely, a sign-positive element (a; b) may
be identi�ed with a 2 R. So for instance 3 may denote the real number
as well as the element (3;�1) of S: By these conventions we may write
3� 2 = 3; 3� 7 = �7; 3� 3 = 3�:
The following are easily proved (see Exercise 7.7.6) for x; y; u; v 2 S:

x5 y; u5 v =) x� u5 y � v; (7.20)

x5 y =) x
 u5 y 
 u; (7.21)

x5 y and x = (a; a0); y = (b; b0) are sign-positive =) a = b: (7.22)

The operations � and 
 are extended to matrices and vectors over S in
the same way as in linear algebra; 5 is extended componentwise. A vector
is called sign-positive (sign-negative, signed), if all its components are sign-
positive (sign-negative, signed). The properties mentioned above hold if
they are appropriately modi�ed for vectors. For more details see [123].

Proposition 7.5.3 [123] Let A;B 2 Rm�n: To every solution x 2 Rn of
the system A
x = B
x there exists a sign-positive solution to the system
of linear balances (A�B)
 x5 ", and conversely.

Proof. Let A;B 2 Rm�n: Then the following are equivalent:

A
 x = B 
 x; x 2 Rn;

A
 x5B 
 x; x sign-positive,

A
 x�B 
 x5 "; x sign-positive,

(A�B)
 x5 "; x sign-positive.
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We now de�ne the determinant of matrices in symmetrized semirings.
The (symmetrized) sign of a permutation � is sgn(�) = 0 if � is even and it
is �0 if � is odd, see Subsection 1.6.4. The determinant of A = (aij) 2 Sn�n
is

det(A) =
X�

�2Pn

�
sgn (�)


Y


i2N
ai;�(i)

�
:

The following is an analogue of the classical result in conventional linear
algebra and is proved essentially in the same way.

Theorem 7.5.4 [123] Let A 2 Sn�n. Then the system of balances A
x5"
has a signed nontrivial (i.e. 6= ") solution if and only if A has balanced
determinant.

Since a signed vector may or may not be sign-positive, it is not true in
general, that the system A 
 x = B 
 x has a nontrivial solution if and
only if A�B has a balanced determinant (see Proposition 7.5.3). But the
necessary condition obviously follows:

Corollary 7.5.5 Let A;B 2 Rn�n and C = A � B. Then a necessary
condition that the system A
 x = B 
 x have a nontrivial solution is that
C has balanced determinant.

We therefore need a method for deciding whether a given square matrix
has balanced determinant. In principle this is, of course, possible by calcu-
lating the determinant. However, such a computation is only practical for
matrices of small sizes (see Examples 7.5.8, 7.5.9 and 7.5.10), since unlike
in conventional linear algebra there is no obvious way to avoid considering
all n! permutations. We will show that this task can be converted using
the max-algebraic permanent (or, in conventional terms, the assignment
problem) to the question of sign-nonsingularity of matrices.
Recall that the max-algebraic permanent of A = (aij) 2 R

n�n
is

maper(A) =
X�

�2Pn

Y


i2N
ai;�(i):

Clearly, since maper(A) = max�2Pn
P

i2N ai;�(i); the value of maper(A)
can be found by solving the linear assignment problem for A (see Subsection
1.6.4). Recall that we denoted

ap(A) =

(
� 2 Pn;maper(A) =

X
i2N

ai;�(i)

)
:

We refer the reader to Subsection 1.6.4 for de�nitions and more details
on the relation between the max-algebraic permanent and the assignment
problem. We only recall that perhaps the best known solution method
for the assignment problem is the Hungarian method of computational
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complexity O
�
n3
�
: This algorithm transforms A to a nonpositive matrix

B = (bij) with ap(A) = ap(B) and maper(B) = 0: Thus for � 2 ap(B) we
have bi;�(i) = 0 for all i 2 N . If bij = 0 for some i; j 2 N then a � 2 ap(B)
with j = �(i) may or may not exist. But this can easily be decided by
checking that maper (Bij) = 0 where Bij is the matrix obtained from B
by removing row i and column j:
If C = (cij) 2 Sn�n then we denote jCj = (jcij j) 2 Rn�n: We also

have det(C) = (d+ (C) ; d� (C)) or, for simplicity just (d+; d�) ; and so
jdet (C)j = d+ � d�:

Proposition 7.5.6 For every C = (cij) 2 Sn�n we have:

jdet (C)j = maper jCj : (7.23)

Proof. By a repeated use of Lemma 7.5.1 we have

jdet (C)j =

����� X
�2Pn

�
 
sgn (�)


Y
i2N



ci;�(i)

!�����
=

X
�2Pn

�
�����sgn (�)
Y

i2N



ci;�(i)

�����
=

X
�2Pn

�
�����Y
i2N



ci;�(i)

�����
=

X
�2Pn

�Y
i2N


 ��ci;�(i)��
= maper jCj :

A square (0; 1;�1) matrix is called sign-nonsingular (SNS) [18] if at least
one term of its standard determinant expansion is nonzero and all nonzero
terms have the same sign.
Given C = (cij) 2 Sn�n we de�ne eC = (ecij) to be the n � n (0; 1;�1)

matrix satisfying

ecij = 1 if j = � (i) for some � 2 ap jCj and cij is sign-positive,ecij = �1 if j = � (i) for some � 2 ap jCj and cij is sign-negative,ecij = 0 else.

The matrix eC can easily be constructed since, as mentioned above, it is
straightforward to check whether j = � (i) for some � 2 ap jCj.

Theorem 7.5.7 [86] Let C 2 Sn�n. A su¢ cient condition that C have
balanced determinant is that eC is not SNS. If C has no balanced entry then
this condition is also necessary.
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Proof. If eC is not SNS then either all terms of the standard determi-
nant expansion of eC are zero or there are two nonzero terms of opposite
signs. In the �rst case every permutation � 2 ap jCj selects a balanced
element, thus by Proposition 7.5.2 every permutation has balanced weight
and so det (C) is balanced. In the second case there are �; �0 2 ap jCj such
that sgn (�)w

�
�; eC� = 1 and sgn (�)w ��0; eC� = �1: Hence det (C) con-

tains two maximal terms, one sign-positive and the other one sign-negative.
Therefore det (C) is balanced.
Suppose now that det (C) is balanced. Since C has no balanced entry,

det (C) contains a sign-positive and a sign-negative entry of maximal value.
For the corresponding permutations �; �0 2 ap jCj we then have that they
contribute to standard determinant expansion of eC with +1 and �1 and
so eC is not SNS.
The problem of checking whether a (0; 1;�1) matrix is SNS or not is

equivalent to the even cycle problem in digraphs [18], [143] and therefore
polynomially solvable (Remark 1.6.45). Therefore the necessary solvability
condition in Corollary 7.5.5 can be checked in polynomial time and enables
us to prove for some systems that no nontrivial solution to A
 x = B 
 x
exists. Yet, it does not provide a solution method for solving the two-sided
systems as this condition is not su¢ cient in general.
Note that in the examples below the question whether the determinant is

balanced is decided directly using the de�nition and the sign-nonsingularity
is not used. This would not be practical for matrices of bigger sizes.

Example 7.5.8 Let A =

0@ 3 8 2
7 1 4
0 6 3

1A, B =
0@ 4 4 3
2 3 4
3 2 1

1A :

Then

C =

0@ �4 8 �3
7 �3 4�

�3 6 3

1A ;

d+ = max (10; 15�; 9) ;

d� = max (16; 14�; 18) ;

maper jCj = 18:

Since d+ 6= d�; the determinant of C = A � B is unbalanced and so the
system A
 x = B 
 x has no nontrivial solution.

Example 7.5.9 Let A =

0@ 3 8 2
7 1 4
0 5 3

1A, B =
0@ 5 5 5
3 4 5
5 3 2

1A :
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Then

C =

0@ �5 8 �5
7 �4 �5

�5 5 3

1A ;

d+ = max (12; 18; 14) ;

d� = max (17; 15; 18) ;

maper jCj = 18 = d+ = d�:

Hence det (A�B) is balanced, and indeed x = (2; 1; 4)
T is a solution to

A
 x = B 
 x.

Example 7.5.10 Let A =
�
4 6
7 9

�
; B =

�
0 1
3 1

�
:

C =

�
4 6
7 9

�
and

maper jCj = 13 = d+ = d�:

Hence the determinant is balanced but no nontrivial solution to A 
 x =
B 
 x exists as (by the cancellation law) B is e¤ectively ":

7.6 Solution set is �nitely generated

In this section the set S (A;B) =
n
x 2 Rn;A
 x = B 
 x

o
will be denoted

shortly by S: Also, in this section only, the letter I denotes an index set
(not the unit matrix). The aim of this section is to prove the following
fundamental result:

Theorem 7.6.1 [36] If A;B 2 Rm�n then S is �nitely generated, that is
there is an integer w � 1 and a matrix T 2 Rn�w such that

S =
n
T 
 z; z 2 Rw

o
:

Lemma 7.6.2 [36] If A;B 2 R1�n then there is an integer w � 1 and a

matrix T 2 Rn�w such that

S =
n
T 
 z; z 2 Rw

o
:
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We postpone the proof of the lemma for a while and �rst prove the
theorem.
Proof of Theorem 7.6.1. Let us denote (in this proof only) the rows of
A an B by A1; :::; Am and B1; :::; Bm; respectively. By Lemma 7.6.2 there
is a matrix T1 2 R

n�w1 for some integer w1 � 1 such thatn
x 2 Rn;A1 
 x = B1 
 x

o
=
n
T1 
 z(1); z(1) 2 R

w1
o
:

Similarly, there is an integer w2 � 1 and a matrix T2 2 R
w1�w2 such thatn

z(1) 2 Rw1 ;A2 
 T1 
 z(1) = B2 
 T1 
 z(1)
o
=
n
T2 
 z(2); z(2) 2 R

w2
o
:

This process continues until at the end we have that there is an integer
wm � 1 and a matrix Tm 2 R

wm�1�wm such thatn
z(m�1) 2 Rwm�1

;Am 
 T1 
 :::
 Tm�1 
 z(m�1) =

= Bm 
 T1 
 :::
 Tm�1 
 z(m�1)
o

=
n
Tm 
 z(m); z(m) 2 R

wm
o
:

We now show that for the wanted T we can take T1
 :::
Tm and w = wm:
Suppose �rst that x = T 
 z for some z 2 Rw and k 2M: Then

Ak 
 (T 
 z) = Ak 
 T1 
 :::
 Tm 
 z
= (Ak 
 T1 
 :::
 Tk�1)
 Tk 
 (Tk+1 
 :::
 Tm 
 z)
= (Bk 
 T1 
 :::
 Tk�1)
 Tk 
 (Tk+1 
 :::
 Tm 
 z)

by the de�nition of Tk: Hence Ak 
 (T 
 z) = Bk 
 (T 
 z) and thus
T 
 z 2 S:
Suppose now that x 2 S: Then A1 
 x = B1 
 x; thus

x = T1 
 z(1); z(1) 2 R
w1
:

At the same time A2 
 x = B2 
 x and so

A2 
 T1 
 z(1) = B2 
 T1 
 z(1)

implying
z(1) = T2 
 z(2); z(2) 2 R

w2

and therefore x = T1 
 z(1) = T1 
 T2 
 z(2): By induction then

x = T1 
 T2 
 :::
 Tm 
 z(m); z(m) 2 R
wm
:
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One equation of the form A
 x = B 
 x can be written as follows:X�

j2N
aj 
 xj =

X�

j2N
bj 
 xj : (7.24)

Due to Lemma 7.4.1 we may assume without loss of generality that

aj 6= bj =) min (aj ; bj) = " (7.25)

holds for every j 2 N: Hence after a suitable renumbering of variables this
equation can symbolically be written as

("; :::; "; e; :::; e; a; :::; a; "; :::")
 x = ("; :::; "; e; :::; e; "; :::"; b; :::; b)
 x:

This form corresponds to the partition of N into four subsets:

I = fj 2 N ; aj = bj = "g ;
J = fj 2 N ; aj = bj 6= "g ;
K = fj 2 N ; aj > bjg ;
L = fj 2 N ; aj < bjg :

We now de�ne �ve sets of vectors:

ei =
�
ei1; :::; e

i
n

�T
; i 2 I;

where (as before) eij = "; if j 6= i and eij = 0; if j = i ;

ri =
�
ri1; :::; r

i
n

�T
; i 2 J;

where rij = "; if j 6= i and rij = a�1i = b�1i ; if j = i;

sk;l =
�
sk;l1 ; :::; sk;ln

�T
; k 2 K; l 2 L;

where sk;lj = "; if j =2 fk; lg ; sk;lj = a�1k ; if j = k and sk;lj = b�1l ; if j = l;

ri;h =
�
ri;h1 ; :::; ri;hn

�T
; i 2 J; h 2 K [ L;

where ri;hj = rij ; if j 6= h; ri;hj = a�1h ; if j = h 2 K and ri;hj = b�1h ; if
j = h 2 L;

sk;l;h =
�
sk;l;h1 ; :::; sk;l;hn

�T
; k 2 K; l 2 L; h 2 K [ L� fk; lg ;

where sk;l;hj = sk;lj ; if j 6= h, sk;l;hj = a�1h ; if j = h 2 K � fkg and
sk;l;hj = b�1h ; if j = h 2 L� flg.
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Lemma 7.6.3 Equation (7.24) has a nontrivial solution if and only if

I [ J [ (K � L) 6= ;:

Proof. If I [ J [ (K � L) 6= ; then at least one of the vectors ei; i 2 I;
ri; i 2 J ; sk;l; k 2 K; l 2 L exists and each of these vectors is a nontrivial
solution.
If I [J [ (K � L) = ; then I = J = K�L = ;: Since I [J [K [L = N

and K\L = ; we have either that L = ; and K = N or K = ; and L = N:
In the �rst case the equation (7.24) reduces to

max
i2N

ai 
 xi = "

and ai > " for all i 2 N which implies that x = " is the unique solution.
The second case can be dealt with in the same way.
We are now ready to present the proof of the key lemma.

Proof of Lemma 7.6.2. We prove that y 2 Rn is a solution to (7.24) if
and only if it can be written in the form

y =
X�

i2I
�i 
 ei �

X�

i2J
�i 
 ri �

X�

k2K;l2L
�k;l 
 sk;l � (7.26)

�
X�

i2J;h2K[L
�i;h 
 ri;h �

X�

k2K;l2L;h2K[L�fk;lg
�k;l;h 
 sk;l;h

where �i; �i; �k;l; �i;h; �k;l;h 2 R: Note that if the index sets in this summa-
tion are empty then by Lemma 7.6.3 S = f"g and we may take any w � 1
and set T = ":
It is easily seen that each of the vectors ei; i 2 I; ri; i 2 J ; sk;l; k 2 K; l 2

L; ri;h; i 2 J; h 2 K [ L; sk;l;h; k 2 K; l 2 L; h 2 K [ L � fk; lg is a
solution to (7.24) and thus by Proposition 7.1.1 also their max-algebraic
linear combination is in S:
It remains to prove that every solution can be expressed as in (7.26). Let

x = (x1; :::; xn)
T 2 S and let

v =
X�

j2N
aj 
 xj =

X�

j2N
bj 
 xj :

At least one of the following will occur:
Case 1: v = ":
Case 2: v 6= " and v = aj 
 xj = bj 
 xj for some j 2 J:
Case 3: v 6= " and v = af 
 xf = bg 
 xg for some f 2 K and g 2 L:
In Case 1 xi = " for all i 2 J [ K [ L and thus it is su¢ cient to set

�i = xi for all i 2 I and all other coe¢ cients set to ":
In Case 2 we have aj = bj > " and ai 
 xi � v; bi 
 xi � v for all i 2 N;

implying
a�1j 
 ai 
 xi � xj ;

b�1j 
 bi 
 xi � xj :

�
(7.27)
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Set

�i = xi; i 2 I;
�i = ai 
 xi; i 2 J;

�j;h = ah 
 xh; h 2 K;
�j;h = bh 
 xh; h 2 L;

and set �i;h = " for all i 2 J �fjg ; h 2 K [L and also all other coe¢ cients
to ": Let y be de�ned by (7.26), we show that y = x:
Let t 2 I: Then

yt =
X�

i2I
�i 
 eit = �t 
 ett = xt 
 0 = xt:

Take t 2 J � fjg : Then

yt =
X�

i2J
�i 
 rit �

X�

h2K[L
�j;h 
 rj;ht

= �t 
 a�1t � "
= at 
 xt 
 a�1t = xt

since here t =2 K [ L and t 6= j: Also, using (7.27) we have

yj = �j 
 a�1j �
X�

h2K
�j;h 
 rjj �

X�

h2L
�j;h 
 rjj

= xj �
X�

h2K
ah 
 xh 
 a�1j �

X�

h2L
bh 
 xh 
 b�1j = xj :

Now take t 2 K: Then

yt =
X�

i2J;h2K[L
�i;h 
 ri;ht

=
X�

h2K
�j;h 
 rj;ht

= �j;t 
 rj;tt
= at 
 xt 
 a�1t = xt:

Similarly it can be shown that yt = xt for t 2 L:
In Case 3 we have af ; bg > " and for all i 2 N there is

a�1f 
 ai 
 xi � xf ;

b�1g 
 bi 
 xi � xg:

�
(7.28)

Set

�i = xi; i 2 I;
�i = ai 
 xi; i 2 J;

�f;g = af 
 xf = bg 
 xg;
�f;g;h = ah 
 xh; if h 2 K;

= bh 
 xh; if h 2 L;



7.6 Solution set is �nitely generated 181

and all other coe¢ cients to ": Let y be again de�ned by (7.26), and take
any t 2 I: Then

yt =
X�

i2I
�i 
 eit = �t 
 ett = xt 
 0 = xt:

Take t 2 J: Then

yt =
X�

i2J
�i 
 rit

= �t 
 a�1t
= at 
 xt 
 a�1t = xt:

Now take t 2 K � ffg : Then

yt = �f;g 
 sf;gt �
X�

h2K[L�ff;gg
�f;g;h 
 sf;g;ht

= "� �f;g;t 
 sf;g;tt

= at 
 xt 
 a�1t = xt;

since t =2 ff; gg : Also, using (7.28) we have

yf = �f;g 
 sf;gf �
X�

h2K[L�ff;gg
�f;g;h 
 sf;g;hf

= af 
 xf 
 a�1f �
X�

h2K[L�ff;gg
ah 
 xh 
 a�1f = xf

The subcase t 2 L can be proved in a similar way.
Alongside the theoretical value, the constructive proofs of Theorem 7.6.1

and Lemma 7.6.2 show how to solve systems A 
 x = B 
 x. The num-
ber of variables is likely to grow rapidly during this process and so the
method is unlikely to be useful except for the systems with small number
of variables and equations. Obviously, columns of a matrix Ti that are a
max-combination of the others may be eliminated. We will illustrate this
in the two examples below. Note that the A-test speci�ed in Theorem 3.4.2
may be used to �nd and eliminate the linearly dependent columns.
There are several improvements of this method; one of them can be found

in [7].

Example 7.6.4 Let A =

0@ 3 2 "
" " 2
2 0 3

1A ; B =

0@ 3 " 0
0 " 2
" 0 3

1A : Then for

the �rst equation we have I = ;; J = f1g ;K = f2g ; L = f3g and thus

r1 = (�3; "; ")T ;
s2;3 = (";�2; 0)T ;
r1;2 = (�3;�2; ")T ; r1;3 = (�3; "; 0)T :
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Hence w1 = 4 and T1 =

0@ �3 " �3 �3
" �2 �2 "
" 0 " 0

1A : Therefore

A2 
 T1 = ("; "; 2)
 T1 = ("; 2; "; 2)T ;
B2 
 T1 = (0; "; 2)
 T1 = (�3; 2;�3; 2)T :

For the equation A2 
 T1 
 z(1) = B2 
 T1 
 z(1) we then get I = ;;
J = f2; 4g ; K = ;; L = f1; 3g and thus

r2 = (";�2; "; ")T ; r4 = ("; "; ";�2)T ;
r2;1 = (3;�2; "; ")T ; r2;3 = (";�2; 3; ")T ;
r4;1 = (3; "; ";�2)T ; r4;3 = ("; "; 3;�2)T :

Hence w1 = 6 and T2 =

0BB@
" " 3 " 3 "

�2 " �2 �2 " "
" " " 3 " 3
" �2 " " �2 �2

1CCA : Therefore

T1 
 T2 =

0@ " �5 0 0 0 0
�4 " �4 1 " 1
�2 �2 �2 �2 �2 �2

1A :

By inspection we see that columns 4 and 6 are equal and column 3 is the
max-algebraic sum of columns 1 and 5, thus we may remove redundant
columns 3 and 6 and continue to work with the reduced matrix

T 0 =

0@ " �5 0 0
�4 " 1 "
�2 �2 �2 �2

1A :

Since

A3 
 T 0 = (1; 1; 2; 2) ; B3 
 T 0 = (1; 1; 1; 1) ;

for the equation A3
T 0
z(2) = B3
T 0
z(2) we then get I = ;; J = f1; 2g ;
K = f3; 4g ; L = ; and thus

r1 = (�1; "; "; ")T ; r2 = (";�1; "; ")T ;
r1;3 = (�1; ";�2; ")T ; r1;4 = (�1; "; ";�2)T ;
r2;3 = (";�1;�2; ")T ; r2;4 = (";�1; ";�2)T :
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Hence w3 = 6 and

T = T 0 
 T3

= T 0 


0BB@
�1 " �1 �1 " "
" �1 " " �1 �1
" " �2 " �2 "
" " " �2 " �2

1CCA
=

0@ " �6 �2 �2 �2 �2
�5 " �1 �5 �1 "
�3 �3 �3 �3 �3 �3

1A :

Columns 4 and 5 are dependent and so we conclude that x is a solution to
A
 x = B 
 x if and only if

x =

0@ " �6 �2 �2
�5 " �1 "
�3 �3 �3 �3

1A
 z
where z 2 R4:

Example 7.6.5 Let A =

�
1 0
0 1

�
; B =

�
" 0
0 "

�
: Then for the �rst

equation we have I = ;; J = f2g ;K = f1g ; L = ; and thus

r2 = ("; 0)
T
;

r2;1 = (�1; 0)T :

Hence w1 = 2 and T1 =
�
" �1
0 0

�
: Therefore

A2 
 T1 = (1; 1)T

and
B2 
 T1 = (";�1)T :

For the equation A2 
 T1 
 z(1) = B2 
 T1 
 z(1) we then get I = ;; J = ;;
K = f1; 2g ; L = ; and thus by Lemma 7.6.3 the system A
x = B
x has
only the trivial solution.

7.7 Exercises

Exercise 7.7.1 Let

A =

0BB@
4 6
1 2
3 0
6 6

1CCA ; B =

0BB@
7 1
3 0
0 3
1 8

1CCA :
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Use the Gondran-Minoux Theorem to prove that the system A
x = B
 y
has no nontrivial solution.

Exercise 7.7.2 Simplify each of the following systems using the cancella-
tion law and then �nd a nontrivial solution or prove that there is none:

(a)

3
 x1 � 4
 x2 � 7
 x3 = 5
 x1 � 1
 x2 � 2
 x3
6
 x1 � 3
 x2 � 1
 x3 = 5
 x1 � 2
 x2 � 4
 x3

[No solution]

(b)

1
 x1 � 4
 x2 � 2
 x3 = 0
 x1 � 5
 x2 � 3
 x3
2
 x1 � 1
 x2 � 6
 x3 = 1
 x1 � 7
 x2 � 0
 x3

[(4; 0; 2)T ]

Exercise 7.7.3 Find a nontrivial solution to the system A 
 x = B 
 x;
where

A =

0@ �4 3 0 2
5 �1 6 3
7 3 0 4

1A ; B =

0@ 0 2 6 1
3 5 0 7
2 12 6 3

1A :

[x = (7; 2; 0; 5)T ]

Exercise 7.7.4 Find a nontrivial solution to the system A 
 x = B 
 y;
where

A =

0@ 5 8 1
3 6 2
5 0 3

1A ; B =

0@ 4 2 8 1
3 0 5 0
2 �3 4 1

1A :

[x = (1; 2; 0)T ; y = (1; 8; 0; 5)T ]

Exercise 7.7.5 Show that if A;B have all entries from f0;�1g then the
system A
 x = B 
 x can be solved in polynomial time. (Hint: Transform
the system to an equivalent one where A and B have no " rows.)

Exercise 7.7.6 Prove (7.20), (7.21) and (7.22).

Exercise 7.7.7 For each of the matrices below decide whether it is sign-
nonsingular:

(a) A =

0@ 1 0 �1
1 �1 �1
0 1 1

1A : [Not SNS]
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(b) A =

0@ 1 1 �1
�1 0 1
1 1 1

1A : [Not SNS]

(c) A =

0@ 1 1 �1
�1 0 �1
0 1 1

1A : [SNS]

Exercise 7.7.8 For each pair of matrices A;B below consider the system
A
x = B
x: Find C = A�B and decide whether eC is SNS. Then decide
whether the system has a nontrivial solution and �nd one if applicable.

(a) A =

0@ 3 1 7
2 4 0
6 3 5

1A ; B =

0@ 2 3 2
4 0 3
2 1 7

1A : [ eC is SNS, no nontrivial

solution]

(b) A =

0@ 6 1 2
1 5 0
2 1 6

1A ; B =

0@ 4 5 5
2 3 1
7 3 1

1A : [ eC is not SNS, a solution

is x = (3; 0; 4)T ]

Exercise 7.7.9 Show by an example that r is not transitive.
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8
Reachability of eigenspaces

One of the aims of this book is analysis of multi-machine interactive pro-
duction processes (see Subsection 1.3.3). Recall that in these processes
machines M1; :::;Mn work interactively and in stages. In each stage all
machines simultaneously produce components necessary for the next stage
of some or all other machines. If xi(k) denotes the starting time of the
kth stage on machine i; and aij denotes the duration of the operation at
which machine Mj prepares the component necessary for machine Mi in
the (k + 1)st stage then

xi(k + 1) = max(x1(k) + ai1; :::; xn(k) + ain) (i = 1; :::; n; k = 0; 1; :::)

or, in max-algebraic notation,

x(k + 1) = A
 x(k) (k = 0; 1; :::)

where A = (aij). We say that the system reaches a steady regime if it
eventually moves forward in regular steps, that is if for some � and k0
we have x(k + 1) = � 
 x(k) for all k � k0. Obviously, a steady regime
is reached immediately if x(0) is an eigenvector of A corresponding to an
eigenvalue �. However, if the choice of a start-time vector is restricted we
may need to �nd out for which vectors a steady regime will eventually be
reached. Since x(k) = Ak 
 x(0) for every natural k; we get the following
generic question:
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Q: Given A 2 Rn�n and x 2 Rn is there an integer k � 0 such that
Ak 
 x is an eigenvector of A? That is, does

Ak+1 
 x = �
Ak 
 x;
Ak 
 x 6= "

�
(8.1)

hold for some � 2 R?
Clearly, � in (8.1) is one of the eigenvalues of A and therefore � = � (A)

if A is irreducible.
In general, if � > " and Ak 
 x is an eigenvector of A associated with �

then
Ak+1 
 x = A


�
Ak 
 x

�
= �


�
Ak 
 x

�
6= "

and hence Ak+1 
 x is also an eigenvector of A: However, if � = " then
Ak+1 
 x may not be an eigenvector even if Ak 
 x is, for instance when

A =

�
" 0
" "

�
; x =

�
0
0

�
; k = 1;

in which case A
 x = (0; ")
T
; A2 
 x = ("; ")

T
: We will therefore require

� > " in (8.1).
Recall that A 2 Rn�n may have up to n eigenspaces, corresponding to a

di¤erent eigenvalue each (Chapter 4, Theorem 4.5.4, Corollary 4.5.7). Being
motivated by the task Q, we de�ne for A = (aij) 2 R

n�n
and x 2 Rn the

orbit of A with starting vector x as the sequence

O(A; x) = fAk 
 xgk=0;1;::::

If O(A; x) contains an eigenvector of a matrix B then we say that an
eigenspace of B is reachable by orbit O(A; x): If A = B then we say an
eigenspace of A is reachable with starting vector x:
Although the answer to Q may be negative, some periodic behavior can

always be guaranteed provided that the production matrix is irreducible.
This is due to one of the fundamental results of max-algebra, the Cyclicity
Theorem (Theorem 8.3.5):
For any irreducible matrix A 2 Rn�n there exist positive integers p and

T such that
Ak+p = (� (A))

p 
Ak (8.2)

holds for every integer k � T:
The smallest value of p satisfying (8.2) is called the period of A: If p

is the period of A then the least value of T satisfying (8.2) is called the
transient of the sequence

�
Ak
	1
k=0

:

It is easily seen that Ak 
 x 6= " for all k if A is irreducible and x 6= "
(Lemma 1.5.2). It follows that for any irreducible matrix A a generalized
periodic regime, will be reached with any starting vector x 6= " :

Ak+p 
 x = (� (A))p 
Ak 
 x;
Ak 
 x 6= ":

�
(8.3)
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We will use the notions of a period and transient for matrix orbits in a way
similar to matrix sequences. The arising operational task then is to �nd
the period of an orbit:
Q1: Given A 2 Rn�n and x 2 Rn; �nd the period of O(A; x); that is the

least integer p such that for some T (8.3) is satis�ed for all k � T .
GivenA 2 Rn�n and a positive integer p; the p-attraction space,Attr(A; p);

is the set of all vectors x 2 Rn, for which there exists an integer T such
that (8.3) holds for every k � T [16]. Using this concept we may formulate
another related question:
Q2: Given A 2 Rn�n; x 2 Rn and a positive integer p decide whether

x 2 Attr(A; p).
Note that Q2 for p = 1 is identical with Q. Also, observe that due to

Theorem 4.5.10, conditions (8.3) may be written as:

Ap 

�
Ak 
 x

�
= (� (A)

p
)


�
Ak 
 x

�
;

Ak 
 x 6= ";

that is (8.3) for a given matrix A and vector x means to �nd the smallest
value of p for which an eigenspace of Ap is reachable by O(A; x): Note
also that by Theorem 7.6.1 every attraction space is a �nitely generated
subspace.
It may be of practical interest to characterize matrices, called robust,

for which a steady regime is reached with any start-time vector, that is
matrices A 2 Rn�n such that an eigenspace of A is reachable with any
vector x 2 Rn; x 6= ". Hence we will also be interested in the following:
Q3: Given A 2 Rn�n; is it robust?
In this chapter we will address Q1 and Q2 for irreducible matrices and Q3

for both irreducible and reducible matrices. We will also analyze a number
of related questions, such as estimates of the transient and computation of
periodic powers of a matrix.
If � (A) > " and (8.3) is multiplied by (� (A))�k�p then the obtained

identity reads

Bk+p 
 x = Bk 
 x 6= ";

where B is the de�nite matrix (� (A))�1
A: Therefore in Q1 - Q3 we may
assume without loss of generality that A is de�nite.
A �rst step towards our goal is to present in Section 8.1 the diagonal

scaling of matrices as a tool for the visualization of spectral properties
of matrices. Then, in Section 8.2, we study how eigenspaces change with
matrix powers.
Sections 8.3, 8.4 and 8.5 present periodic properties of matrices and

methods for solving questions Q1 and Q2. They have been prepared in
cooperation with Serge¼¬Sergeev.
Finally, robustness (question Q3) is studied in Section 8.6.
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8.1 Visualization of spectral properties by matrix
scaling

Recall that for x = (x1; :::; xn)
T 2 Rn we denote diag (x) = diag (x1; :::; xn);

if x 2 Rn and X = diag (x) then

X�1 = diag
�
x�11 ; :::; x�1n

�
:

A useful tool in our discussion will be that of a matrix scaling [127], [129],
[81], [42] introduced in Section 1.5, that is an operator that assigns to a
square matrix A a matrix X�1 
 A 
 X; where X is a diagonal matrix.
Using matrix scaling it is possible to simplify the structure of a matrix, yet
preserving many of its properties. In particular, it enables us to "visualize"
some features, such as entries corresponding to the arcs on critical cycles.
First we show that matrix scaling does not change essential spectral

properties of matrices [60], [80] and then we show the visualization e¤ect.
Recall that pd (A) stands for the principal dimension of A; that is the
dimension of the principal eigenspace of A:

Lemma 8.1.1 Let A;B 2 Rn�nand B = X�1 
 A 
 X; where X =
diag(x1; :::; xn); x1; :::; xn 2 R:

(a) If A is irreducible if and only if B is irreducible:

(b) �(A) = �(B):

(c) Nc(A) and Nc(B) are equal and have the same equivalence classes.

(d) pd (A) = pd (B) :

(e) For all integers k � 1 and x 2 Rn we have:

Bk = X�1 
Ak 
X:

(f) �(B) = X�1 
 �(A)
X and �(B) = X�1 
�(A)
X:

(g) For all integers p � 1 we have: z 2 Rn satis�es

Ak+p 
 z = Ak 
 z

if and only if y = X�1 
 z satis�es

Bk+p 
 y = Bk 
 y:

Proof. DB has the same node set and arc set as DA and so the �rst
statement follows. By Lemma 1.5.5 w(�;A) = w(�;B) for every cycle �
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and so (b) and consequently also (c) and (d) follow (recall that by Corollary
4.4.5 pd (A) is equal to the number of critical components of A). Clearly,�

X�1 
A
X
�k
= X�1 
Ak 
X;

which proves (e).
For (f) we have using (e):

�(B) =
X
j2N

� �
X�1 
A
X

�j
=

X
j2N

� �
X�1 
Aj 
X

�

= X�1 


0@X
j2N

�
Aj

1A
X
= X�1 
 �(A)
X:

Similarly for �(B):
Statement (g) is proved readily using (e).

Lemma 8.1.1 implies that the tasks Q1-Q3 are invariant with respect to
matrix scaling. In what follows we will use a special type of scaling, namely
a scaling that visualizes spectral properties of matrices.
We say that A = (aij) 2 R

n�n
is visualized if

aij � � (A) for all i; j 2 N

and
aij = � (A) for all (i; j) 2 Ec (A) :

A visualized matrix is called strictly visualized if

aij = � (A) if and only if (i; j) 2 Ec (A) :

A matrix A with � (A) = " cannot be scaled to a visualized one unless
A = ". We will show in Theorem 8.1.4 below that every matrix with � (A) >
" can be transformed to a strictly visualized one using matrix scaling.
However, we will also present a weaker scaling result in Theorem 8.1.3, as
it is much simpler and in many cases su¢ cient.
Observe that X�1
A
X is visualized [strictly visualized] if and only if

X�1 
A� 
X is visualized [strictly visualized]. Therefore we may assume
without loss of generality that the matrix we need to scale to a visualized
or strictly visualized one, is de�nite (but we will not always need to do so).
We start with a technical lemma. Let us denote �(A) = (�ij) :
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Lemma 8.1.2 If A 2 Rn�n is de�nite then

aij 
�ji � 0

for all i; j 2 N and

aij 
�ji = 0 () (i; j) 2 Ec (A) :

Proof. Since A is de�nite, aii � 0 = �ii for any i 2 N and aii = 0 if and
only if (i; i) 2 Ec (A) :
Suppose now i 6= j: Then �ij = ij : Recall that �(A) is the matrix of

the greatest weights of paths in DA (Subsection 1.6.2). Therefore aij 
�ji
is the weight of a heaviest cycle in DA containing arc (i; j) : Since A is
de�nite, this value is nonpositive for any (i; j) 2 E and it is zero exactly
when (i; j) 2 Ec (A) :

Theorem 8.1.3 [43], [42], [137], [136] Let A 2 Rn�n, � (A) > " and

(�ij) = �
�
(� (A))

�1 
A
�
:

(a) If x 2 V � (A) and X = diag (x) then X�1 
A
X is visualized; this

is true in particular for x =
X�

k2N
�:k:

(b) If A is irreducible, �k > 0 for k 2 N;
X

k2N
�k = 1 and x =X

k2N
�k�:k (conventional convex combination with positive coef-

�cients), then X�1 
A
X is strictly visualized.

Proof. (a) By Theorem 1.6.18 x�1i 
 aij 
 xj � � (A) for all i; j 2 N ;
equality for (i; j) 2 Ec (A) follows from Lemma 1.6.19.
(b) We assume without loss of generality that A is de�nite. Recall that

�(A) is �nite for A irreducible. By Lemma 1.6.20 x is a �nite solution
to A 
 x � x. Hence x 2 V � (A) by Theorem 1.6.18 and by part (a)
X�1 
A
X is visualized.
For strong visualization we need to show that (i; j) =2 Ec (A) implies

aij 
 xj < xi: This inequality is equivalent to

aij +
X

k2N
�k�jk <

X
k2N

�k�ik

or, X
k2N

�k (aij +�jk) <
X

k2N
�k�ik: (8.4)

Since every ��k is a solution to A
 x � x we have

aij +�jk � �ik (8.5)
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for all k 2 N and for k = i this inequality is strict because �ii = 0 and
aij 
�ji < 0 by Lemma 8.1.2. If we now multiply each inequality (8.5) by
�k and add them all up, we get (8.4).
We will now prove that actually every matrix A with �nite � (A) can

be scaled to a strictly visualized one. This result will not be used in this
book and the rest of this section may be skipped without loss of continuity.
To prove the strict visualization result, we transform this problem from
the principal interpretation to "max-times algebra" (that is from G0 to G2;
see Section 1.4). It is essential that all statements referred to in the proof
of part (b) of Theorem 8.1.3, that is part (a) of Theorem 8.1.3, Theorem
1.6.18 and Lemmas 1.6.19, 8.1.2, 1.6.20 have immediate analogues in G2:
The proofs of the �rst four follow the lines of the proofs of these statements
in G0; except that 
 stands for multiplication rather than for addition. In
the case of Lemma 1.6.20 the reasoning is slightly di¤erent as the system
of inequalities now reads

aijxj � �xi:

But as it is again a system of linear inequalities (although a di¤erent one),
the set of nonnegative solutions is convex.
We are ready to prove the main result of this section, that is part (b) of

Theorem 8.1.3, modi�ed by the removal of the irreducibility assumption:

Theorem 8.1.4 If A 2 Rn�n and � (A) > " then there exists x 2 Rn such
that X�1 
A
X is strictly visualized, where X = diag (x) :

Proof. We assume without loss of generality that A is de�nite. Take (in
conventional notation) B = (bij) = (2aij ) : Then the inequalities

aij + xj � xi; i; j 2 N; x1; :::; xn �nite (8.6)

are equivalent (in conventional notation) to

bijyj � yi; i; j 2 N; y1; :::; yn positive. (8.7)

A solution to (8.7) can be converted to a solution of (8.6) by setting xj =
log2 yj ; j 2 N: The same applies when the inequalities are strict.
Let �(B) = (�ij) in G2; �k > 0 for k 2 N;

X
k2N

�k = 1 and y =X
k2N

�k�:k (conventional convex combination with positive coe¢ cients).

The vector y is positive as every row of the nonnegative matrix�(B) has at
least one positive entry (namely 1 on the diagonal). It is now proved exactly
as in part (b) of Theorem 8.1.3 that Y �1 
B 
 Y is strictly visualized (in
G2), where Y = diag(y): Hence X�1 
 A 
X is strictly visualized in the
principal interpretation, where X = diag (x) and xj = log yj for all j 2 N:



194 8. Reachability of eigenspaces

Remark 8.1.5 Note that unlike (8.6), the system (8.7) is also homogenous
(in the conventional sense) and it is therefore feasible to take for y in The-
orem 8.1.4 any linear combination (in particular the sum) of the columns
of �(B) with positive coe¢ cients instead of a convex combination.

Example 8.1.6 Consider

A =

�
0 "
1 0

�
in G0; thus � (A) = 0: Following the notation in the proof of Theorem 8.1.4
we have

B =

�
1 0
2 1

�
in G2: Hence �(B) = B and using Remark 8.1.5 we take for y the (conven-
tional) sum of the columns of B; that is y = (1; 3)T : Hence x = (0; log2 3)

T

and

X�1 
A
X =

�
0 "

1� log2 3 0

�
:

More information on matrix scaling including a complete description of
all matrix scalings producing visualized or strictly visualized matrices can
be found in [137].
Recall that a cycle in a weighted digraph is called a zero cycle if all arcs

of this cycle have zero weight.

Corollary 8.1.7 If A 2 Rn�n is de�nite, B = X�1 
 A 
 X and B is
visualized, then a cycle � is critical in DA if and only if � is a zero cycle
in DB : Consequently, C(A) = C(B) and thus every cycle in the critical
digraph of A is critical.

8.2 Principal eigenspaces of matrix powers

In the analysis of principal eigenspaces of matrix powers a crucial role is
played by Theorem 8.2.1 below. This theorem applies to de�nite, nonposi-
tive matrices. Note that the statements proved in the previous section show
how a general matrix A can be transformed to a de�nite, nonpositive ma-
trix B with the same set of critical cycles (which, in the case of B; is the
set of zero cycles).
We start with key de�nitions. If D0 is a strongly connected component of

a digraph D then the greatest common divisor of all directed cycles in D0

is called the cyclicity of D0: The cyclicity of D; notation �(D); is the least
common multiple of the cyclicities of all strongly connected components of
D. The cyclicity of a digraph consisting of a single node and no arc is 1
by de�nition. The cyclicity of a digraph can be found in linear time [74].
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The digraph D is called primitive if �(D) = 1 and imprimitive otherwise.
The cyclicity of A 2 Rn�n; notation � (A) ; is the cyclicity of its critical
digraph C (A). We will use the adjectives "primitive" and "imprimitive"
for matrices in the same way as for their critical digraphs.
A matrix A = (aij) 2 R

n�n
is called 0-irreducible if the zero digraph ZA

is strongly connected. Since a strongly connected digraph with two or more
nodes contains at least one cycle, every 0-irreducible nonpositive matrix of
order two or more is de�nite.
Theorem 8.2.1 below is an application of ([18], Theorem 3.4.5).

Theorem 8.2.1 (Brualdi-Ryser) Let A 2 Rn�n; n > 1 be a 0-irreducible
and nonpositive matrix and let � be the cyclicity of A. Let k be a positive
integer. Then there is a permutation matrix P such that P�1 
 Ak 
 P
has r 0�irreducible diagonal blocks where r = gcd(k; �) and all elements
outside these blocks are negative. The cyclicity of each of these blocks is
�=r.

Corollary 8.2.2 Let A 2 Rn�n be a matrix with �(A) > ": Suppose that
C(A) has only one critical component and let � be the cyclicity of A.

(a) If k is a positive integer then C(Ak) has r critical components, where
r = gcd(k; �): The cyclicity of each of these components is �=r.

(b) pd
�
Ak
�
= 1 for every k � 1 if and only if � = 1:

Proof. Follows from Theorems 8.1.7, 8.2.1 and Lemma 4.1.3.
As another application we immediately have the following classical result

when ([18], Theorem 3.4.5) is applied to DA:

Corollary 8.2.3 Let A 2 Rn�n be irreducible, n > 1 and � = � (DA) :

(a) Ak; k � 1; is equivalent to a blockdiagonal matrix with gcd(k; �) irre-
ducible diagonal blocks.

(b) Ak is irreducible for every positive integer k if and only if DA is
primitive.

Since C(A) is a subdigraph of DA; we have that if C(A) is primitive then
also DA is primitive, yielding the following (recall that the primitivity of a
matrix is determined by the primitivity of C(A) rather than DA):

Corollary 8.2.4 If A 2 Rn�n is primitive and irreducible then Ak is ir-
reducible for all k � 1:

It will also be useful to know that the de�niteness of an irreducible matrix
A is preserved blockwise in the powers of A:



196 8. Reachability of eigenspaces

Lemma 8.2.5 If A 2 Rn�n is de�nite and irreducible then every diagonal
block of Ak is de�nite for all k � 1:
Proof. Let x 2 V (A) and Ak [J ] be a diagonal block of Ak for some J � N:
Then x is �nite and Ak [J ] 
 x [J ] = x [J ] : Since Ak [J ] is irreducible, it
has only one eigenvalue and hence is de�nite.

Spectral properties of matrix powers play an important role in solving
reachability problems. Next we summarize some of these properties.

Theorem 8.2.6 [34] Let k; n be positive integers and A = (aij) 2 R
n�n

.

(a) �
��
�
�
Ak
���1 
Ak� � � �(�(A))�1 
A� :

(b) Nc(A) = Nc
�
Ak
�
and the equivalence classes of Nc

�
Ak
�
are either

equal to the equivalence classes of Nc(A) or are their re�nements.

(c) If gj ; g0j (j 2 Nc(A)) are the fundamental eigenvectors of A and Ak

respectively, then gj � g0j for all j 2 Nc(A):

(d) If �i is the cyclicity of the ith connected component of C(A) then this
component splits into gcd (�i; k) connected components of C

�
Ak
�
:

The cyclicity of each of these components is �i= gcd (�i; k).

(e) pd
�
Ak
�
=
P
i

gcd (�i; k).

Proof.

(a) Denote (�(A))�1 
A as B. Then the LHS is

�
�
Bk
�
= Bk �B2k � :::�Bnk � �(B)

because by (1.20) Br � �(B) for every natural r > 0:

(b) Nc(A) � Nc
�
Ak
�
follows from part (a) immediately since in a metric

matrix all diagonal elements are nonpositive and the jth diagonal
entry is zero if and only if j is a critical node.

Now let j 2 Nc(A) and � = (j = j0; j1; :::; jr = j) be any critical
cycle in A (and B) containing j, thus w(�;B) = 0: Let us denote

� = (j = j0; jk(mod r); j2k(mod r); :::; jrk(mod r) = j)

and Bk by C = (cij). Then for all i = 0; 1; :::; r�1 we have (all indices
are mod r and, for convenience, we write here c(i; j) rather than cij ;
similarly b(i; j)):

c (jik; jik+k) � b (jik; jik+1)+ b (jik+1; jik+2)+ :::+ b (jik+k�1; jik+k)
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since c (jik; jik+k) is the weight of a heaviest path of length k from
jik to jik+k with respect to B and the RHS is the weight of one such
path. Therefore

w
�
�;
�
�
�
Ak
���1 
Ak� = w

�
�;Bk

�
� (w(�;B))k = 0:

Hence, equality holds, as there are no positive cycles in
�
�
�
Ak
���1


Ak: This implies that � is a critical cycle with respect to Ak and so
j 2 Nc

�
Ak
�
:

If w is the weight of an arc (u; v) on a critical cycle for Ak then there
is a path from u to v having the total weight w with respect to A:
Therefore all nodes on a critical cycle for Ak belong to one critical
cycle for A. Hence the re�nement statement.

(c) Follows from part (a) immediately.

(d) It now follows from Theorem 8.1.7 and Theorem 8.2.1.

(e) Follows from part (d) immediately.

8.3 Periodic behavior of matrices

8.3.1 Spectral projector and the Cyclicity Theorem

For A 2 Rn�n it will be practical in Sections 8.3-8.5 to denote the Kleene
star �(A) (see Section 1.6) by A� =

�
a�ij
�
(so A� does not denote here the

conjugate matrix). The rows of A� will be denoted by �1 (A
�) ; :::; �n (A

�) ;
the columns by �1 (A�) ; :::; �n (A�) ; or just �1; :::; �n; �1; :::; �n:
Recall that if A 2 Rn�n and � (A) � 0 (and in particular when A is

de�nite) then
� (A) = A�A2 � :::�An

and
A� = I �A�A2 � :::�An�1 = I � � (A) :

The columns of � (A) are denoted g1; :::; gn: Hence � j = gj for all j 2 Nc(A)
and � j di¤ers from gj for j =2 Nc(A) only on the diagonal position where
� j has a zero whereas gj has a negative value.

Let Q(A) = (qij) 2 R
n�n

be the matrix with entries

qij =
X�

k2Nc(A)
a�ik 
 a�kj ; i; j 2 N: (8.8)
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Hence Q (A) =
X�

k2Nc(A)
Q[k] (A) ; where Q[k] (A) ; or just Q[k] is the outer

product �k (A�)
 �k (A�) :

Proposition 8.3.1 [9] Let A 2 Rn�n be de�nite and Q = Q(A): Then

A
Q = Q
A = Q = Q2:

Proof. Since the columns of Q[k] are multiples of �k; for every k 2 Nc (A)
all columns of Q[k] are principal eigenvectors of A and so A 
Q = Q: By
symmetry the same is true about the rows of Q[k] and so also Q
 A = Q
(see Remark 4.3.6).

We also have
�
Q[k]

�2
= �k
(�k 
 �k)
�k = �k
�k = Q[k] since �k
�k

is the kth diagonal entry of (A�)2 = A� which is 0. To prove Q2 = Q it is
su¢ cient to show that Q[k]
Q[l] � Q[k]�Q[l]: The proof of this inequality
is left to Exercise 8.7.4.
By Proposition 8.3.1, if A is de�nite and x 2 Rn then Q 
 x 2 V (A; 0)

and Q2 
 x = Q
 x: Therefore Q(A) is called the spectral projector of A:
The following observation will be useful:

Proposition 8.3.2 Let A 2 Rn�n be de�nite and Q = Q(A): Then for
any i 2 Nc (A) the ith row (column) of Q is equal to �i (� i).

Proof. Since (A�)2 = A� (see Proposition 1.6.15), we have for all i; j =
1; : : : ; n :

qij =
X�

k2Nc(A)
a�ik 
 a�kj �

X�

k2N
a�ik 
 a�kj = a�ij :

If i 2 Nc (A) and j 2 N then

qij =
X�

k2Nc(A)
a�ik 
 a�kj � a�ii 
 a�ij = a�ij

and the statement for rows follows. The statement for the columns is proved
similarly.
Spectral projectors are closely related to the periodicity questions, as

the following fundamental result suggests, proved both in [9] and [102]. For
�nite, strongly de�nite matrices it also appears in [60], Sect. 27.3, where
Q(A) is called the orbital matrix.

Theorem 8.3.3 Let A 2 Rn�n be irreducible, primitive and de�nite. Then
there is an integer R such that Ar = Q(A) for all r � R.

The statement of Theorem 8.3.3 is also true for a blockdiagonal matrix
whose every block is primitive and de�nite. This will be important for the
subsequent theory and we therefore present it in detail. For a set S � Z
and k 2 Z we denote

k + S = S + k = fk + s; s 2 Sg :
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Theorem 8.3.4 Let A 2 Rn�n be a blockdiagonal matrix whose every
block is primitive and de�nite. Then there is an integer R such that Ar =
Q(A) for all r � R.

Proof. Let A1; :::; As be the diagonal blocks of A and N1; :::Ns be the
corresponding partition of N; that is Ai = A (Ni) ; i = 1; :::; s : Let us
denote jNij = ni for all i: Hence Nc(Ai) � f1; :::; nig : By Theorem 8.3.3
for each i 2 f1; :::; sg there is an Ri such that for all r � Ri we have:

Ari = Q (Ai) =
X�

k2Nc(Ai)
Q[k] (Ai) ;

where Q[k] (Ai) is the outer product �k (A�i )
 �k (A�i ) :
Denote n(i) =

X
1�j<i

nj ; i = 1; :::; s (thus n(1) = 0). Then

Nc(A) =
s[
i=1

N
0

c(Ai);

where

N
0

c(Ai) = Nc(Ai) + n
(i):

Thus we have

Q (A) =
X�

k2Nc(A)
Q[k] (A) =

X�

i=1;:::s

X�

k2N 0
c(Ai)

Q[k] (A)

where Q[k] (A) is the outer product �k (A�)
 �k (A�) :
Let r � R = max (R1; :::; Rs) : The matrix Ar is blockdiagonal and

its diagonal blocks are Ar1; :::; A
r
s: Consequently, A

� is also blockdiagonal
and its diagonal blocks are (A1)

�
; :::; (As)

�
: Hence for i 2 f1; :::sg and

k 2 N 0

c(Ai); we have k = k0 + n(i); k0 2 Nc(Ai) and

�k (A
�) =

0@ "
�k0 (A

�
i )

"

1A ; �k (A
�) = (" j�k0 (A�i )j ") ;

where in both expressions the �rst " is of dimension n(i) and second of
dimension n� n(i) � ni: It follows that the n� n matrix Bk;i = �k (A

�)

�k (A

�) has all entries " except for Bk;i [Ni] ; which is �k0 (A
�
i )
�k0 (A�i ) =

Q

h
k
0i
(Ai) : Therefore

X�

k2N 0
c(Ai)

Bk;i [Ni] =
X�

k02Nc(Ai)
Q

h
k
0i
(Ai) = Q (Ai) = Ari :
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Finally, we deduce:

Q (A) =
X�

i=1;:::s

X�

k2N 0
c(Ai)

Q[k] (A)

=
X�

i=1;:::s

X�

k2N 0
c(Ai)

Bk;i

=
X�

i=1;:::s

0BBBBBB@

" � � � " � � � "
. . .

" � � � Ari � � � "
. . .

" � � � " � � � "

1CCCCCCA

=

0BBB@
Ar1 " " "
" Ar2 " "

" "
. . . "

" " " Ars

1CCCA
= Ar:

If � is the cyclicity of A, it follows from Proposition 8.2.6, part (d), that
all components of C(A�) are primitive and thus A� is primitive. The matrix
A� may not be irreducible, but is blockdiagonal with gcd (�; � (DA)) =
� (DA) blocks (Corollary 8.2.3). Each block is irreducible (Corollary 8.2.3),
de�nite (Lemma 8.2.5) and primitive. By Theorem 8.3.4

(A�)
r
= (A�)

r+1
= Q (A�)

for all r su¢ ciently large (observe that � (A�) = f0g and so V (A�) indeed
is an eigenspace). This also implies that for any k large enough, k � s
mod�; we have for some r :

Ak = As+r� = As+r�+� = Ak+�:

Recall that if � (A) > " then (� (A))�1 
A is de�nite and clearly,�
(� (A))

�1 
A
�k
= (� (A))

�k 
Ak:

We can now deduce one of the fundamental results of max-algebra (note
that we did not prove the minimality of � (A)):

Theorem 8.3.5 (Cyclicity Theorem) For every irreducible matrix A 2
Rn�n the cyclicity of A is the period of A; that is the smallest natural
number p for which there is an integer T such that

Ak+p = (� (A))
p 
Ak (8.9)

for every k � T:
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Recall that the smallest value of T for which (8.9) holds is called the
transient of fAkg and will be denoted by T (A). A matrix A for which there
is a p and T such that (8.9) holds for k � T is called ultimately periodic.
Thus every irreducible matrix is ultimately periodic.
Theorem 8.3.5 has been proved for �nite matrices in [60]. A proof for

general matrices was presented in [50], see also [51] for an overview without
proofs. A proof in a di¤erent setting covering the case of �nite matrices is
given in [118]. The general irreducible case is also proved in [6], [102], [9]
and [92]. A generalization to the reducible case is studied in [93] and [114]
(see Theorem 8.6.9). Periodic behavior of matrix powers is also studied in
[75].
Recall that the entries of Ar are denoted by a(r)ij ; in contrast to a

r
ij ; which

denote the rth powers of aij :
It will be important that the entries a(r)ij , where either i or j is critical,

may become periodic much faster than the noncritical part of A:

Theorem 8.3.6 [117], [133] Let A 2 Rn�n be irreducible. Critical rows
and columns of Ar are periodic for r � n2, that is there exists a positive
integer q such that for all i 2 Nc (A) and j 2 N; or for all j 2 Nc (A) and
i 2 N we have:

a
(r+q)
ij = (� (A))

q 
 a(r)ij :

Proof. Without loss of generality we prove this statement for the rows
of de�nite matrices only. Let i 2 Nc (A). Then there is a critical cycle of
length li to which i belongs. Hence a

(kli)
ii = 0 for all k � 1. Since for all

m < k and s = 1; : : : ; n we have

a
(mli)
is = a

((k�m)li)
ii 
 a(mli)is � a

(kli)
is ;

it follows that
a
(kli)
is =

X�

m=1;:::;k
a
(mli)
is : (8.10)

Entries a(kli)is are maximal weights of paths of length k with respect to the
matrix Ali . Since the weights of all cycles are less than or equal to 0 and
paths of length n or more are not elementary, the maximum is achieved at
k � n (see Lemma 1.5.4). Using (8.10) we obtain that a((t+1)li)is = a

(tli)
is for

all t � n. Further for any d; 0 � d � li � 1,

a
(tli+d)
is =

X�

j2N
a
(tli)
ij 
 a(d)js ;

and it follows that a((t+1)li+d)is = a
(tli+d)
is for all t � n. Hence a(k)is is periodic

for k � nli, and all these sequences, for any i 2 Nc (A) and any s, become
periodic for k � n2.
We will denote by Tc(A) the least integer such that the critical rows and

columns of Ar are periodic for r � Tc(A). It follows from Theorem 8.3.6
that Tc(A) � n2.
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Remark 8.3.7 The statement of Theorem 8.3.3 has found a remarkable
generalization in [138] where it has been proved that for any (reducible)
matrix A all powers Ar; r � 3n2; can be expressed as a max-algebraic sum
of terms of the form C 
 Sr 
 R; called CSR products. All these terms
can be found in O

�
n4 log n

�
time. Here C and R are extracted from the

columns and rows of a certain Kleene star (the same for both) and C 
R
is the spectral projector Q(A) if A is irreducible. The matrix S is diagonally
similar to the Boolean incidence matrix of a certain critical digraph. It is
shown that the powers have a well-de�ned ultimate behavior, where certain
terms are totally or partially suppressed, thus leading to ultimate C 
Sr 

R terms and the corresponding ultimate expansion. This generalizes the
Cyclicity Theorem to reducible matrices. The expansion is then used to
derive an O

�
n4 log n

�
method for solving the question whether the orbit of

a reducible matrix is ultimately periodic with any starting vector.

8.3.2 Cyclic classes and ultimate behavior of matrix powers

Imprimitive digraphs have interesting combinatorial structure which plays
a key role in solving the reachability problem (Section 8.6 below). We brie�y
introduce this structure similarly as in [18], Section 3.4.
Note �rst that the length of every cycle is the sum of the lengths of

elementary cycles and therefore the greatest common divisor of all cycles
is equal to the greatest common divisor of elementary cycles.
Let D be a strongly connected digraph with cyclicity �: Let i and j

be any two nodes of D and �i and �j be the greatest common divisor of
cycles containing i and j; respectively. Let � be a cycle of some length r
containing i: By strong connectivity, there is a path from i to j, say �; of
length s and a path from j to i, say ; of length t: Clearly, combinations
of � and  and that of �; � and  yield cycles containing j; of length s+ t
and r+ s+ t: Since �j is a divisor of both, it is also a divisor of r: Since �
was arbitrary, �j divides the length of every cycle containing i and thus �j
divides �i: By symmetry also �i divides �j and so �i = �j : Since i and j
were arbitrary, we have �i = �j = �: If �0 is another path from i to j, say
of length s0; then � divides both s+ t and s0 + t and thus s � s0 mod�:
We therefore deduce that by �xing a node, say i; we can partition the set

of nodes N into � mutually disjoint nonempty subsets C1; :::; C� as follows:

Ck = fj 2 N ; the length of each i� j path is k mod�g ;

for k = 1; :::; �: Clearly, the length of any (and therefore all) paths with
the starting node in Ck and endnode in Cl is l � k mod�: We also have
i 2 C�: Every arc in D leaves a node in Ck and enters a node in Ck+1
for some k; 1 � k � �; where C�+1 = C1: We will use notation [i] for
the class containing node i: Clearly, for any i and j there is an integer t;
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0 � t � � � 1 such that for the length l of any path starting in [i] and
terminating in [j] we have l � t mod�: We will write [i]!t [j]. Clearly, if
[i]!t [j] then [j]!��t [i]:
The sets [1]; :::; [�] will be called cyclic classes of D:
We will now apply cyclic classes to critical digraphs of matrices. They

may consist of several connected components, in which case we will treat
each component separately.

Lemma 8.3.8 Let A 2 Rn�n be de�nite and irreducible, � = � (A) ; and
let t � 0 be such that t� � T (A). Then the following hold for every integer
l � 0 and k = 1; : : : ; n :

At�+lk� =
X�

i2Nc(A)
a
(t�)
ki 
At�+li� ; (8.11)

At�+l�k =
X�

i2Nc(A)
a
(t�)
ik 
At�+l�i :

Proof. The matrix B = A� is primitive, de�nite and blockdiagonal. Due
to Theorem 8.3.4, for any r � T (B) we have

b
(r)
kj =

X�

i2Nc(A)
b�ki 
 b�ij (8.12)

for k; j = 1; :::; n: By Proposition 8.3.2, if u 2 Nc (A) or v 2 Nc (A), then
b�uv = b

(r)
uv for all r � T (B). Hence for any t� � T (A) (8.12) implies

a
(t�)
kj =

X�

i2Nc(A)
a
(t�)
ki 
 a(t�)ij : (8.13)

In the matrix notation, this is equivalent to:

At�k� =
X�

i2Nc(A)
a
(t�)
ki 
At�i�

and similarly for the columns:

At��k =
X�

i2Nc(A)
a
(t�)
ik 
At��i :

Multiplying the last two identities by any power Al, we obtain (8.11).
In the proof of the next theorem we will use the following "Bellman-type"

principle

a
(r)
ij 
 a

(s)
jk � a

(r+s)
ik ; 8i; j; k; r; s; (8.14)

which immediately follows from the fact that Ar 
As = Ar+s.

Theorem 8.3.9 Let A 2 Rn�n be a de�nite and irreducible matrix, � =
� (A) and let i; j 2 Nc(A) be such that [i]!l [j], for some l � 0.
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(a) For any r � Tc (A) there exists an integer t � 0 such that

a
(t�+l)
ij Ar�i = Ar+l�j ; a

(t�+l)
ij Arj� = Ar+li� : (8.15)

(b) If A is visualized, then for all r � Tc (A)

Ar�i = Ar+l�j ; Arj� = Ar+li� : (8.16)

Proof. Let i; j 2 Nc(A): If [i] !l [j] then [j] !s [i]; where l + s = �.
Hence there exists a critical path of length t� + l; for some integer t � 0;
connecting i to j, and a critical path of length u� + s; for some integer
u � 0; connecting j to i. Thus

a
(t�+l)
ij 
 a(u�+s)ji = 0; (8.17)

and in the visualized case

a
(t�+l)
ij = a

(u�+s)
ji = 0: (8.18)

Combining this with (8.14) we obtain:

Ar�i = Ar�i 
 a
(t�+l)
ij 
 a(u�+s)ji

� Ar+t�+l�i 
 a(u�+s)ji

� A
r+(t+u+1)�
�i :

Since r � Tc (A), by Theorem 8.3.6 we have Ar�i = A
r+(t+u+1)�
�i , hence all

inequalities hold with equality. Now multiply the equality

Ar�i = Ar+t�+l�i 
 a(u�+s)ji

by a(t�+l)ij :

a
(t�+l)
ij 
Ar�i = Ar+t�+l�i 
 a(u�+s)ji 
 a(t�+l)ij

and the statement for columns now follows by (8.17) and Theorem 8.3.6.
The proof for the rows is similar and part (b) follows from (8.18).
Letting l = 0 in Theorem 8.3.9 we obtain the following.

Corollary 8.3.10 Let A 2 Rn�n be de�nite, irreducible and r � Tc (A).
All rows of Ar with indices in the same cyclic class are equal, and the
statement holds similarly for the columns.

Theorem 8.3.9 says that for any power Ar for r � Tc (A) (and in partic-
ular for r � n2), the critical columns (or rows) can be obtained from the
critical columns (or rows) of the spectral projector Q(A�) by permuting
the sets of columns (or rows) which correspond to the cyclic classes of the
critical digraph. Lemma 8.3.8 adds to this that all noncritical columns (or
rows) of any periodic power are in the subspace spanned by the critical
columns (or rows). Since all columns of Q(A�) are eigenvectors of A�; we
conclude the following.
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Theorem 8.3.11 If A 2 Rn�n is de�nite and irreducible then all powers
Ar for r � T (A) have the same column span, which is the eigenspace
V (A�).

Theorem 8.3.11 enables us to say that V (A�) is the ultimate column
span of A. Similarly, we have the ultimate row span which is V ((AT )�).
These subspaces are generated by critical columns (or rows) of the Kleene
star (A�)�. For a basis of this subspace, we can take any set of columns
(A�)

� (equivalently Q(A�) or At� for t� � T (A)), whose indices form a
minimal set of representatives of all cyclic classes of C (A) or, equivalently,
any maximal set of nonequivalent eigennodes of Nc(A) (see Lemma 4.3.2).

8.4 Solving reachability

Let A 2 Rn�n be de�nite and p a positive integer. Recall that the p-
attraction space Attr(A; p) is the set of all vectors for which there exists
an integer r such that Ar 
 x = Ar+p 
 x 6= " (and hence this is also true
for all integers greater than or equal to r). Actually we may speak of any
r � T (A), due to the following observation.

Proposition 8.4.1 Let A be irreducible and de�nite, p positive integer and
x 2 Rn. Then

As 
 x = As+p 
 x
for some s � T (A) if and only if

Ar 
 x = Ar+p 
 x

for all r � T (A).

Proof. Let x satisfy As 
 x = As+p 
 x for some s � T (A), then it also
satis�es

Al 
 x = Al+p 
 x
for all l > s (to see this, multiply the �rst equation by Al�s).
Due to periodicity, for all k; T (A) � k � s; there exists l > s such that

Ak = Al. Hence Ak 
 x = Ak+p 
 x also holds if T (A) � k � s.

Corollary 8.4.2 Attr(A; p) = Attr(Ap; 1):

Proof. By Proposition 8.4.1, Attr(A; p) is the solution set to the system
Ar
x = Ar+p
x for any r � T (A); in particular for multiples of p, which
proves the statement.
An equation of Ar
x = Ar+p
x whose index is in Nc(A) will be called

critical, and the subsystem consisting of all critical equations will be called
the critical subsystem.
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Lemma 8.4.3 Let A be irreducible and de�nite and let r � T (A). Then
Ar 
 x = Ar+p 
 x is equivalent to its critical subsystem.

Proof. Consider a noncritical equation Ark�
 x = Ar+pk� 
 x. Using Lemma
8.3.8 it can be written asX�

i2Nc(A)
a
(r)
ki 
A

r
i� 
 x =

X�

i2Nc(A)
a
(r)
ki 
A

r+p
i� 
 x;

hence it is a max-combination of equations in the critical subsystem.
We are ready to present a method for deciding whether x 2 Attr(A; p),

as well as other related problems which we formulate below. We assume in
all that A 2 Rn�n is a given irreducible and de�nite matrix and � = � (A).
For ease of reference we denote:

P1. For a given x 2 Rn and positive integer p; decide whether x 2 Attr(A; p).
P2. For a given k; 0 � k < �, compute the periodic power As where s � k
mod�.
P3. For a given x 2 Rn compute the period of O(A; x).
Observe that P1 is identical with Q2 and P3 with Q1 formulated at the

beginning of this chapter. The proof of the next statement is constructive
and provides algorithms for solving P1-P3. Note that a similar argument
was used in the max-min setting [130].

Theorem 8.4.4 [133] For any irreducible matrix A 2 Rn�n, the problems
P1-P3 can be solved in O(n3 log n) time.

Proof. Suppose that k and p are given. First note that using the Karp
and Floyd-Warshall algorithms (see Chapter 1) we can compute both �(A)
and a �nite eigenvector of A; and �nd all critical nodes in O(n3) time
(see Theorem 8.1.3 and Corollary 8.1.7). Further we can identify all cyclic
classes of C (A) by Balcer-Veinott condensation in O(n2) operations [8].
We can now assume that A is de�nite and visualized.
By Theorem 8.3.6 the critical rows and columns become periodic for r �

n2. To �nd the critical rows and columns of the required power s � T (A),
we �rst compute Ar for one (arbitrary) exponent r � n2 which can be
done in O(log n) matrix squaring (A, A2, A4, ...) and takes O(n3 log n)
time. Then following Theorem 8.3.9, we shift the rows and columns of Ar

to obtain the critical rows and columns of As (to do this as described in
(8.16) we assume that r 2 [i]; s 2 [j] and [i] �!l [j] for some i; j; l). This
requires O

�
n2
�
operations. In a similar way we �nd the critical rows of

As+p:
By Lemma 8.4.3 we can solve P1 by the veri�cation of the critical sub-

system of As 
 x = As+p 
 x which takes O(n2) operations. Using linear
dependence of Lemma 8.3.8 the remaining noncritical submatrix of As and
As+p for any s � T (A) such that s � k mod�, can be computed in O(n3)
time. This solves P2.
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As the noncritical rows of A are generated by the critical ones, the period
of O(A; x) is determined by the critical components. For a visualized matrix
we know that Ar+ti� = Arj� for all i; j 2 Nc (A) such that [i] !t [j]. This
implies (Ar+t 
 x)i = (Ar 
 x)j for [i] !t [j], that is, to determine the
period we only need the critical subvector of Ar 
 x for any �xed r � n2.
Indeed, for any i 2 Nc (A) and r � n2 the sequence f(Ar+t 
 x)igt�0 can
be represented as a sequence of critical indices of Ar 
 x determined by
a permutation on cyclic classes of the strongly connected component C to
which i belongs. That is if in C we have

[i1] �! [i2] �! ::: �! [i�] �! [i1];

where � = �
�
C
�
; then we take a sequence fjrg�r=1 such that jr 2 [ir].

This sequence can be taken randomly since by Corollary 8.3.10 all rows
and columns of Ar with indices from the same cyclic class are equal. Now
we consider the sequence xj1 ; :::; xj� and �nd its period. Even by checking
all possible periods it takes no more than �2 � n2 operations. The period of
Ar
x is then the least common multiple of periods found for each strongly
connected component. It remains to note that all operations above do not
require more than O(n3) time. This solves P3.

Example 8.4.5 We will examine problems P2 and P3 on the following
strictly visualized 9� 9 matrix:

A =

0BBBBBBBBBBBB@

�1 0 �1 �1 �9 �7 �10 �4 �8
0 �1 0 �1 �10 �1 �10 �9 �4

�1 �1 �1 0 �2 �3 �2 �6 �6
0 �1 �1 �1 �10 �6 �10 �6 �1

�10 �2 �8 �1 �1 0 �1 �10 �1
�5 �5 �10 �9 �1 �1 0 �3 �6
�9 �10 �7 �10 0 �1 �1 �8 �8
�75 �80 �77 �83 �80 �77 �82 �2 �0:5
�84 �81 �77 �80 �78 �77 �78 �0:5 �2

1CCCCCCCCCCCCA
:

The critical components of A, see Figure 8.1, have node sets f1; 2; 3; 4g and
f5; 6; 7g. The cyclicities are �1 = 2; �2 = 3, so � (A) = lcm(2; 3) = 6. Let
us denote M = f8; 9g :
The matrix can be decomposed into blocks

A =

0@A11 A12 A1M
A21 A22 A2M
AM1 AM2 AMM

1A ;
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FIGURE 8.1. Critical digraph
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where the submatrices A11 and A22 correspond to two critical components
of C(A), see Figure 8.1. They are

A11 =

0BB@
�1 0 �1 �1
0 �1 0 �1

�1 �1 �1 0
0 �1 �1 �1

1CCA
and

A22 =

0@ �1 0 �1
�1 �1 0
0 �1 �1

1A :

The noncritical principal submatrix

AMM =

�
�2 �0:5
�0:5 �2

�
:

It can be checked that the powers of A become periodic after T (A) = 154.
We will consider the following instances of problems P2 and P3:
P2. Compute Ar for r � T (A) and r � 2 mod 6.

P3. For a given x 2 R9, �nd the period of
�
Ak 
 x

	
.

Solving P2. We perform 7 squarings A;A2; A4; : : : to raise A to the
power 128 > 9� 9. This brings us to the matrix

A128 =

0BBB@
A
(128)
11 A

(128)
12 A

(128)
1M

A
(128)
21 A

(128)
22 A

(128)
2M

A
(128)
M1 A

(128)
M2 A

(128)
MM

1CCCA ;

where

A
(128)
11 =

0BB@
0 �1 0 �1

�1 0 �1 0
0 �1 0 �1

�1 0 �1 0

1CCA ; A
(128)
22 =

0@ �1 �1 0
0 �1 �1

�1 0 �1

1A ;

all entries of A(128)12 and A(128)21 are �1 and

A
(128)
1M =

0BB@
�2:5 �1
�1:5 �2
�2:5 �1
�1:5 �2

1CCA ; A
(128)
2M =

0@�1:5 �2
�2:5 �2
�2:5 �1

1A ;

A
(128)
M1 =

0BB@
�76 �75:5
�75 �76:5
�76 �75:5
�75 �76:5

1CCA
T

; A
(128)
M2 =

0@�76 �76:5
�76 �76:5
�76 �76:5

1AT

:
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We are lucky since 128 � 2 mod 6, thus we already have true critical
columns and rows of Ar. However, the noncritical principal submatrix of
A128 is

A
(128)
MM =

�
�64 �65:5
�65:5 �64

�
:

It can be checked that this is not the noncritical submatrix of Ar that we
seek (recall that T (A) = 154). Hence, it remains to compute the principal
noncritical submatrix A(r)MM .
We note that A132 has critical rows and columns of the spectral projector

Q(A), since 132 is a multiple of � = 6. In A132, the critical rows and
columns 1� 4 are the same as that of A128, since �1 = 2 and both 128 and
132 are even. The critical rows 5�7 can be computed from those of A128 by
cyclic permutation (5; 6; 7). Since A(128)M1 and A(128)M2 happen to have equal
columns, all blocks in A132 are the same as in A128 above (after a similar
block decomposition of A132), except for

A
(132)
22 =

0@ 0 �1 �1
�1 0 �1
�1 �1 0

1A ; A
(132)
2M =

0@�2:5 �2
�2:5 �1
�1:5 �2

1A :

Now the remaining noncritical submatrix of Ar can be computed using lin-
ear dependence of Lemma 8.3.8, which now reads

A
(r)
�k =

X�

i=1;:::;7
a
(132)
ik 
A(128)�i ; k = 8; 9:

This yields

A
(r)
MM =

�
�76:5 �77
�78 �76:5

�
:

Solving P3. We examine the orbit period of Ak 
 x for x = x1; x2; x3; x4,
where

x1 = (1; 2; 3; 4; 5; 6; 7; 8; 9)T ;

x2 = (1; 2; 3; 4; 0; 0; 0; 0; 0)T ;

x3 = (0; 0; 1; 1; 0; 0; 1; 1; 1)T ;

x4 = (0; 0; 1; 1; 0; 0; 0; 0; 0)T :

Let us compute y = A128 
 x for x = x1; x2; x3; x4:

y1 = A128 
 x1 = (8; 7; 8; 7; 7; 7; 8; �; �)T ;

y2 = A128 
 x2 = (3; 4; 3; 4; 3; 3; 3; �; �)T ;

y3 = A128 
 x3 = (1; 1; 1; 1; 1; 0; 0; �; �)T ;

y4 = A128 
 x4 = (1; 1; 1; 1; 0; 0; 0; �; �)T :
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C1 C2

C2 C1

C5 C4

C3

FIGURE 8.2. Cyclic classes in Example 8.4.5

Here � correspond to noncritical entries that are not needed. The cyclic
classes in the �rst critical component have node sets C1 = f1; 3g, C2 =
f2; 4g, and the cyclic classes in the second have node sets C3 = f5g, C4 =
f6g and C5 = f7g, see Figure 8.2.
From Theorem 8.4.4 it follows that the coordinate sequences

f(Ar 
 x)i; r � T (A)g

are

y1; y2; y1; y2; : : : ; for i = 1; 2; 3; 4;

y5; y6; y7; y5; y6; y7; : : : ; for i = 5; 6; 7.
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Note that the �rst sequence has been taken randomly from four possibilities:

y1; y2; y1; y2; : : : ;

y3; y4; y3; y4; : : : ;

y1; y4; y1; y4; : : : ;

y3; y2; y3; y2; : : : :

The second sequence is uniquely determined since all cyclic classes in C2
are one-element.
From y1; : : : ; y4 above we deduce that the orbit of x1 is of the largest

possible period 6, the orbit of x2 is of period 2 (that is x2 2 Attr(A; 2)), the
orbit of x3 is of period 3 (that is x3 2 Attr(A; 3)), and the orbit of x4 is of
period 1 (that is x4 2 Attr(A; 1)).

8.5 Describing attraction spaces

For applications it may be important to decide not only whether a vector
is in an attraction space but also to describe the whole attraction space as
e¢ ciently as possible and thus to provide a choice of starting time vectors
leading to stability of processes such as MMIPP. In this section we discuss
the systems

Ar 
 x = Ar+1 
 x; (8.19)

which fully describe attraction spaces Attr(A; 1) provided that r is su¢ -
ciently big. We will therefore call such systems attraction systems. The task
of �nding Ar for such r has been solved in Section 8.4. The results of this
section enable us to simplify these systems for irreducible matrices A.
Note that if the critical digraph is strongly connected then for an irre-

ducible matrix A there is a v 2 Rn�f"g such that V (A) = f�
 v;� 2 Rg :
The attraction space is then described by the essentially one-sided system

Ar 
 x = v 
 y;

where y is a single variable. Therefore the unique scaled basis of the attrac-
tion space can be found using the results of Subsection 7.2.4. If, moreover,
all nodes of A are critical, then Corollary 7.2.7 o¤ers an even simpler way
of �nding the basis, see Remark 8.5.6. The case when there is only one
critical cycle has been analysed in more detail in [16].

8.5.1 The core matrix

Let A 2 Rn�n be irreducible. We will assume that the critical nodes of DA

are the �rst (say) c nodes. Suppose also that C(A) consists of nc strongly
connected components C� with cyclicities ��, for � = 1; : : : ; nc. Let c be
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the number of noncritical nodes. Further it will be convenient to consider,
together with these components, also noncritical, that is trivial, components
C� for � = nc + 1; : : : ; nc + c, whose node sets N� consist of just one
noncritical node, and the sets of arcs are empty.
Consider the block decomposition of Ar for r � 1, induced by the subsets

N� for � = 1; : : : ; nc+c. The submatrix of Ar extracted from the rows inN�
and columns in N� will be denoted by A

(r)
�� . If A is visualized and de�nite,

we de�ne the corresponding core matrix ACore = (���); �; � = 1; : : : ; nc+c
by

��� = maxfaij ; i 2 N�; j 2 N�g: (8.20)

The entries of (ACore)� will be denoted by ���� . Their role is shown in the
next theorem.

Theorem 8.5.1 Let A 2 Rn�n be an irreducible, de�nite, visualized ma-
trix and r � Tc(A). Let �; � 2 f1; : : : ; nc + cg be such that at least one of
these indices is critical. Then the maximal entry of the block A(r)�� is equal
to ���� and therefore this entry appears in every row and column of A

(r)
�� :

Proof. The entry ���� is the maximal weight over paths from � to � in
DACore . Take one such path, say (�1; : : : ; �l) of maximal weight, where
�1 := � and �l = �. With this path we can associate a path � in DA

de�ned by � = �1 � �1 � �2 � : : : � �l�1 � � l, where � i are paths containing
only critical arcs, which entirely belong to the components C�i , and �i
are arcs of maximal weight from C�i to C�i+1 . Such a path � exists since
any two nodes in the same component C� can be connected to each other
by critical paths if � is critical, and C� consists just of one node if � is
noncritical. The weights of � i are 0, hence the weight of � is equal to ���� .
It follows from the de�nition of ��� and ���� that �

�
�� is the greatest weight

of a path from C� to C� . As at least one of the indices �; � is critical, there
is freedom in the choice of the paths �1 or � l which can be of arbitrary
length. Assume without loss of generality that � is critical. Then for any r
exceeding the length of �1 � �2 � : : : � �l�1 � � l which we denote by l�� , the
block A(r)�� contains an entry equal to ���� ; which is the greatest entry of
the block. Taking the maximum T 0(A) of l�� over all ordered pairs (�; �)
with � or � critical, we obtain the claim for r � T 0(A). Evidently, T 0(A)
can be replaced by Tc(A).
Further we observe that the dimensions of periodic powers can be re-

duced. The rows and columns with indices in the same cyclic class coincide
in any powerAr, where r � Tc(A) andA is de�nite and visualized (Theorem
8.3.9). Hence after an appropriate permutation of the rows and columns,
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the blocks of Ar, for �; � = 1; : : : ; nc + c and r � Tc(A), are of the form

A(r)�� =

0BB@
~a
(r)
s1t1 
Os1t1 : : : ~a

(r)
s1tm 
Os1tm

...
. . .

...
~a
(r)
skt1


Oskt1 : : : ~a
(r)
sktm


Osktm

1CCA ; (8.21)

where k (resp. m) are cyclicities of C� (resp. C�), indices s1; : : : ; sk and
t1; : : : ; tm correspond to cyclic classes of C� and C� , respectively, and Ositj
are zero matrices of appropriate dimensions. We assume that C� has just
one �cyclic class�if � is noncritical.

Formula (8.21) de�nes the matrix ~A(r) 2 R(ec+c)�(ec+c), where ec is the
total number of cyclic classes, as matrix with entries ~a(r)sitj . By (8.21), this
matrix has blocks

~A(r)�� =

0BB@
~a
(r)
s1t1 : : : ~a

(r)
s1tm

...
. . .

...
~a
(r)
skt1

: : : ~a
(r)
sktm

1CCA : (8.22)

It follows that ~A(r1+r2) = ~A(r1) 
 ~A(r2) for all r1; r2 � Tc(A). In other
words, the multiplication of any two powers A(r1) and A(r2) for r1; r2 �
Tc(A) reduces to the multiplication of ~A(r1) and ~A(r2).
Let � = � (A) : If we take r = �t + l � T (A) (instead of Tc(A) above)

and denote ~A := ~A(�t+1), then due to the periodicity we obtain

~A(�t+l) = ~A((�t+1)l) = ~Al = ~A�t+l; (8.23)

so that ~A(r) can be regarded as the rth power of ~A, for all r � T (A).

8.5.2 Circulant properties

A matrix A = (aij) 2 R
m�n

will be called circulant, if aij = aps whenever
p = i+ t (mod m) and s = j + t (mod n) for all i 2 M; j 2 N; t � 1. For
instance

A =

0BBBBBB@
0 1 2 0 1 2 0 1 2
2 0 1 2 0 1 2 0 1
1 2 0 1 2 0 1 2 0
0 1 2 0 1 2 0 1 2
2 0 1 2 0 1 2 0 1
1 2 0 1 2 0 1 2 0

1CCCCCCA (8.24)

is circulant. Note that if m = n then there exist scalars �1; : : : ; �n such
that aij = �d whenever j� i = d (mod n) and a circulant matrix then has
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the form:

A =

0BBBBBBB@

�1 �2 �3 � � � �n

�n �1 �2
. . . �n�1

�n�1 �n �1
. . . �n�2

...
. . .

. . .
. . .

...
�2 �3 : : : : : : �1

1CCCCCCCA
: (8.25)

A matrix A 2 Rm�n will be called block k � k circulant if there exist
scalars �1; : : : ; �k and a block decomposition A = (Aij); i; j = 1; : : : ; k
such that Aij = �d
Oij if j� i = d (mod k), where Oij are zero matrices.

A matrix A = (aij) 2 R
m�n

will be called d-periodic when aij = ais if
(s� j) modn is a multiple of d, and aji = asi if (s� j) modm is a multiple
of d.
The matrix (8.24) indicates that a rectangular m � n circulant matrix

consists of ordinary d� d circulant blocks, where d = gcd(m;n). In partic-
ular, it is d-periodic. Also, there exist permutation matrices P and Q such
that B = PAQ is block d� d circulant:

B =

0BBBBBB@
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0

1CCCCCCA :

Observe that if A 2 Rm�n is circulant and m and n are coprime then A is
constant. We formalize these observations in the following.

Proposition 8.5.2 Let A 2 Rm�n be circulant and d = gcd(m;n).

(a) A is d-periodic.

(b) There exist permutation matrices P and Q such that PAQ is a block
d� d circulant.

Proof. (a) There are integers t1 and t2 such that d = t1m + t2n. Using
the de�nition of a circulant matrix we obtain aij = ais, if s = j + t1m
(mod n), and hence if s = j+d (mod n). Similarly for the rows, we obtain
that aji = asi, if s = j + t2n (mod m), and hence if s = j + d (mod m).
(b) As A is d-periodic, all rows such that i + d = j (mod m) are equal,
so that f1; : : : ;mg can be divided into d groups with m=d indices each, in
such a way that Ai� = Aj�; if i and j belong to the same group. We can
�nd a permutation matrix P such that A0 = PA will have rows A01� =
: : : = A0d� = A1�, A0d+1� = : : : = A02d� = A2�, and so on. Similarly, we
can �nd a permutation matrix Q such that A00 = PAQ will have columns
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A00�1 = : : : = A00�d = A0�1, A
00
�d+1 = : : : = A00�2d = A0�2, and so on. Then A

00 has
blocks A00ij for i; j = 1; : : : ; d of dimension n=d�m=d, where A00ij = aij
Oij ,
and Oij is a zero matrix. As A is d-periodic, the submatrix extracted from
the �rst d rows and columns is circulant. Hence A00 is block d�d circulant.

Proposition 8.5.3 Let A 2 Rn�n be an irreducible, de�nite and visu-
alized matrix which admits block decomposition (8.21), � = � (A) and
r � T (A). Let C�; C� be two (possibly equal) components of C(A), and
d = gcd(��; ��).

(a) ~A
(r)
�� is circulant.

(b) For any critical � and �, there is a permutation P such that (PT ~AP )(r)��
is a block d� d circulant matrix.

(c) If r is a multiple of �, then ~A
(r)
�� are circulant Kleene stars, where all

o¤-diagonal entries are negative.

Proof. (a) Using (8.16) and notation (8.22) we see that for all (i; j) and
(k; l) such that k = i+ t (mod��) and l = j + t (mod��),

~a
(r)
sktl

= ~a
(r+t)
sitl

= ~a
(r)
sitj :

(b) If � = � then P = I, and if � 6= � then P is any permutation matrix
such that its �subpermutations� for N� and N� are given by P and Q of
Proposition 8.5.2.

(c) Part (a) shows that ~A(r)�� are circulants for any r � T (A) and critical
�. If r is a multiple of �, then ~A

(r)
�� are submatrices of ~A� = Q( ~A�) and

hence of ( ~A�)�. This implies, using Corollary 1.6.16, that they are Kleene
stars. As the �th component of C( ~A) is just a cycle of length ��, the
corresponding component of C( ~A�) consists of �� loops, showing that the
o¤-diagonal entries of ~A(r)�� are negative.

8.5.3 Max-linear systems describing attraction spaces

Let A 2 Rn�n be de�nite and irreducible. It follows from Section 8.4,
in particular Theorem 8.4.4 that the coe¢ cients of the system Ar 
 x =
Ar+p 
 x for integers p � 1 and r � T (A) can be found using O(n3 log n)
operations, by means of matrix squaring and permutation of cyclic classes.
Due to Corollary 8.4.2 we may assume without loss of generality that p = 1.
Next we show how the speci�c circulant structure of Ar at r � T (A)

can be exploited, to derive a more e¢ cient system of equations for the
attraction space Attr(A; 1). Due to Theorem 8.5.1 the core matrix

ACore = f��� ; �; � = 1; : : : ; nc + cg;
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and its Kleene star

(ACore)� = f���� ; �; � = 1; : : : ; nc + cg

will be of special importance. We will use the notation

M (r)
� (i) = fj 2 N� ; a(r)ij = ����g; i 2 N�; 8� : C� 6= C�;

K(r)(i) = ft > c; a
(r)
it = ����(t)g; i 2 N�;

(8.26)

where C� and C� are strongly connected components of C(A), N� and N�
are their node sets and �(t) in the second de�nition denotes the index of
the noncritical component which consists of the node t. The sets M (r)

� (i)
de�ned in (8.26) are nonempty for any r � Tc(A), due to Theorems 8.3.9
and 8.5.1.
The results of Subsection 8.5.2 yield the following properties of M (r)

� (i)
and K(r)(i).

Proposition 8.5.4 Let A 2 Rn�n be an irreducible, de�nite and visualized
matrix, r � Tc(A) and �; � 2 f1; : : : ; ncg.

1. If [i]!t [j] and i; j 2 N� then M (r+t)
� (i) =M

(r)
� (j) and K(r+t)(i) =

K(r)(j).

2. Each M (r)
� (i) is the union of some cyclic classes of C� .

3. Let i 2 N� and d = gcd(��; ��). Then, if [p] �M
(r)
� (i) and [p]!d [s]

then [s] �M
(r)
� (i).

4. Let i; j 2 N� and p; s 2 N� . Let [i] !t [j] and [p] !t [s]. Then
[p] �M

(r)
� (i) if and only if [s] �M

(r)
� (j).

Next we establish the cancellation rules which will enable us to simplify
systems of equations for the attraction space Attr(A; 1).
Recall �rst that by Lemma 7.4.1, if a < c, then

fx; a
 x� b = c
 x� dg = fx; b = c
 x� dg: (8.27)

Consider now a chain of equationsX�

i2N
a1ixi � c1 =

X�

i2N
a2ixi � c2 = : : : =

X�

i2N
anixi � cn: (8.28)

Suppose that �1; : : : ; �n 2 R are such that ali � �i for all l and i, and
Sl = fi; ali = �ig for l = 1; : : : ; n. Let Sl be such that

Sn
l=1 Sl = f1; : : : ; ng.

By repeatedly applying the elementary cancellation law (8.27), we obtain
that (8.28) is equivalent toX�

i2S1
�ixi � c1 =

X�

i2S2
�ixi � c2 = : : : =

X�

i2Sn
�ixi � cn: (8.29)
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We will refer to the equivalence between (8.28) and (8.29), as to the chain
cancellation.
We may now formulate the following key result.

Theorem 8.5.5 Let A 2 Rn�n be an irreducible, de�nite and visualized
matrix and r � T (A) be a multiple of � = � (A). Then the system Ar
x =
Ar+1 
 x is equivalent toX�

k2[i]
xk �

X�

� 6=�

�
���� 


X�

k2M(r)
� (i)

xk

�
(8.30)

�
X�

t2K(r)(i)
����(t) 
 xt

=
X�

k2[j]
xk �

X�

� 6=�

�
���� 


X�

k2M(r)
� (j)

xk

�
�
X�

t2K(r)(j)
����(t) 
 xt;

where � = 1; : : : ; nc and [i] and [j] range over all pairs of cyclic classes in
C� such that [i]!1 [j].

Proof. By Lemma 8.4.3 Ar 
 x = Ar+1 
 x is equivalent to its critical
subsystem. Consider critical equations of Ar 
 x = Ar+1 
 x:X�

k
a
(r)
ik 
 xk =

X�

k
a
(r+1)
ik 
 xk; i = 1; : : : ; c: (8.31)

Take i; j 2 f1; :::; cg such that [i]!1 [j]. Then by Theorem 8.3.9,

a
(r+1)
ik = a

(r)
jk ;

hence the critical subsystem of Ar 
 x = Ar+1 
 x is as follows:X�

k
a
(r)
ik 
 xk =

X�

k
a
(r)
jk 
 xk; 8i; j : [i]!1 [j]: (8.32)

Proposition 8.5.3, part (c), implies that all principal submatrices of Ar

extracted from critical components have circulant block structure. In this
structure, all entries of the diagonal blocks are equal to 0, and the entries of
all o¤-diagonal blocks are strictly less than 0. Hence we can apply the chain
cancellation (equivalence between (8.28) and (8.29)) and obtain the �rst
terms on both sides of (8.30). By Theorem 8.5.1 each block A�� contains
an entry equal to ���� . For a noncritical �(t), this readily implies that the
corresponding �subcolumn�A��(t) contains an entry ����(t). Applying the
chain cancellation we obtain the last terms on both sides of (8.30). From the
block circulant structure of A�� with both � and � critical, see Proposition
8.5.3 or Proposition 8.5.4, we deduce that each column of such a block also
contains an entry equal to ���� . Applying the chain cancellation we obtain
the remaining terms in (8.30).
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It follows that (8.19) is equivalent to (8.30). As Attr(A; t) = Attr(At; 1),
this system can also be used to describe more general attraction spaces - it is
only necessary to substitute C(At) for C(A) and the entries of ((At)Core)�

for ���� (the dimension of this matrix will be di¤erent in general, see The-
orem 8.2.6 part (d)).
We note that (8.30) naturally breaks into several chains of equations

corresponding to individual strongly connected components of C(A). Let
� 2 f1; :::; ncg and consider the subsystem of (8.32) corresponding to C�:
It is a single chain of equations. Denote the common value of all sides in
this chain by z�: Then, the subsystem can be written in the form P 
 x =
(z�; :::; z�)

T
; where each row of P corresponds to one side of the chain.

Therefore the whole system (8.32) can equivalently be written as R
 x =
H 
 z; where H = (hi�) 2 R

ec�nc (ec is the total number of cyclic classes)
has entries

hi� =

(
0; if i 2 N�;
"; otherwise:

(8.33)

Remark 8.5.6 If all nodes of A are critical and the critical digraph is
strongly connected then the sets of variables on individual sides in (8.30)
are pairwise disjoint, corresponding to individual cyclic classes. In this case
the unique scaled basis of the attraction space of A is described by Corollary
7.2.7.

Theorem 8.5.5 can be used for �nding the attraction system in a way
di¤erent from matrix scaling and permutation of cyclic classes [134]. This
method is more e¢ cient if the number of strongly connected components
of C(A) and the number of noncritical nodes are small relative to n:

Example 8.5.7 Consider the following 9 � 9 de�nite, strictly visualized
matrix:

A =

0BBBBBBBBBBBB@

�8 0 �1 � 8 �8 �9 � 4 �5 �1
�4 � 5 0 �2 �6 0 �7 �3 �9
�7 �9 �8 0 �8 �4 �6 �9 �10
�8 �8 �10 �7 0 �4 �6 �10 �1
�2 �8 �7 �4 �8 0 �3 �1 �10
0 �1 �2 �7 �10 �6 �3 �6 �1

�10 �7 �7 �7 �6 �1 �5 0 �9
�8 �3 �6 �8 �6 �8 �5 �10 0
�4 �3 �5 �6 �6 �10 0 �6 �9

1CCCCCCCCCCCCA
:

The critical digraph of this matrix consists of two strongly connected com-
ponents, comprising 6 and 3 nodes respectively. They are shown in Figure
8.3 and Figure 8.4, together with their cyclic classes. Note that � (A) =
lcm (gcd (6; 3) ; 3) = 3: The components of C(A) induce block decomposi-
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FIGURE 8.3. Critical digraph in Example 8.5.7.
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FIGURE 8.4. Cyclic classes in Example 8.5.7.
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tion

A =

�
A11 A12
A21 A22

�
; (8.34)

where

A11 =

0BBBBBB@
�8 0 �1 � 8 �8 � 9
�4 � 5 0 �2 �6 0
�7 �9 �8 0 �8 �4
�8 �8 �10 �7 0 �4
�2 �8 �7 �4 �8 0
0 �1 �2 �7 �10 �6

1CCCCCCA ;

A22 =

0@ �5 0 � 9
�5 �10 0
0 �6 �9

1A : (8.35)

The core matrix and its Kleene star are equal to

ACore = (ACore)� =

�
0 �1

�1 0

�
: (8.36)

By calculating A;A2; : : : we obtain that the powers of A become periodic
after T (A) = 6. In the block decomposition of A6 induced by (8.34), we
have the following circulants:

A
(6)
11 =

0BBBBBB@
0 �1 �2 0 �1 �2

�2 0 �1 �2 0 �1
�1 �2 0 �1 �2 0
0 �1 �2 0 �1 �2

�2 0 �1 �2 0 �1
�1 �2 0 �1 �2 0

1CCCCCCA ; A
(6)
12 =

0BBBBBB@
�2 �1 �1
�1 �2 �1
�1 �1 �2
�2 �1 �1
�1 �2 �1
�1 �1 �2

1CCCCCCA ;

(8.37)

A
(6)
21 =

0@ �3 �1 �2 �3 �1 �2
�2 �3 �1 �2 �3 �1
�1 �2 �3 �1 �2 �3

1A ; A
(6)
22 =

0@ 0 �3 �2
�2 0 �3
�3 �2 0

1A :

(8.38)

The corresponding blocks of �reduced�power ~A(6) are

~A
(6)
11 =

0@ 0 �1 �2
�2 0 �1
�1 �2 0

1A ; ~A
(6)
12 =

0@ �2 �1 �1
�1 �2 �1
�1 �1 �2

1A ;

~A
(6)
11 =

0@ �3 �1 �2
�2 �3 �1
�1 �2 �3

1A ; ~A
(6)
12 =

0@ 0 �3 �2
�2 0 �3
�3 �2 0

1A :

Note that ~A(6)11 and ~A
(6)
22 are Kleene stars, with all o¤-diagonal entries

negative.



222 8. Reachability of eigenspaces

Using (8.37) and (8.38), we see that the attraction system consists of two
chains of equations, namely

x1 � x4 � (x8 � 1)� (x9 � 1) = x2 � x5 � (x7 � 1)� (x9 � 1)
= x3 � x6 � (x7 � 1)� (x8 � 1)

and

(x2 � 1)� (x5 � 1)� x7 = (x3 � 1)� (x6 � 1)� x8
= (x1 � 1)� (x4 � 1)� x9:

Note that only 0 and �1, the coe¢ cients of (ACore)� (which is equal to
ACore in this example), appear in this system.

8.6 Robustness of matrices

8.6.1 Introduction

In this section we deal with Q3, that is with the task of recognizing robust
matrices. We start with a few basic observations and then analyze the
problem �rst for irreducible and then for reducible matrices.
Let A = (aij) 2 R

n�n
and recall that Attr(A; 1) is the set of all starting

vectors from which the orbit reaches the eigenspace, that is

Attr(A; 1) =
n
x 2 Rn;O(A; x) \ V (A) 6= f"g

o
:

Clearly,
V (A)� f"g � Attr(A; 1) � Rn � f"g

and so robust matrices are exactly those for which Attr(A; 1) = Rn � f"g:

It may happen that Attr(A; 1) = V (A)�f"g; for instance when A is the
irreducible matrix �

�1 0
0 �1

�
:

Here �(A) = 0 and by Theorem 4.4.4

V (A)� f"g = f�
 (0; 0)T ;� 2 Rg:

Since

A

�
a
b

�
= (max(a� 1; b);max(a; b� 1))T ;

we have that A

�
a
b

�
is an eigenvector of A if and only if a = b; that is

A
 x is an eigenvector of A if and only if x is an eigenvector of A. Hence
Attr(A; 1) = V (A)� f"g:
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Attr(A; 1) may also be di¤erent from both V (A) � f"g and Rn � f"g :
Consider the irreducible matrix

A =

0@ �1 0 �1
0 �1 �1

�1 �1 0

1A :

Here �(A) = 0 and x = (�2;�2; 0)T is not an eigenvector of A but A
x =
(�1;�1; 0)T is, showing that Attr(A; 1) 6= V (A) � f"g: At the same time
if y = (0;�1; 0)T then Ak 
 y is y for k even and (�1; 0; 0)T for k odd,
showing that y =2 Attr(A; 1).

Lemma 8.6.1 If A;B 2 Rn�nand A � B then A is robust if and only if
B is robust.

Proof. B = P�1 
A
 P for some permutation matrix P: Hence

Bk+1 
 x = P�1 
Ak+1 
 P 
 x
= P�1 
 �
Ak 
 P 
 x
= �
Bk 
 x:

Due to Lemma 8.6.1 we may without loss of generality investigate robust-
ness of matrices arising from a given matrix by a simultaneous permutation
of the rows and columns.
We �nish this introduction by excluding a pathological case:

Lemma 8.6.2 A matrix with an " column is not robust. This is true in
particular if one of its eigenvalues is ":

Proof. If (say) the kth column of A is " then A 
 x = " for any x 2 Rn

such that xi = " for i 6= k: Hence A is not robust.
The second statement follows from Lemma 4.5.11.

8.6.2 Robust irreducible matrices

Characterization of robustness for irreducible matrices using the results of
the previous sections is relatively easy. We will also deduce a few corollaries
of the following main result.

Theorem 8.6.3 Let A 2 Rn�n be column R-astic and j�(A)j = 1 (that is
�(A) = f�(A)g). Then A is robust if and only if the period of A is 1.

Proof. Suppose that the period of A is 1. Let x 2 Rn�f"g and k � T (A):
Then Ak 
 x 2 Rn � f"g by Lemma 1.5.2, Ak+1 
 x = �
 Ak 
 x and so
A is robust (and all columns of Ak are eigenvectors of A).
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Now let A be robust and x be the jth column of A. Then x 2 Rn � f"g
and thus there is an integer kj such that Ak+1 
 x = �(A)
Ak 
 x for all
k � kj : So, if k0 = max(k1; :::; kn) then Ak+2 = �(A)
Ak+1 for all k � k0;
and thus the period of A is 1:
Recall that every irreducible n � n matrix (n > 1) is column R-astic

(Lemma 1.5.1), but not conversely.
Note that if A is the 1�1 matrix (") then A is irreducible, �(A) = 1 but

A is not robust. This is an exceptional case that has to be excluded in the
statements that follow.

Corollary 8.6.4 [34], [102] Let A 2 Rn�n; A 6= " be irreducible. Then A
is robust if and only if A is primitive.

Proof. Every irreducible matrix has a unique eigenvalue and if A 6= "
then it is also R-astic. The period of A is � (A) by Theorem 8.3.5 and the
statement now follows from Theorem 8.6.3.

Corollary 8.6.5 Let A 2 Rn�n; A 6= " be irreducible. If A is primitive; x 6=
" then Ak 
 x is �nite for all su¢ ciently large k:

Proof. If A is primitive then A is robust, thus for x 2 Rn; x 6= "; and
all su¢ ciently large k we have Ak 
 x 2 V (A) � f"g = V +(A) since A is
irreducible.

Example 8.6.6 For the irreducible matrix A of Example 4.3.7 we have
that the cyclicity of the critical component with the node set f1; 2g is 2; that
of the component on f4; 5; 6g is gcd f1; 3g = 1: Hence � (A) = �(C(A)) =
lcm f1; 2g = 2 and so A is not robust.

The following classical su¢ cient condition for robustness now easily fol-
lows:

Corollary 8.6.7 [65] Let A = (aij) 2 R
n�n

; A 6= " be irreducible. Then A
is robust if aii = �(A) for every i 2 Nc(A):

Proof. If aii = �(A) for every i 2 Nc(A) then a cycle of length one exists
in every component of the critical digraph, hence A is primitive and so A
is robust.
We also deduce that the powers of a robust irreducible matrix remain

irreducible:

Corollary 8.6.8 Let A 2 Rn�n be irreducible and robust. Then Ak is
irreducible for every positive integer k.

Proof. The statement follows from Corollary 8.2.4.
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8.6.3 Robust reducible matrices

Robustness of reducible matrices is not very strongly related to ultimate
periodicity (unlike for irreducible matrices). However and although it will
not be directly used in this book, for the sake of completeness we present a
(slightly reformulated) generalization of the Cyclicity Theorem to reducible
matrices:

Theorem 8.6.9 [114] (General Cyclicity Theorem) A matrix A 2 Rn�n

is ultimately periodic if and only if each irreducible diagonal block of the
FNF of A has the same eigenvalue.

The rest of this subsection is based on [35].
Recall that if A = (aij) 2 R

n�n
is in the FNF (4.7) and N1; :::; Nr are

the classes of A then we have denoted R = f1; :::; rg: If i 2 R then we now
also denote Ti = fj 2 R;Nj �! Nig and Mi =

S
j2Ti

Nj : A class Ni of A is

called trivial if Ni contains only one index, say k; and akk = ":
We start with a lemma. Without loss of generality we assume in the rest

of this subsection that A is in the FNF (4.7).

Lemma 8.6.10 [85] If every nontrivial class of A 2 Rn�n has eigenvalue
0 and period 1 then Ak+1 = Ak for some k:

Proof. We prove the statement by induction on the number of classes.
If A has only one class then either this class is trivial or A is irreducible.

In both cases the statement follows immediately.
If A has at least two classes then by Lemma 4.1.3 we can assume without

loss of generality:

A =

�
A11 "
A21 A22

�
and thus

Ak =

�
Ak11 "
Bk Ak22

�
;

where
Bk =

X
i+j=k�1

�
Ai22 
A21 
A

j
11:

By the induction hypothesis there are k1 and k2 such that

Ak1+111 = Ak111 and A
k2+1
22 = Ak222:

It is su¢ cient now to prove that

Bk =
X� n

Ai22 
A21 
A
j
11; i � k2; j � k1; i = k2 or j = k1

o
(8.39)
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holds for all k � k1 + k2 + 1:
For all i; j we have

Ai22 
A21 
A
j
11 = Ai

0

22 
A21 
A
j0

11;

where i0 = min(i; k2); j0 = min(j; k1): If i+j+1 = k � k1+k2+1 then either
i � k2 or j � k1: Hence either i0 = k2 or j0 = k1 and therefore � in (8.39)
follows. For � let i = k2 (say) and j � k1: Since k � k1+k2+1 � j+ i+1;
we have k � j � 1 � i = k2 and thus

Ai22 
A21 
A
j
11 = Ak�j�122 
A21 
Aj11 � Bk:

We are ready to prove one of the key results of this book.

Theorem 8.6.11 [35] Let A 2 Rn�n be column R-astic and in the FNF
(4.7), N1; :::; Nr be the classes of A and R = f1; :::; rg: Then A is robust if
and only if the following hold:

1. All nontrivial classes N1; :::; Nr are spectral.

2. If i; j 2 R;Ni; Nj are nontrivial and i =2 Tj and j =2 Ti then �(Ni) =
�(Nj):

3. �(Ajj) = 1 for all j 2 R:

Proof. If r = 1 then A is irreducible and the statement follows by Theorem
8.6.4. We will therefore assume r � 2 in this proof.
Let A be robust, we prove that 1.-3. hold.

1. Let i 2 R;Aii 6= " and x 2 Rn be de�ned by taking any xs 2 R for
s 2Mi and xs = " for s =2Mi: Then Ak+1
x = �
Ak 
x for some
k and � 2 �(A). Let z = Ak
x: Then z[Mi] is �nite since A[Mi] has
no " row and

A[Mi]
 z[Mi] = (A
 z)[Mi] = �
 z[Mi];

hence z[Mi] 2 V +(A[Mi]): By Lemma 8.6.2 � > " and so by Theorem
4.4.4 then �(Nt) � � (Ni) for all t 2 Ti: Hence Ni is spectral.

2. Suppose i; j 2 R;Ni; Nj are nontrivial and i =2 Tj ; j =2 Ti: Let x 2 R
n

be de�ned by taking any

x[Ni] 2 V +(A[Ni]);

x[Nj ] 2 V +(A[Nj ])
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and xs = " for s 2 N � Ni [ Nj : Then Ak+1 
 x = � 
 Ak 
 x for
some k and � 2 �(A). Denote z = Ak 
 x: Then z[Nj ] is �nite. Since
i =2 Tj we have auv = " for all u 2 Ni and v 2 Nj : Hence

�
 z[Nj ] = (A
 z)[Nj ] = A[Nj ]
 z[Nj ]

and so by Theorem 4.4.4 �(Nj) = �: Similarly it is proved that
�(Ni) = �:

3. Let j 2 R and A[Nj ] 6= " (otherwise the statement follows trivially).
Let x 2 Rn be any vector such that x 6= " and xs = " for s =2 Nj :
Then Ak+1
x = �
Ak
x for some k and � 2 �(A). Let z = Ak
x:
Since

z[Nj ] = (A[Nj ])
k 
 x[Nj ];

we may assume without loss of generality that z[Nj ] 6= ". At the same
time

A[Nj ]
 z[Nj ] = (A
 z)[Nj ] = �
 z[Nj ]

and thus z[Nj ] 2 V (A[Nj ]): Hence A[Nj ] is irreducible and robust.
Thus by Theorem 8.6.4 we have � (A[Nj ]) = �(Ajj) = 1:

Suppose now that conditions 1.-3. are satis�ed. We prove then that A
is robust by induction on the number of classes of A: As already observed
at the beginning of this proof, the case r = 1 follows from Theorem 8.6.4.
Suppose now that r � 2 and let x 2 Rn; x 6= ": Let

U = fi 2 N ; (9j) i �! j; xj 6= "g:

We have �
Ak 
 x

�
[U ] = (A[U ])

k 
 x[U ]

and �
Ak 
 x

�
i
= "

for i =2 U: Therefore we may assume without loss of generality that U = N:
Let M be a �nal class in CA; clearly x[M ] 6= " by the de�nition of U: Let
us denote

S = fi 2 N ; (9j 2M) (i �! j)g

and
S0 = N � S:

By Lemma 4.1.3 we may assume without loss of generality that

A =

0@ A11 " "
A21 A22 A23
" " A33

1A ;
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where the individual blocks correspond (in this order) to the setsM;S�M
and S0 respectively. Let us de�ne xk = Ak 
 x for all integers k � 0: We
also set

xk1 = xk[M ];

xk2 = xk[S �M ];
xk3 = xk[S0]:

Obviously,

xk+11 = A11 
 xk1 ;
xk+12 = A21 
 xk1 �A22 
 xk2 �A23 
 xk3 ;
xk+13 = A33 
 xk3 :

Assume �rst that M is nontrivial. Then �(A11) 6= " and by taking (if
necessary) (�(A11))

�1 
 A instead of A; we may assume without loss of
generality that �(A11) = 0: By assumption 3 and Theorem 8.3.5 we have
Ak1+111 = Ak111 for some k1: By assumption 2 every class of A33 has eigenvalue
0. Since each of these classes has also period 1 by assumption 3, it follows
from Lemma 8.6.10 that Ak3+133 = Ak333 for some k3: We may also assume
without loss of generality that

x01 = x11 = x21 = :::

and
x03 = x13 = x23 = ::: .

Therefore
xk+12 = A21 
 x01 �A22 
 xk2 �A23 
 x03:

Let v = A21 
 x01 �A23 
 x03: We deduce that

xk2 = Ak22 
 x02 �
�
Ak�122 � :::�A022

�

 v (8.40)

for all k. Moreover, �(A22) � �(A11) = 0 sinceM is spectral by assumption
1. Hence

Ak�122 � :::�A022 = � (A22)

for all k � n: Note that x01 is �nite as an eigenvector of the irreducible
matrix A11: Also, since every node in S has access to M; the vector

� (A22)
A21 
 x01

is �nite and hence also � (A22)
v is �nite. If �(A22) < 0 then Ak22
x02 �!
�1 as k �!1 and we deduce that xk2 = � (A22)
v for all k large enough.
If �(A22) = 0 then

Ak2+122 = Ak222
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by the induction hypothesis and thus

xk2 = Ak222 
 x02 � � (A22)
 v
for all k � max(k1; k2; k3):
It remains to consider the case when A11 is trivial. Then xk1 = " for all

k � 1 and we have�
xk+12

xk+13

�
=

�
A22 A23
" A33

�


�
xk2
xk3

�
for all k � 1: We apply the induction hypothesis to the matrix�

A22 A23
" A33

�
and deduce that xk+1 = xk for k su¢ ciently large. This completes the
proof.

An example of the condensation digraph of a robust reducible matrix
can be seen in Figure 8.5, where the nodes correspond to primitive classes
with unique eigenvalues �1; �2; �3; �4 and �1 < �2 < �3 < �4:

Example 8.6.12 Let A =

0@ 2 " "
" 1 "
0 0 0

1A ; thus r = 3;�(A) = f0; 1; 2g; Nj =

fjg; j = 1; 2; 3: If x =

0@ 0
0
0

1A ; then O(A; x) is

0@ 2
1
0

1A ;

0@ 4
2
2

1A ;

0@ 6
3
4

1A ;

0@ 8
4
6

1A ; :::;

which obviously will never reach an eigenvector. The reason is that 1 =2 T2;
2 =2 T1 but �(N1) 6= �(N2):

Example 8.6.13 Let A =

0@ 2 " "
" " "
0 0 0

1A ; thus r = 3;�(A) = f0; 2g; Nj =

fjg; j = 1; 2; 3: This matrix is robust since both nontrivial classes (N1 and
N3) are spectral, � (Aii) = 1 (i = 1; 2; 3) and there are no nontrivial classes

Ni; Nj such that i =2 Tj and j =2 Ti: Indeed, if x =

0@ 0
0
0

1A ; then O(A; x) is

0@ 2
"
0

1A ;

0@ 4
"
2

1A ;

0@ 6
"
4

1A ;

0@ 8
"
6

1A ; :::;

hence an eigenvector is reached in the �rst step.



230 8. Reachability of eigenspaces

λ4 λ4

λ3

λ2 λ2λ2

λ1 λ1

FIGURE 8.5. Condensation digraph of a robust martrix



8.6 Robustness of matrices 231

8.6.4 M� robustness

Note that in this subsection the symbol M has a reserved meaning. Re-
quirements 1.-3. of Theorem 8.6.11 imply that every robust matrix A either
has only one superblock or j�(A)j = 1: Obviously this restricts the con-
cept of robustness for reducible matrices quite signi�cantly. Therefore we
present an alternative concept of robustness and provide a criterion which
will enable us to characterize a wider class of matrices displaying robustness
properties re�ecting the rich spectral structure of reducible matrices.
We start with a simple observation.

Lemma 8.6.14 Let A =
�
A0 "
::: A[M ]

�
be column R-astic, x 2 Rn; M �

N and y = Ak 
 x: If x[N �M ] = " then y[N �M ] = ":

Proof. Straightforward.
Let x 2 Rn. Recall that the set fj 2 N ;xj > "g is called the support of

x, notation Supp(x). Lemma 8.6.14 implies that if M is the support of an
eigenvector and Supp(x) � M for some x 2 Rn then Supp(Ak 
 x) � M
for all positive integers k: This motivates the following de�nitions:
Let A = (aij) 2 R

n�n
be in an FNF. Then M � N is called regular if

for some � there is an x 2 V (A; �) with x[M ] �nite and x[N �M ] = ". We
also denote � = �(M):

Remark 8.6.15 Even ifM is regular there still may exist an x 2 V (A; �(M))
with xj = " for some j 2M:

Since for a given matrix the �niteness structure of all eigenvectors is well
described (Theorem 4.6.4), we aim to characterize matrices for which an
eigenvector in V (A; �(M)) for a given regular set M is reached with any
starting vector whose support is a subset of M .
It follows from the description of V (A) (Section 4.6) that M is regular

if and only if there exist spectral indices i1; :::; is for some s such that
M = fi 2 N ; i! Ni1 [ ::: [Nisg.
Let M � N . We denote

Rn(M) = fx 2 Rn � f"g; (8j 2 N �M)(xj = ") g:

Let A = (aij) 2 R
n�n

be a column R-astic matrix in an FNF andM � N

be regular. Then A will be called M -robust if

(8x 2 Rn(M))(9k)Ak 
 x 2 V (A; �(M)):
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Theorem 8.6.16 Let A = (aij) 2 R
n�n

be a column R-astic matrix in an
FNF, M � N be regular and B = A[M ]: Then A is M�robust if and only
if �(B) = 1:

Proof. Without loss of generality let A =
�
A[N �M ] "

� � � B

�
:

Supose that A is M -robust. Take x = Aj ; j 2 M: Then x 2 Rn(M)
because A (and therefore also B) is column R-astic and there is a kj such

that Ak 
 Aj 2 V (A; �(M)) for all k � kj : Since Aj =
�

"
Aj [M ]

�
; we

have

A

�
Ak 
Aj

�
=

�
"

B 

�
Bk 
Aj [M ]

� � = �(M)

�

"
Bk 
Aj [M ]

�
:

Hence, for k � maxj2M kj there is

Bk+2 = �(M)
Bk+1;

that is �(B) = 1 with � = �(M):
Suppose now Bk+1 = �
 Bk for some � and for all k � k0: If the FNF

of B is

B =

0B@ B1 "
...

. . .
� � � � Br

1CA
then

Bk =

0B@ Bk1 "
...

. . .
� � � � Bkr

1CA
and so Bk+1i = � 
 Bki (i = 1; :::; r). But since every Bi is irreducible,
� = �(Bi) = �(M) (i = 1; :::; r): Let M =M1 [ :::[Mr be the partition of
M determined by the FNF of B: Let x 2 Rn(M);

x =

0BBB@
x[N �M ] = "

x[M1]
...

x[Mr]

1CCCA
and let

s = minfi;x[Mi] 6= "g:
Denote y = Ak 
 x;

y =

0BBB@
y[N �M ]
y[M1]
...

y[Mr]

1CCCA :
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Clearly, y[N �M ] = " and

y[Ms] = Bk 
 x[Ms] 6= "

since Bs is irreducible (note that using Corollary 8.6.5 it would be possible
to prove here that y[Mi] is �nite for all i � s). Hence y 2 Rn(M): At the
same time

Bk+1 
 x[M ] = �
Bk 
 x[M ]
and

y =

�
"

Bk 
 x[M ]

�
:

Therefore

A
 y =
�

"
B 
Bk 
 x[M ]

�
= �(M)


�
"

Bk 
 x[M ]

�
= �(M)
 y:

We conclude that y 2 V (A; �(M)):

8.7 Exercises

Exercise 8.7.1 Is any of the matrices in Exercises 1.7.11 and 1.7.12 ro-
bust? [Both are robust]

Exercise 8.7.2 Use matrix scaling to obtain a visualized matrix from the
matrix

A =

0BB@
1 �4 6 0
1 2 4 2
1 �1 2 3

�2 5 4 0

1CCA
and then deduce the cyclicity of A:

[

0BB@
1 �6 4 �1
3 2 4 3
3 �1 2 4

�1 4 3 0

1CCA ; � (A) = 3:]

Exercise 8.7.3 For the matrix

A =

0BBBB@
4 4 3 8 1
3 3 4 5 4
5 3 4 7 3
2 1 2 3 0
6 6 4 8 1

1CCCCA
of Exercise 4.8.1 �nd the critical digraph C (A) ; all strongly connected com-
ponents of C (A) and their cyclicities and the cyclicity of A: Is A robust?
[N1 = f1; 3; 4g ; N2 = f2; 5g ; � (N1) = 1; � (N2) = 2; � (A) = 2; A is not
robust]
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2

5 5

7 7

7

0 0 0

7

7

FIGURE 8.6. Condensation digraph for the matrix A

Exercise 8.7.4 Let A 2 Rn�n be de�nite and denote by �1; :::; �n (�1; :::; �n)
the rows (columns) of �(A): Prove then that Q[k]
Q[l] � Q[k]�Q[l]; where
Q[r] is the outer product � r 
 �Tr (see Proposition 8.3.1).

Exercise 8.7.5 The digraphs of Figures 8.6, 8.7 and 8.8 are condensation
digraphs of reducible matrices A;B;C in the FNF, whose all diagonal blocks
are primitive. The integers in the digraphs stand for the unique eigenvalues
of the corresponding diagonal blocks. Decide about each matrix whether it
is robust. [A is not, B and C are]
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7

FIGURE 8.7. Condensation digraph for the matrix B
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2

2
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22

FIGURE 8.8. Condensation digraph for the matrix C
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9

Generalized eigenproblem

This chapter deals with the generalized eigenproblem (GEP) in max-algebra
de�ned as follows:
Given A;B 2 Rm�n, �nd all � 2 R (generalized eigenvalues) and

x 2 Rn; x 6= " (generalized eigenvectors) such that

A
 x = �
B 
 x: (9.1)

When � 2 R and x 2 Rn; x 6= " satisfying (9.1) exist then we say that
GEP is solvable or also that (A;B) is solvable. Obviously, the eigenproblem
is obtained from the GEP when B = I or � = " and we will therefore
assume in this chapter that � > ":
It is likely that GEP is much more di¢ cult than the eigenproblem. This

is indicated by the fact that the GEP for a pair of real matrices may have
no generalized eigenvalue, a �nite number or a continuum of generalized
eigenvalues [70]. It is known [135] that the union of any system of closed
(possibly one-element) intervals is the set of generalized eigenvalues for
suitably taken A and B:
GEP has been studied in [15] and [70]. The �rst of these papers solves

the problem completely when m = 2 and special cases for general m and
n; the second solves some other special cases. No solution method seems
to be known either for �nding a � or an x 6= " satisfying (9.1) for general
real matrices. Obviously, once � is �xed, the GEP reduces to a two-sided
max-linear system (Chapter 7). We therefore concentrate on the question of
�nding the generalized eigenvalues. First we will study basic properties and
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solvable special cases of GEP. In Section 9.3 we then present a method for
narrowing the search for generalized eigenvalues for a pair of real square
matrices. It is based on the solvability conditions for two-sided systems
formulated using symmetrized semirings (Section 7.5).
A motivation for the GEP is given in Subsection 1.3.2.
Given A;B 2 Rm�n we denote the set of generalized eigenvalues by

�(A;B); the set containing " and all generalized eigenvectors corresponding
to � 2 R by V (A;B; �) and the set of all generalized eigenvectors by
V (A;B) ; that is:

V (A;B; �) =
n
x 2 Rn;A
 x = �
B 
 x

o
; � 2 R;

V (A;B) =
n
x 2 Rn;A
 x = �
B 
 x; � 2 R

o
and

�(A;B) =
�
� 2 R;V (A;B; �) 6= f"g

	
:

9.1 Basic properties of the generalized
eigenproblem

In this section we present some properties of the GEP provided that A and
B are �nite matrices [70]. We therefore assume that A = (aij); B = (bij) 2
Rm�n are given matrices and, as before, we denote M = f1; :::;mg and
N = f1; :::; ng. We will also denote:

C = (cij) = (aij 
 b�1ij )

and
D = (dij) = (bij 
 a�1ij ):

Theorem 9.1.1 If (A;B) is solvable and � 2 �(A;B) then C satis�es

max
i2M

min
j2N

cij � � � min
i2M

max
j2N

cij : (9.2)

Proof. No row of �
B strictly dominates the corresponding row of A; so
for every i there is a j such that aij � �
bij ; i.e. � � cij : Hence for all i we
have � � maxj cij ; thus � � minimaxj cij : Similarly, no row of A strictly
dominates the corresponding row of �
B; yielding for all i : � � minj cij ;
thus � � maximinj cij :
The interval [maxi2M minj2N cij ;mini2M maxj2N cij ] is called the feasi-

ble interval for the generalized eigenproblem (9.1).

Example 9.1.2 If A =
�

1 2
�1 0

�
and B =

�
0 1
0 1

�
then (A;B) is

not solvable because C =
�

1 1
�1 �1

�
does not satisfy (9.2).
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Recall that for a square matrix A the symbol � (A) stands for the max-
imum cycle mean of A: We now also denote by �0 (A) the minimum cycle
mean.

Corollary 9.1.3 If m = n; (A;B) is solvable and � 2 �(A;B) then C
satis�es

�0(C) � � � �(C):

Proof. A cycle in DC whose every arc has the weight equal to a row maxi-
mum in C exists. The arc weights on this cycle are all at least the smallest
row maximum, thus �(C) � mini2M maxj2N cij : The second inequality
now follows from Theorem 9.1.1 and the other inequality by swapping max
and min.
Recall that the conjugate of B is B� = (b�ij) = (b�1ji ): Then the i

th

element of the diagonal of A
B� equals

max
j
(aij + b

�
ji) = max

j
(aij 
 b�1ij ) = max

j
cij :

Similarly, the ith element of the diagonal of A
0B� equals minj cij : Hence
by Theorem 9.1.1 we have:

Corollary 9.1.4 If (A;B) is solvable then the greatest element of the diag-
onal of A
0B� does not exceed the least element of the diagonal of A
B�:

By Corollary 9.1.3 we also have:

Corollary 9.1.5 If (A;B) is solvable and � 2 �(A;B) then

�0(A
0 B�) � � � �(A
B�):

The next statement is a remarkable observation on generalized eigenval-
ues, yet there is no description of the unique possible value for the eigen-
value.

Theorem 9.1.6 [15] If both (A;B) and (AT ; BT ) are solvable then both
these problems have a unique and identical eigenvalue, that is there is a
real number � such that

�(A;B) = f�g = �(AT ; BT )

provided that �(A;B) 6= ; and �(AT ; BT ) 6= ;:

Proof. Suppose that
A
 x = �
B 
 x

and
AT 
 y = �
BT 
 y
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for some �; �; x; y: Then

�
 yT 
B 
 x = yT 
A
 x
= xT 
AT 
 y
= �
 xT 
BT 
 y
= �
 yT 
B 
 x:

Since yT 
B 
 x are �nite it follows that � = �:

Corollary 9.1.7 If A;B 2 Rn�n are symmetric then j�(A;B)j � 1.

The following simple corollary provides in some cases a powerful tool of
proving that the generalized eigenproblem is not solvable:

Corollary 9.1.8 If A;B 2 Rn�n and (AT ; BT ) has more than one gener-
alized eigenvalue then (A;B) is not solvable.

9.2 Easily solvable special cases

9.2.1 Essentially the eigenproblem

If either A or B is a generalized permutation matrix then (9.1) is easily
solvable. If (say) B is a generalized permutation matrix then B has the
inverse B�1 and after multiplying (9.1) by B�1 the GEP is transformed to
the eigenproblem. Unfortunately, since in max-algebra matrices other than
generalized permutation matrices do not have an inverse (see Theorem
1.1.3), this case is fairly limited.

9.2.2 When A and B have a common eigenvector

Proposition 9.2.1 [70] A common eigenvector of A and B is a generalized
eigenvector for A and B, more precisely, if A;B 2 Rn�n; � 
 ��1 2 R;
then

V (A; �) \ V (B;�) � V
�
A;B; �
 ��1

�
:

Proof. If x 2 V (A; �) \ V (B;�) and � > " then � 2 R and

A
 x = �
 x = �
 ��1 
B 
 x:

If � = " then �
 ��1 = " and the statement trivially follows.
An example of pairs of matrices having a common eigenvector are com-

muting matrices (Theorem 4.7.2). Hence we have:
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Theorem 9.2.2 If A;B 2 Rn�n and A
B = B
A then both (A;B) and�
AT ; BT

�
are solvable, with identical, unique generalized eigenvalue.

Proof. A and B have a common eigenvector corresponding to �nite eigen-
values by Theorem 4.7.2 and so by Proposition 9.2.1 (A;B) is solvable. At
the same time AT and BT are also commuting and by a repeated argu-
ment we have that

�
AT ; BT

�
is solvable. The equality of all generalized

eigenvalues now follows by Theorem 9.1.6.

9.2.3 When one of A;B is a right-multiple of the other

Theorem 9.2.3 [70] If one of A;B 2 Rm�n is a right-multiple of the other
then (A;B) is solvable.

Proof. Suppose e.g. A = B 
 P; where P 2 Rn�n: Let � 2 � (P ) and
x 2 V (P; �) ; x 6= ": Then

A
 x = B 
 P 
 x = B 
 (�
 x) = �
B 
 x:

Example 9.2.4 Suppose

A =

�
4 6
7 9

�
; B =

�
0 1
3 1

�
; P =

�
4 6

�2 0

�
:

Then �(P ) = 4;

�
�
��1 
 P

�
=

�
0 2

�6 �4

�
and

x =

�
0

�6

�
; A
 x =

�
4
7

�
; B 
 x =

�
0
3

�
:

We can also prove a su¢ cient condition for � to attain the upper bound
in (9.2) when (say) A is a right-multiple of B and A;B 2 Rm�n: Recall
that C = (cij) is the matrix (aij 
 b�1ij ), D = (dij) = (bij 
 a�1ij ) and let us
denote

L = max
i
min
j
cij

and
U = min

i
max
j
cij :

It follows from the proof of Theorem 9.2.3 and from Theorem 9.1.1 that
� (P ) 2 [L;U ] for every P satisfying A = B 
 P: If A = B 
 P then we
have:

A = B 
 (B� 
0 A) :
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Let us denote B� 
0 A by P =
�
pij
�
and � = �

�
P
�
; thus L � � � U:

The following technical lemma will help us to characterize in Theorem 9.2.6
when the upper bound U is attained.

Lemma 9.2.5 If A;B 2 Rm�n and L0 = maxj mini cij then L0 � �:

Proof.

� = �
�
P
�

� max
i
pii

= max
i
min
j
(b�ij 
 aji)

= max
i
min
j
(aji 
 b�1ji )

= max
i
min
j
cji

= max
j
min
i
cij = L0:

Theorem 9.2.6 [70] If A;B 2 Rm�n; D has a saddle point and there is a
matrix P such that A = B
P then � = U where � = �

�
P
�
= � (B� 
0 A) :

Proof. D = (dij) has a saddle point means

max
i
min
j
dij = min

j
max
i
dij :

Therefore the inverses of both sides are equal:

U = min
i
max
j
cij = max

j
min
i
cij = L0:

Hence by Lemma 9.2.5: L0 = � = U:
The following dual statement is proved in a dual way:

Theorem 9.2.7 [70] Let A;B 2 Rm�n: If there is a matrix P such that
A = B 
0 P and C has a saddle point then �

0
= L where �

0
= �0

�
P
�
=

�0 (B� 
0 A) :

Even if one of A;B is a right-multiple of the other, the eigenvalue may
not be unique as the following example shows.

Example 9.2.8 With A;B as in Example 9.2.4, we �nd for the principal
solution matrix P :

P =

�
4 6
3 5

�
; �
�
P
�
= 5;

�
�
��1 
 P

�
=

�
�1 1
�2 0

�
;
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A

�
1
0

�
=

�
6
9

�
and

B 

�
1
0

�
=

�
1
4

�
:

Hence for the same A;B we �nd two solutions to (9.1), with di¤erent values
of �:

9.3 Narrowing the search for generalized
eigenvalues

9.3.1 Regularization

In the absence of any method, exact or approximate, for �nding generalized
eigenvalues for a general pair of matrices, we concentrate now on narrowing
the set containing all generalized eigenvalues (if there are any) for �nite A
and B.
Let C = (cij) ; D = (dij) 2 Rm�n: The system

C 
 x = D 
 x (9.3)

is called regular if
cij 6= dij

for all i; j: The aim of the method we will present in this section is to
identify as closely as possible the set of generalized eigenvalues for which
(9.1) is regular.
Let us �rst brie�y discuss the values of �; for which this requirement is

not satis�ed. There are at most mn such values of �. We will call these
values extreme and the set of extreme values will be denoted by L: More
precisely, for A = (aij) ; B = (bij) 2 Rm�n we set

L = f� 2 R; aij = �
 bij for some i; jg :

Note that the elements of L are entries of the matrix A�B: Obviously,

jLj � mn (9.4)

and (9.1) is regular for all � 2 R�L: Recall that solvability of (9.1) can be
checked for each �xed and in particular extreme value of � using, say, the
Alternating Method.

Remark 9.3.1 The upper bound in (9.4) can slightly be improved: If for
some i we have cij > dij for all j then (9.3) has no nontrivial solution.
Therefore (9.1) has no nontrivial solution if � is too big or too small, in
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particular for � > maxL and � < minL: These two conditions may be
slightly re�ned as follows: aij > � 
 bij for all j or aij < � 
 bij for all j
must not hold for any i = 1; :::;m: Hence (9.1) has no nontrivial solution
for � < �0 and � > �00 where �0 is the mth smallest value in L and �00 is
the mth greatest value in L (both considered with multiplicities). So actually
only at most mn� 2m extreme values of � need to be checked individually
by the Alternating Method.

Let us denote the extreme values described in Remark 9.3.1 by �1; :::; �t;
where �1 < ::: < �t and t � mn� 2m: All these values can easily be found
among the entries of A�B and checked individually for being generalized
eigenvalues. Thus we may now concentrate on the real numbers in open
intervals (�j ; �j+1) ; j = 1; :::; t � 1: We will call these intervals regular
and we will also call every real number regular if it belongs to a regular
interval. It follows that there are at most mn� 2m� 1 regular intervals to
be considered. In the rest of this section we assume that one such interval,
say J; has been �xed, and we consider (9.1) only for � 2 J:

9.3.2 A necessary condition for generalized eigenvalues

Symmetrized semirings have been introduced in Section 7.5 and they have
been used to derive necessary conditions for the existence of a nontrivial so-
lution to two-sided systems. We now reformulate this to obtain a necessary
condition for generalized eigenvalues.
Recall �rst that S = R�R and the operations � and 
 are extended to

S as follows:

(a; a0)� (b; b0) = (a� b; a0 � b0);

(a; a0)
 (b; b0) = (a
 b� a0 
 b0; a
 b0 � a0 
 b):

Also, �(a; a0) = (a0; a) and (a; a0) is called balanced if a = a0: The
determinant of A = (aij) 2 Sn�n has been de�ned as

det(A) =
X
�2Pn

�
 
sgn (�)


Y
i2N



ai;�(i)

!
;

and we know that
jdet (A)j = maper jAj ;

see Proposition 7.5.6.
The next statement follows from Theorem 7.5.4 and Corollary 7.5.5. We

denote here and in the rest of this section

C (�) = A� �
B:
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Corollary 9.3.2 Let A;B 2 Rn�n and � 2 R. Then a necessary condition
that the system A
 x = �
B 
 x have a nontrivial solution is that C (�)
has balanced determinant.

The idea of narrowing the search for the eigenvalues is based on Corollary
9.3.2: We show how to �nd all � for which C (�) has balanced determinant.
It turns out that this can be done using a polynomial number of operations
in terms of n. This method may in some cases identify all eigenvalues, see
Examples 9.3.7 and 9.3.8. In general, however, it �nds only a superset of
generalized eigenvalues, see Example 9.3.9.
If � is regular then C = A� �
B has no balanced entry. The following

statement is a reformulation of Theorem 7.5.7 (note that the matrix eC has
been de�ned just before that theorem):

Corollary 9.3.3 Let A;B 2 Rn�n; � be regular. Then C (�) has balanced
determinant if and only if ]C (�) is not SNS.

The problem of checking whether a (0; 1;�1) matrix is SNS or not is
equivalent to the even cycle problem in digraphs [18] and therefore poly-
nomially solvable (Remark 1.6.45). Therefore the necessary solvability con-
dition in Corollary 9.3.3 can be checked in polynomial time for any �xed
regular value of �. This will be used later in Subsection 9.3.4. However,
C (�) may have balanced determinant for a continuum of values of � (see
Example 9.3.8) and therefore we also need a tool which enables us to make
the same decision for an interval. This tool will be presented in Subsec-
tion 9.3.4. As a preparation we �rst show in Subsection 9.3.3 how to �nd
maper jC (�)j as a function of � 2 J:

9.3.3 Finding maper jC (�)j

In this subsection we show how to e¢ ciently �nd the function

f (�) = maper jC (�)j :

This will be used in the next section to produce a method for �nding all
regular values of � 2 J for which ]C (�) is not SNS.
Recall �rst that jC (�)j = (aij � �
 bij) = (cij (�)) and for every � 2 J

we have
aij 6= �
 bij

for all i; j 2 N: Therefore for every � 2 J and for all i; j 2 N the entry
cij (�) = aij � � 
 bij is equal to exactly one of aij and � 
 bij : Observe
that f (�) = maper jC (�)j is the maximum of n! terms. Each term is a 

product of n entries cij (�) ; hence of the form b
�k; where b 2 R and k is
a natural number between 0 and n: Since b 
 �k in conventional notation
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is simply k�+ b; we deduce that f (�) is the maximum of a �nite number
of linear functions and therefore a piecewise linear convex function. Note
that the slopes of all linear pieces of f (�) are natural numbers between
0 and n: Recall that f (�) for any particular � can easily be found by
solving the assignment problem for jC (�)j : It follows that all linear pieces
can therefore e¢ ciently be identi�ed. We now describe one possible way of
�nding these linear functions: Assume for a while that the linear pieces of
smallest and greatest slope are known, let us denote them fl (�) = al 
 �l

and fh (�) = ah 
 �h; respectively. If l = h then there is nothing to do, so
assume l 6= h: We start by �nding the intersection point of fl and fh; that
is, say, �1 satisfying fl (�1) = fh (�1) : Calculate f (�1) = maper jC (�1)j :
If f (�1) = fl (�1) = fh (�1) then there is no linear piece other than fl
and fh: Otherwise f (�1) > fl (�1) = fh (�1) : Let r be the number of �
terms appearing in an optimal permutation (if there are several optimal
permutations with various numbers of � appearances then take any). Since
r is the slope of the linear piece we have l < r < h: Then ar = f (�1)� r�1
and fr (�) = ar 
 �r: This term is a new linear piece and we then repeat
this procedure with fl and fr and fr and fh; and so on. At every step a new
linear piece is discovered unless all linear pieces have already been found.
Hence the number of iterations is at most n� 1:
For �nding fl and fh it will be convenient to use the independent ones

problem (IOP) for 0� 1 square matrices:
Given a 0 � 1 matrix M = (mij) 2 Rn�n; �nd the greatest number of

ones in M so that no two are from the same row or column or, equivalently,
so that there is a � 2 Pn selecting all these ones.
Clearly, IOP is a special case of the assignment problem, and therefore

easily solvable. Note that in combinatorial terminology IOP is known as the
maximum cardinality bipartite matching problem solvable in O

�
n2:5

�
time

[22]. In general we say that a set of positions in a matrix are independent
if no two of them belong to the same row or column.
Now we discuss how to �nd fl and fh. The values of l and h are obviously

the smallest and biggest number of independent entries in jC (�)j containing
� and these can be found by solving the corresponding IOP. For h this
problem can be described by the matrix M = (mij) with mij = 1 when
jcij (�)j = � 
 bij and 0 otherwise and for l by E �M; where E is the
all-one matrix.
Now we show how to �nd al and ah: Let dij = bij if cij (�) = �
 bij and

dij = aij if cij (�) = aij (note that by regularity of � only one of these two
possibilities occurs for � 2 J). For �nding al and ah we need to determine
permutations � and � that maximize

P
i2N di;�(i) and

P
i2N di;�(i) and

select l and h entries containing �; respectively. To achieve this we interpret
the two above mentioned IOPs as assignment problems and describe their
solution sets using matricesMh andMl obtained by the Hungarian method
(that is nonpositive matrices whose max-algebraic permanent is zero). It
remains then to replace all entries in D = (dij) corresponding to nonzero
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entries in Mh and Ml by �1 and solve the assignment problem for the
obtained matrices.

9.3.4 Narrowing the search

In this subsection we show how to e¢ ciently �nd the set of all regular
values of � for which det(C (�)) is balanced. This set will be denoted by S:
We use essentially the fact that the decision whether det(C (�)) is balanced
can be made e¢ ciently for any individual value of � (Corollary 9.3.3). The
following will be useful:

Lemma 9.3.4 Let f(x); g(x); h(x) be piecewise linear convex functions on
R; f(x) = g(x) � h(x) for all x 2 R: Suppose a; b 2 R are such that f is
linear on [a; b] : If g(x) = h(x) for at least one x 2 (a; b) then g(x) = h(x)
for all x 2 [a; b].

Proof. Suppose g(x0) = h(x0); x0 2 (a; b) : Hence g(x0) = h(x0) = f (x0) :
If g(x) < f(x) for an x 2 [a; b] ; without loss of generality for x 2 [a; x0) ;
then by convexity of g and linearity of f we have that g(x) > f(x) for all
x 2 (x0; b) ; a contradiction. Therefore g(x) = f(x) for all x 2 [a; b] and
similarly h(x) = f(x) for all x 2 [a; b] :
Recall that as before J is a regular interval. Let us denote

det(C (�)) =
�
d+ (C (�)) ; d� (C (�))

�
;

or just (d+ (�) ; d� (�)) : Then C (�) for � 2 J has balanced determinant if
and only if

d+ (�) = d� (�) : (9.5)

It follows from the results of the previous section that the piecewise linear
convex function

jdet (C (�))j = d+ (�)� d� (�) = maper jC (�)j

can e¢ ciently be found. By the same argument as for maper jC (�)j we
see that both d+ (�) and d� (�) are max-algebraic polynomials in � (hence
piecewise linear and convex functions) containing at most n + 1 powers
of � between 0 and n. No method other than exhaustive search (requir-
ing n! permutation evaluations) seems to be known for �nding d+ (�) and
d� (�) separately for any particular � [29], however for a �xed � 2 R�L by
Corollary 9.3.3 we can decide in polynomial time whether d+ (�) = d� (�)
or not. Since d+ (�) � d� (�) = maper jC (�)j then if maper jC (�)j is
known, using Lemma 9.3.4 we can easily �nd all values of � 2 J satisfying
d+ (�) = d� (�) by checking this equality for any point strictly between
any two consecutive breakpoints and for the breakpoints of maper jC (�)j.
We summarize these observations in the following:
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Theorem 9.3.5 If the set S = f� 2 J ; d+ (�) = d� (�)g is nonempty then
it consists of some of the breakpoints of maper jC (�)j and a number (pos-
sibly none) of closed intervals whose endpoints are pairs of adjacent break-
points of maper jC (�)j. All these can be identi�ed in O

�
n3
�
time.

Proof. The statement is essentially proved by Lemma 9.3.4. We only need
to add that each interval whose endpoints are adjacent breakpoints of
maper jC (�)j can be decided by checking d+ (�) = d� (�) for one (arbi-
trary) internal point of the interval and that the number of breakpoints
is at most n and therefore the number of intervals is at most n � 1: The
equality d+ (�) = d� (�) for a �xed � can be decided in polynomial time
by Theorem 9.3.3.
We summarize our work in the following procedure for �nding all regular

values of � for which det (C (�)) is balanced:

Algorithm 9.3.6 NARROWING THE EIGENVALUE SEARCH
Input: A;B 2 Rn�n and a regular interval J:
Output: The set S = f� 2 J ; d+ (�) = d� (�)g :

1. S := ;:

2. C (�) := A� �
B:

3. Find f (�) = maper jC (�)j as a function of �; that is �nd all break-
points and linear pieces of f (�) :

4. For every breakpoint �0 of f (�) do: If Ĉ (�0) is not SNS then S :=
S [ f�0g :

5. For any two consecutive breakpoints a; b and arbitrarily taken �0 2
(a; b) do: If Ĉ (�0) is not SNS then S := S [ (a; b) :

9.3.5 Examples

In the �rst two examples below we demonstrate that the described method
for narrowing the search for eigenvalues may actually �nd all eigenvalues.
Note that in these examples all matrices are of small sizes and therefore
the functions d+ (�) and d� (�) are explicitly evaluated, however for bigger
matrices this would not be practical and the method described in Subsec-
tion 9.3.4 would be used as an e¢ cient tool for �nding all regular values of
� for which d+ (�) = d� (�).
The third example illustrates the situation when the algorithm narrows

the feasible interval containing the eigenvalues but a signi�cant proportion
of the �nal interval still consists of real numbers that are not eigenvalues.
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Example 9.3.7 Let

A =

0@ 3 8 2
7 1 4
0 6 3

1A ; B =

0@ 4 4 3
2 3 4
3 2 1

1A :

Then

A�B =

0@ �1 4 �1
5 �2 0

�3 4 2

1A
and L = f�3;�2;�1; 0; 2; 4; 5g : For � < �1 all terms on the RHS of the
�rst equation in A
 x = �
B 
 x are strictly less than the corresponding
terms on the left and therefore there is no nontrivial solution to A 
 x =
� 
 B 
 x. Similarly, for � > 4 all these terms are greater than their
counterparts on the left. Hence we only need to investigate regular intervals
(�1; 0) ; (0; 2) and (2; 4) and extreme points �1; 0; 2; 4:
For � 2 (�1; 0) we have

jC (�)j =

0@ 4 + � 8 3 + �
7 3 + � 4

3 + � 6 3

1A ;

d+ (�) = max (10 + 2�; 14 + �; 9 + 3�) ;

d� (�) = max (16 + �; 15 + �; 18) ;

maper jC (�)j = 18:

Since d+ (�) 6= d� (�) for � 2 (�1; 0) ; there are no eigenvalues in this
interval.
For � 2 (0; 2) we have

jC (�)j =

0@ 4 + � 8 3 + �
7 3 + � 4 + �

3 + � 6 3

1A ;

d+ (�) = max (10 + 2�; 15 + 2�; 9 + 3�) ;

d� (�) = max (16 + �; 14 + 2�; 18) ;

maper jC (�)j = max (18; 16 + �; 15 + 2�; 9 + 3�) :

For � 2 (0; 2) there is only one breakpoint for maper jC (�)j at �0 = 3=2:
Since d+ (�) = d� (�) for � = �0; this value is the only candidate for an
eigenvalue in (0; 2): It is not di¢ cult to verify that x = (2; 0; 3:5)

T is a
corresponding eigenvector.
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For � 2 (2; 4) we have

jC (�)j =

0@ 4 + � 8 3 + �
7 3 + � 4 + �

3 + � 6 1 + �

1A ;

d+ (�) = max (15 + 2�; 16 + �; 9 + 3�) ;

d� (�) = max (16 + �; 14 + 2�; 8 + 3�) ;

maper jC (�)j = 15 + 2�:

Since d+ (�) 6= d� (�) for � 2 (2; 4) ; there are no eigenvalues in this inter-
val.
Let us consider the extreme point � = 0 : In this small example we solve

the system A 
 x = B 
 x by direct analysis but note that in general the
Alternating Method would be used. By the cancellation law (Lemma 7.4.1)
the two-sided system A
 x = B 
 x is equivalent to the one with

A =

0@ " 8 "
7 " 4
" 6 3

1A ; B =

0@ 4 " 3
" 3 4
3 " "

1A :

Here from the �rst equation either x2 = �4+x1 or x2 = �5+x3: In the �rst
case the third equation yields max (2 + x1; 3 + x3) = 3 + x1; thus x1 = x3:
By substituting into the second equation then x1 = �4+x2; a contradiction.
In the second case the third equation yields again x1 = x3; which implies
a contradiction in the same way. Hence � = 0 is not an eigenvalue and a
similar analysis would show that neither are the remaining three extreme
values.
We conclude that �(A;B) = f3=2g.

Example 9.3.8 Let A =
�
4 6
7 9

�
; B =

�
0 1
3 1

�
: It is easily seen that

J = (4; 5) is the unique regular interval. For � 2 (4; 5) we have

jC (�)j =
�

� 6
3 + � 9

�
and

maper jC (�)j = max (9 + �; 9 + �) = 9 + � = d� (�) = d+ (�) :

Hence every � 2 J satis�es the necessary condition. In fact all these values
are eigenvalues as x = (6; �)

T is a corresponding eigenvector (for every
� 2 J). This vector is also an eigenvector for � 2 f4; 5g and thus �(A;B) =
[4; 5] :
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Example 9.3.9 [132] Let A =

0@ 0 1=2 1
1 0 0
0 0 1

1A ; B =

0@ 0 �2 �2
�2 0 0
0 �2 �2

1A :

Consider only the regular interval J = (0; 2). For � 2 J we have

jC (�)j =

0@ � 1=2 1
1 � �
� 0 1

1A ;

d+ (�) = max (1 + 2�; 2) ;

and
d� (�) = max (1 + 2�; 5=2) :

We deduce that d� (�) = d+ (�) if and only if � � 3=4: Hence the algorithm
returns S = [3=4; 2]: However, there are no eigenvalues in (1; 2). To see this,
realize that for � 2 J the system (9.1) simpli�es using the cancellation rules
and then by setting x1 = 0 to:

(1=2)
 x2 � 1
 x3 = �;

1 = �
 x2 � �
 x3;
x2 � 1
 x3 = �:

The second equation is equivalent to x2 � x3 = 1� �: Hence, if � > 1 and
x = (0; x2; x3)

T is a solution then both x2 and x3 are negative, thus x2 �
1 
 x3 < 1 < �; a contradiction. Note that all � 2 [3=4; 1] are eigenvalues
since for such � the vector (0; 1� �; �� 1)T is a solution to (9.1).

9.4 Exercises

Exercise 9.4.1 Use Theorem 9.3.3 to give an alternative proof that � (A)
is the unique eigenvalue for any irreducible matrix A:

Exercise 9.4.2 Show that the generalized eigenproblem has no nontrivial
solution for the matrices

A =

�
3 5 4
7 9 8

�
; B =

�
7 4 1
3 5 2

�
:

[The feasible interval is empty]

Exercise 9.4.3 Find all extreme values in the feasible interval for the gen-
eralized eigenproblem with matrices

A =

�
3 5 4
0 3 7

�
; B =

�
7 4 1
3 5 2

�
:

[(�3;�2; 1; 3)T ]
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Exercise 9.4.4 Prove the following: Let A;B 2 Rn�n: Then (A;B) is
solvable if and only if there exist P;Q such that A
P = B
Q and (P;Q)
is solvable.

Exercise 9.4.5 Prove or disprove: If A;B 2 Rn�n and A = B 
 Q
then � (B) is the greatest corner of the maxpolynomial maper (A� �
B) :
[false]

Exercise 9.4.6 Find all generalized eigenvalues if

A =

�
0 1 2
0 2 4

�
; B =

�
0 0 0
0 1 2

�
:

[0; 1; 2]
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10
Max-linear programs

If f 2 Rn then the function f(x) = fT 
 x de�ned on Rn is called a max-
linear function. In this chapter we develop methods for solving max-linear
programming problems (brie�y, max-linear programs) that is, methods for
minimizing or maximizing a max-linear function subject to constraints ex-
pressed by max-linear equations. Since one-sided max-linear systems are
substantially easier to solve than the two-sided, we deal with these two
problems separately. Note that if f(x) is a max-linear function then �f(x)
may not be of the same type. Therefore unlike in conventional linear pro-
gramming, in max-linear programming it is not possible to convert mini-
mization of a max-linear function to a maximization of the same type of
objective function by considering �f(x) instead of f(x):
The following will be useful and is easily derived from basic properties

presented in Chapter 1:

Lemma 10.0.7 Let f(x) = fT 
 x be a max-linear function on Rn: Then

(a) f(x) is max-additive and max-homogenous, that is f(�
x��
y) =
�
 f(x)� � 
 f(y) for every x; y 2 Rn and �; � 2 R:

(b) f(x) is isotone, that is f(x) � f(y) for every x; y 2 Rn; x � y:

Note that in the rest of this chapter we will assume that f 2 Rn: This
chapter is based on the results presented in [32]. Related software can be
downloaded from

http://web.mat.bham.ac.uk/P.Butkovic/software/index.htm.
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10.1 Programs with one-sided constraints

Max-linear programs with one-sided constraints have been known for some
time [149]. They are of the form

f(x) = fT 
 x �! min or max

subject to

A
 x = b; (10.1)

where f = (f1; :::; fn)T 2 Rn; A = (aij) 2 Rm�n and b = (b1; :::; bm)T 2 Rm
are given. The systems A 
 x = b were studied in Chapter 3 and we will
denote as before:

S = fx 2 Rn;A
 x = bg
and x = (x1; :::; xn)T ; where xj = mini2M bi 
 a�1ij for j 2 N: Recall that
by Theorem 3.1.1 then x � x for every x 2 S and x 2 S if and only if
x � x and [

j:xj=xj

Mj =M;

where for j 2 N we de�ne

Mj =
�
i 2M ;xj = bi 
 a�1ij

	
:

The task of minimizing (maximizing) f(x) = fT 
 x subject to (10.1)
will be denoted by MLPmin1 (MLPmax1 ). The sets of optimal solutions will
be denoted Smin1 and Smax1 respectively. It follows from Theorem 3.1.1 and
from isotonicity of f(x) that x 2 Smax1 ; whenever S 6= ;:We now present a
simple algorithm which solves MLPmin1 .

Algorithm 10.1.1 ONEMAXLINMIN (One-sided max-linear minimiza-
tion)
Input: A 2 Rm�n; b 2 Rm and c 2 Rn:
Output: x 2 Smin1 :

1. Find x and Mj ; j 2 N:

2. Sort (fj 
 xj ; j 2 N) ; without loss of generality let

f1 
 x1 � f2 
 x2 � ::: � fn 
 xn:

3. J := f1g ; r := 1:

4. If [
j2J

Mj =M

then stop (xj = xj for j 2 J and xj small enough for j =2 J).
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5. r := r + 1; J := J [ frg :

6. Go to 4.

Note that "small enough" in Step 4 may be for instance

xj � f�1j 
 fr 
 xr:

Theorem 10.1.2 The algorithm ONEMAXLINMIN is correct and its com-
putational complexity is O(mn2):

Proof. Correctness is obvious and computational complexity follows from
the fact that the loop 4.-6. is repeated at most n times and each run is
O (mn) : Step 1 is O (mn) and Step 2 is O (n log n) :
Note that the problem of minimizing certain objective functions subject

to one-sided max-linear constraints is NP -complete, see Exercise 10.3.1.

10.2 Programs with two-sided constraints

10.2.1 Problem formulation and basic properties

Our main goal in this chapter is to present the necessary theory and meth-
ods for �nding an x 2 Rn (if it exists) that minimizes (maximizes) the
function f(x) = fT 
 x subject to

A
 x� c = B 
 x� d; (10.2)

where f = (f1; :::; fn)
T 2 Rn; c = (c1; :::; cm)

T
; d = (d1; :::; dm)

T 2 Rm;
A = (aij) and B = (bij) 2 Rm�n are given matrices and vectors. These
two problems will be denoted by MLPmin (MLPmax). We now denote

S = fx 2 Rn;A
 x� c = B 
 x� dg ;

Smin = fx 2 S; f(x) � f(z) for all z 2 Sg

and
Smax = fx 2 S; f(x) � f(z) for all z 2 Sg :

Systems of two-sided max-linear equations are investigated in Chapter
7 and we will follow terminology introduced there. It has been shown in
Section 7.4 how the general systems of the form (10.2) can be converted
to homogenous systems with separated variables (Lemma 7.4.3) and hence
be solved using the (pseudopolynomial) Alternating Method. Since now we
assume �niteness of A and B; a two-sided system has a nontrivial solution
if and only if it has a �nite solution, thus this conversion is slightly more
straightforward and is expressed as follows:
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Proposition 10.2.1 Let A;B 2 Rm�n; c; d 2 Rm and E = (Ajc) ; F =
(Bjd) be matrices arising from A and B respectively by adding the vectors
c and d as the last column. Let

Sh =
�
z 2 Rn+1;E 
 z = F 
 z

	
:

If x 2 S then (xj0) 2 Sh and conversely, if z = (z1; :::; zn+1)
T 2 Sh then

z�1n+1 
 (z1; :::; zn)
T 2 S:

Proof. The statement follows straightforwardly from the de�nitions.
In what follows we will need a slight reformulation of the computational

complexity formula (7.19):

Theorem 10.2.2 Let E = (eij) ; F = (fij) 2 Zm�n and K 0 = K (EjF ) :
There is an algorithm of computational complexity O (mn (m+ n)K 0) that
�nds an x satisfying

E 
 z = F 
 z (10.3)

or decides that no such x exists.

Proof. It follows from (7.19) immediately.
Proposition 10.2.1 and Theorem 10.2.2 show that the feasibility ques-

tion for MLPmax and MLPmin can be solved in pseudopolynomial time for
instances with integer entries. We will use this result to develop bisection
methods for solving MLPmin and MLPmax:We will prove that these meth-
ods need a polynomial number of feasibility checks if all entries are integer
and hence overall are also of pseudopolynomial complexity.
The Alternating Method of Section 7.3 is an iterative procedure that

starts with an arbitrary vector and then only uses the operations of +; �;
max and min applied to the starting vector and the entries of E;F . Hence
using Proposition 10.2.1 we deduce:

Theorem 10.2.3 If all entries in a homogenous max-linear system are
integer and the system has a nontrivial solution then this system has an
integer solution. The same is true for nonhomogenous max-linear systems.

Using the cancellation law (7.4.1) we have:

Lemma 10.2.4 Let �; �0 2 R; �0 < � and f(x) = fT 
 x; f 0(x) = f 0T 
 x

where f 0j < fj for every j 2 N . Then the following holds for every x 2 R:
f(x) = � if and only if f(x)� �0 = f 0(x)� � :

For the bisection method it will be important to know that attainment
of a value can be checked by converting this question to feasibility. The
following proposition explains how this can be done.



10.2 Programs with two-sided constraints 257

Proposition 10.2.5 f(x) = � for some x 2 S if and only if the following
nonhomogenous max-linear system has a solution:

A
 x� c = B 
 x� d;
f(x)� �0 = f 0(x)� �;

where �0 < �, f 0(x) = f 0T 
 x and f 0j < fj for every j 2 N .

Proof. The statement follows from Lemma 7.4.1 and Lemma 10.2.4.
This result has a useful consequence for programs with integer entries.

Corollary 10.2.6 If all entries in MLPmax or MLPmin are integer then
an integer objective function value is attained by a real feasible solution if
and only if it is attained by an integer feasible solution.

Proof. It follows immediately from Theorem 10.2.3 and Proposition 10.2.5.

For a computational complexity estimate it will be useful to know the
computational complexity of the attainment of a value. To do this, for given
MLPmin or MLPmax we denote in this chapter

K = max fjaij j ; jbij j ; jcij ; jdj j ; jfj j ; i 2M; j 2 Ng : (10.4)

Corollary 10.2.7 If all entries in MLPmax or MLPmin and � are integer
then the decision problem whether f(x) = � for some x 2 S \ Zn can be
solved using O (mn (m+ n)K 0) operations where K 0 = max (K + 1; j�j) :

Proof. For �0 and f 0j in Proposition 10.2.5 we can take � � 1 and fj �
1 respectively. Using Proposition 10.2.1, Theorem 10.2.2 and Proposition
10.2.5 the computational complexity then is

O ((m+ 1) (n+ 1) (m+ n+ 2)K 0) = O (mn (m+ n)K 0) :

Before we compile bisection methods for MLPmin and MLPmax we need
to prove a simple property of max-linear programs, which justi�es the bi-
section search.

Proposition 10.2.8 If x; y 2 S; f(x) = � < � = f(y) then for every
 2 (�; �) there is a z 2 S satisfying f(z) = :

Proof. Let � = 0; � = ��1 
 ; z = �
 x� � 
 y: Then �� � = 0; z 2 S
by Proposition 7.1.1 and by Lemma 10.0.7 we have

f(z) = �
 f(x)� �
 f(y) = �� ��1 
  
 � = :
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10.2.2 Bounds and attainment of optimal values

We start by proving criteria for the existence of optimal solutions. For
simplicity we denote inf x2Sf(x) by fmin; similarly sup x2Sf(x) by fmax.
First let us consider the lower bound. We may assume without loss of

generality that in (10.2) we have c � d. Let M> = fi 2 M ; ci > dig: For
r 2M> we denote

Lr = min
k2N

fk 
 cr 
 b�1rk

and
L = max

r2M>
Lr:

Recall that max ; = �1 by de�nition.

Lemma 10.2.9 If c � d then f(x) � L for every x 2 S.

Proof. If M> = ; then the statement follows trivially since L = �1. Let
x 2 S and r 2M>: Then

(B 
 x)r � cr

and so
xk � cr 
 b�1rk

for some k 2 N: Hence f(x) � fk 
 xk � fk 
 cr 
 b�1rk � Lr and the
theorem statement follows:
A very simple criterion for the existence of a lower bound is given in the

next statement.

Theorem 10.2.10 fmin = �1 if and only if c = d:

Proof. If c = d then � 
 x 2 S for any x 2 Rn and every � < 0 small
enough. Hence by letting � �! �1 we have f(�
x) = �
f(x) �! �1.
If c 6= d then without loss of generality c � d and the statement now

follows by Lemma 10.2.9 since L > �1:
Let us now discuss the upper bound. We prove two lemmas before pre-

senting the main result, Theorem 10.2.13.

Lemma 10.2.11 Let c � d: If x 2 S and (A
 x)i > ci for all i 2M then
x0 = �
 x 2 S and (A
 x0)i = ci for some i 2M; where

� = max
i2M

�
ci 
 (A
 x)�1i

�
: (10.5)

Proof. Let x 2 S: If
(A
 x)i > ci

for every i 2M then A
 x = B 
 x: For every � 2 R we also have

A
 (�
 x) = B 
 (�
 x) :
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It follows from the choice of � that

(A
 (�
 x))i = �
 (A
 x)i � ci

for every i 2 M; with equality for at least one i 2 M: Hence x0 2 S and
the lemma follows.
Let us denote

U = max
r2M

max
j2N

fj 
 a�1rj 
 cr:

Lemma 10.2.12 If c � d then the following hold:

(a) If x 2 S and (A
 x)r � cr for some r 2M then f(x) � U:

(b) If A
 x = B 
 x has no nontrivial solution then f(x) � U for every
x 2 S:

Proof. (a) Since
arj 
 xj � cr

for all j 2 N; we have

f(x) � max
j2N

fj 
 a�1rj 
 cr � U:

(b) If S = ; then the statement holds trivially. Let x 2 S: Then

(A
 x)r � cr

for some r 2 M since otherwise A 
 x = B 
 x; and the statement now
follows from (a).

Theorem 10.2.13 fmax = +1 if and only if A 
 x = B 
 x has a non-
trivial solution:

Proof. We may assume without loss of generality that c � d: If A 
 x =
B 
 x has no solution then the statement follows from Lemma 10.2.12. If
it has a solution, say z; z 6= ", then for all su¢ ciently large � 2 R we have

A
 (�
 z) = B 
 (�
 z) � c� d

and hence �
 z 2 S: The statement now follows by letting � �! +1:
Theorem 10.2.13 provides a criterion for the existence of an upper bound,

which is less simple than that for the lower bound, but still enables us to
answer this question in pseudopolynomial time.
We can now discuss the question of attainment of fmin and fmax: In both

cases the answer is a¢ rmative: We will show that the maximal (minimal)
value is attained if S 6= ; and fmax < +1

�
fmin > �1

�
: Due to conti-

nuity of f this will be proved by showing that both for minimization and
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maximization the set S can be reduced to a compact subset. To achieve
this we denote for j 2 N :

hj = min

�
min
r2M

a�1rj 
 cj ;min
r2M

b�1rj 
 dj ; f
�1
j 
 L

�
; (10.6)

h0j = min

�
min
r2M

a�1rj 
 cj ;min
r2M

b�1rj 
 dj
�

(10.7)

and h = (h1; :::; hn)
T
; h0 = (h01; :::; h

0
n)
T
: Clearly, h0 is �nite. Note that h

is �nite if and only if fmin > �1:
First we show the attainment of fmin:

Proposition 10.2.14 For any x 2 S there is an x0 2 S such that x0 � h
and f(x) = f(x0):

Proof. Let x 2 S. It is su¢ cient to set x0 = x� h since if xj < hj ; j 2 N
then xj is not active on any side of any equation or in the objective function
and therefore changing xj to hj will not a¤ect validity of any equation or
the objective function value.

Corollary 10.2.15 If fmin > �1 and S 6= ; then there is a compact set
S such that

fmin = min
x2S

f(x):

Proof. Note that h is �nite since fmin > �1: By Proposition 10.2.14 there
is an ~x 2 S; ~x � h: Then

S = S \
�
x 2 Rn;hj � xj � f�1j 
 f(~x); j 2 N

	
is a compact subset of S and ~x 2 S: If there was a y 2 S such that

f (y) < min
x2S

f(x) � f(~x)

then by Proposition 10.2.14 there is a y0 � h; y0 2 S; f(y0) = f(y): Hence

fj 
 y0j � f(y0) = f(y) � f(~x)

for every j 2 N and thus y0 2 S; f (y0) < minx2S f(x); a contradiction.
Now we prove the attainment of fmax:

Proposition 10.2.16 For any x 2 S there is an x0 2 S such that x0 � h0

and f(x) � f(x0):

Proof. Let x 2 S and j 2 N: It is su¢ cient to set x0 = x � h0; since if
xj < h0j then xj is not active on any side of any equation and therefore
changing xj to h0j does not invalidate any equation. The rest follows from
isotonicity of f(x):
Let

S
0
= S \

�
x 2 Rn;h0j � xj � f�1j 
 U; j 2 N

	
:
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Corollary 10.2.17 If fmax < +1 then

fmax = max
x2S0

f(x):

Proof. The statement follows immediately from Proposition 10.2.16, The-
orem 10.2.13 and Lemma 10.2.12.
The next statement summarizes the desired result:

Corollary 10.2.18 If S 6= ; and fmin > �1 [fmax < +1] then Smin 6= ;
[Smax 6= ;].

We conclude this subsection by a technical statement that will be useful
in the algorithms.
It follows from Lemma 10.2.9 that fmax > L: However this information

is not useful if c = d; since then L = �1: Because we will need a lower
bound for fmax; even when c = d; we de�ne L0 = f (h0) and formulate the
following.

Corollary 10.2.19 If x 2 S then x0 = x�h0 satis�es f(x0) � L0 and thus
fmax � L0:

10.2.3 The algorithms

In this subsection we present the minimization and maximization algo-
rithms for the case of real entries; those for integer entries are presented in
the next section.
It follows from Proposition 10.2.1 and Theorem 10.2.2 that in pseudopoly-

nomial time either a feasible solution to (10.2) can be found or it can be de-
cided that no such solution exists. Due to Theorems 10.2.10 and 10.2.13 we
can also recognize the cases when the objective function is unbounded. We
may therefore assume that a feasible solution exists, the objective function
is bounded (from below or above depending on whether we wish to mini-
mize or maximize) and hence an optimal solution exists (Corollary 10.2.18).
If x0 2 S is found then using the scaling (if necessary) proposed in Lemma
10.2.11 or Corollary 10.2.19 we �nd (another) x0 satisfying L � f(x0) � U
or L0 � f(x0) � U (see Lemmas 10.2.9 and 10.2.12). The use of the bisec-
tion method applied to either (L; f(x0)) or (f(x0); U) for �nding a min-
imizer or maximizer of f(x) is then justi�ed by Proposition 10.2.8. The
algorithms are based on the fact that (see Proposition 10.2.5) checking the
existence of an x 2 S satisfying f(x) = � for a given � 2 R; can be con-
verted to a feasibility problem. They stop when the interval of uncertainty
is shorter than a given precision " > 0:

Algorithm 10.2.20 MAXLINMIN (Max-Linear Minimization)
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Input: A = (aij) ; B = (bij) 2 Rm�n; f = (f1; :::; fn)
T 2 Rn; c =

(c1; :::; cm)
T
; d = (d1; :::; dm)

T 2 Rm; c � d; c 6= d; " > 0:
Output: x 2 S such that f(x)� fmin � ":

1. If L = f(x) for some x 2 S then stop (fmin = L).

2. Find an x0 2 S: If
�
A
 x0

�
i
> ci for all i 2 M then scale x0 by �

de�ned in (10:5) :

3. L (0) := L;U(0) := f(x0); r := 0:

4. � := 1
2 (L (r) + U (r)) :

5. Check whether f (x) = � is satis�ed by some x 2 S and in the positive
case �nd one.

If yes then U (r + 1) := �;L (r + 1) := L (r) :

If not then U (r + 1) := U (r) ; L (r + 1) := �:

6. r := r + 1:

7. If U (r)� L (r) � " then stop else go to 4.

Theorem 10.2.21 The algorithm MAXLINMIN is correct and the number
of iterations before termination is

O

�
log2

U � L
"

�
:

Proof. Correctness follows from Proposition 10.2.8 and Lemma 10.2.9.
Since c 6= d we have at the end of step 2: f(x0) � L > �1 (Lemma 10.2.9)
and U(0) := f(x0) � U by Lemma 10.2.12. Thus the number of iterations
is O

�
log2

U�L
"

�
; since after every iteration the interval of uncertainty is

halved.
The maximization algorithm has many similarities with the minimization

algorithm, however for the proof we need to consider it separately.

Algorithm 10.2.22 MAXLINMAX (Max-Linear Maximization)
Input: A = (aij) ; B = (bij) 2 Rm�n; f = (f1; :::; fn)

T 2 Rn; c =
(c1; :::; cm)

T
; d = (d1; :::; dm)

T 2 Rm; " > 0:
Output: x 2 S such that fmax � f(x) � " or an indication that fmax =

+1:

1. If U = f(x) for some x 2 S then stop (fmax = U).

2. Check whether A
x = B
x has a solution. If yes, stop (fmax = +1) :

3. Find an x0 2 S and set x0 := x0�h0 where h0 is as de�ned in (10.7).

4. L (0) := f(x0); U(0) := U; r := 0:
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5. � := 1
2 (L (r) + U (r)) :

6. Check whether f (x) = � is satis�ed by some x 2 S and in the positive
case �nd one.

If yes then U (r + 1) := U (r) ; L (r + 1) := �:

If not then U (r + 1) := �;L (r + 1) := L (r) :

7. r := r + 1:

8. If U (r)� L (r) � " then stop else go to 5.

Theorem 10.2.23 The algorithm MAXLINMAX is correct and the num-
ber of iterations before termination is

O

�
log2

U � L0
"

�
:

Proof. Correctness follows from Proposition 10.2.8 and Lemma 10.2.12. By
Lemma 10.2.12 and Corollary 10.2.19 U � f(x0) � L0 and thus the number

of iterations is O
�
log2

U�L0
"

�
; since after every iteration the interval of

uncertainty is halved.

10.2.4 The integer case

The algorithms of the previous section may immediately be applied to
MLPmin or MLPmax when all input data are integer. However, we show
that in such a case fmin and fmax are integers and therefore the algorithms
�nd an exact solution once the interval of uncertainty is of length one,
since then either L (r) or U (r) is the optimal value. Note that L and U
are now integers and integrality of L (r) and U (r) can easily be maintained
during the run of the algorithms. This implies that the algorithms will �nd
exact optimal solutions in a �nite number of steps and we will prove that
their computational complexity is pseudopolynomial. The symbol fr (k)
will stand for the fractional part of k 2 Z, that is fr (k) = k � bkc :

Theorem 10.2.24 If A;B; c; d; f are integer, S 6= ; and fmin > �1 then
Smin \ Zn 6= ; (and therefore fmin 2 Z ).

Proof. Due to Corollary 10.2.18 it is su¢ cient to prove that for any z 2 S
there is a z� 2 S \ Zn such that f(z�) � f(z): Let z = (z1; :::; zn)

T 2 S.
Without loss of generality, suppose z =2 Zn and denote

N (z) = fj 2 N ; zj =2 Zg ;

J =

�
j 2 N (z) ; fr (zj) = min

k2N(z)
fr (zk)

�
:
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Let z
0

j = bzjc for j 2 J and z
0

j = zj otherwise. Then z0 � z, thus
f(z0) � f(z); and z0 2 S since the validity of equations is una¤ected: if
zj ; j 2 J was active on one side of an equation then zk for some k 2 J is
active on the other side, by minimality there are no terms in this equation
between aij and aij + zj and so the new values of both sides are aij ; if
zj ; j 2 J was not active then the transition z �! z0 does not a¤ect this
equation at all. After at most n repetitions of this operation we get the
sequence z0; z00; z000; :::; whose last term is the wanted z� 2 Zn:

Theorem 10.2.25 If A;B; c; d; f are integer, S 6= ; and fmax < +1 then
fmax 2 Z (and therefore Smax \ Zn 6= ;).

Proof. Suppose c � d; fmax =2 Z and let z = (z1; :::; zn)T 2 Smax: For any
x 2 Rn denote

F (x) = fj 2 N ; fj 
 xj = f(x)g :

We take one �xed j 2 F (z) (hence zj =2 Z) and show that it is possible to
increase zj without invalidating any equation, which will be a contradiction.
Due to integrality of all entries it is not possible that equality in an

equation is achieved by both integer and noninteger components of z. Hence
the increase of zj only forces the noninteger components of z to increase.
At the same time an equality of the form (A
 z)i = ci (if any) cannot

be attained by noninteger components, thus aij 
 zj < ci and bij 
 zj < ci
whenever zj =2 Z and (A
 z)i = ci; hence there is always a scope for an
increase of zj =2 Z:
Integer modi�cations of the algorithms are now straightforward since

L;L0 and U are also integer: we only need to ensure that the algorithms
start from an integer vector (see Theorem 10.2.3) and that the integrality
of both ends of the intervals of uncertainty is maintained, for instance by
taking one of the integer parts of the middle of the interval.
We start with the minimization. Note that

L;L0; U 2 [�3K; 3K] ; (10.8)

where K has been de�ned by (10.4).

Algorithm 10.2.26 INTEGER MAXLINMIN (Integer Max-Linear Min-
imization)
Input: A = (aij) ; B = (bij) 2 Zm�n; f = (f1; :::; fn)

T 2 Zn; c =
(c1; :::; cm)

T
; d = (d1; :::; dm)

T 2 Zm; c � d; c 6= d:
Output: x 2 Smin \ Zn:

1. If L = f(x) for some x 2 S \ Zn then stop (fmin = L).

2. Find x0 2 S \ Zn: If
�
A
 x0

�
i
> ci for all i 2M then scale x0 by �

de�ned in (10:5) :
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3. L (0) := L;U(0) := f(x0); r := 0:

4. � :=
�
1
2 (L (r) + U (r))

�
:

5. Check whether f (x) = � is satis�ed by some x 2 S \ Zn and in the
positive case �nd one.

If x exists then U (r + 1) := �;L (r + 1) := L (r) :

If it does not then U (r + 1) := U (r) ; L (r + 1) := �:

6. r := r + 1:

7. If U (r)� L (r) = 1 then stop (U (r) = fmin) else go to 4.

Theorem 10.2.27 The algorithm INTEGER MAXLINMIN is correct and
terminates after using O (mn (m+ n)K logK) operations.

Proof. Correctness follows from the correctness of MAXLINMIN and from
Theorem 10.2.24. For computational complexity �rst note that the number
of iterations is O (log(U � L)) � O (log 6K) = O (logK) : The computa-
tionally prevailing part of the algorithm is the checking whether f(x) = �
for some x 2 S \ Zn when � is given. By Corollary 10.2.7 this can be
done using O (mn (m+ n)K 0) operations where K 0 = max (K + 1; j�j) :
Since � 2 [L;U ]; using (10.8) we have K 0 = O (K) : Hence the computa-
tional complexity of checking whether f(x) = � for some x 2 S \ Zn is
O (mn (m+ n)K) and the statement follows.
Again, for the same reasons as before, we present the maximization al-

gorithm in full.

Algorithm 10.2.28 INTEGER MAXLINMAX (Integer Max-Linear Max-
imization)
Input: A = (aij) ; B = (bij) 2 Zm�n; f = (f1; :::; fn)

T 2 Zn; c =
(c1; :::; cm)

T
; d = (d1; :::; dm)

T 2 Zm:
Output: x 2 Smax \ Zn or an indication that fmax = +1:

1. If U = f(x) for some x 2 S \Zn then stop (fmax = U).

2. Check whether A
x = B
x has a solution. If yes, stop (fmax = +1) :

3. Find an x0 2 S \ Zn and set x0 := x0 � h0 where h0 is as de�ned in
(10.7).

4. L (0) := f(x0); U(0) := U; r := 0:

5. � :=
�
1
2 (L (r) + U (r))

�
:
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6. Check whether f (x) = � is satis�ed by some x 2 S \ Zn and in the
positive case �nd one.

If x exists then U (r + 1) := U (r) ; L (r + 1) := �:

If not then U (r + 1) := �;L (r + 1) := L (r) :

7. r := r + 1:

8. If U (r)� L (r) = 1 then stop (L (r) = fmax) else go to 5.

Theorem 10.2.29 The algorithm INTEGER MAXLINMAX is correct and
terminates after using O (mn (m+ n)K logK) operations.

Proof. Correctness follows from the correctness of MAXLINMAX and from
Theorem 10.2.25. The computational complexity part follows the lines of
the proof of Theorem 10.2.27 after replacing L by L0:

10.2.5 An example

Let us consider the max-linear program (minimization) in which

f = (3; 1; 4;�2; 0)T ;

A =

0@ 17 12 9 4 9
9 0 7 9 10
19 4 3 7 11

1A ;

B =

0@ 2 11 8 10 9
11 0 12 20 3
2 13 5 16 4

1A ;

c =

0@ 12
15
13

1A ; d =

0@ 12
12
3

1A ;

and the starting vector is

x0 = (�6; 0; 3;�5; 2)T :

Clearly, f(x0) = 7;M> = f2; 3g and the lower bound is

L = max
r2M>

min
k2N

fk 
 cr 
 b�1rk
= max (min (7; 16; 7;�7; 12) ;min (14; 1; 12;�5; 9)) = �5:

Record of the run of INTEGER MAXLINMIN for this problem:
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Iteration 1: Check whether L = �5 is attained by f(x) for some x 2 S
by solving the system0BB@
17 12 9 4 9 12
9 0 7 9 10 15
19 4 3 7 11 13
3 1 4 �2 0 �6

1CCA
w =
0BB@

2 11 8 10 9 12
11 0 12 20 3 12
2 13 5 16 4 3
2 0 3 �3 �1 �5

1CCA
w:
There is no solution, hence L (0) := �5; U(0) := 7; r := 0; � := 1:
Check whether f (x) = 1 is satis�ed by some x 2 S by solving0BB@
17 12 9 4 9 12
9 0 7 9 10 15
19 4 3 7 11 13
3 1 4 �2 0 0

1CCA
w =
0BB@

2 11 8 10 9 12
11 0 12 20 3 12
2 13 5 16 4 3
2 0 3 �3 �1 1

1CCA
w:
There is a solution x = (�6; 0;�3;�5; 1)T : Hence U (1) := 1; L (1) :=
�5; r := 1; U (1)� L (1) > 1:
Iteration 2: Check whether f (x) = �2 is satis�ed by some x 2 S by

solving0BB@
17 12 9 4 9 12
9 0 7 9 10 15
19 4 3 7 11 13
3 1 4 �2 0 �3

1CCA
w =
0BB@

2 11 8 10 9 12
11 0 12 20 3 12
2 13 5 16 4 3
2 0 3 �3 �1 �2

1CCA
w:
There is no solution. Hence U (2) := 1; L (2) := �2; r := 2; U (2)�L (2) > 1:
Iteration 3: Check whether f (x) = 0 is satis�ed by some x 2 S by solving0BB@
17 12 9 4 9 12
9 0 7 9 10 15
19 4 3 7 11 13
3 1 4 �2 0 �1

1CCA
w =
0BB@

2 11 8 10 9 12
11 0 12 20 3 12
2 13 5 16 4 3
2 0 3 �3 �1 0

1CCA
w:
There is no solution. Hence U (3) := 1; L (3) := 0; U (1) � L (1) = 1; stop,
fmin = 1; an optimal solution is x = (�6; 0;�3;�5; 1)T :

10.3 Exercises

Exercise 10.3.1 Prove that the problem of minimizing the function

2x1 + :::+ 2xn

subject to one-sided max-linear constraints A
x = b is NP-complete. (Hint:
Find a polynomial transformation of the classical minimum set covering
problem to this problem with a matrix A over f0;�1g ; b = 0)
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Exercise 10.3.2 Find a minimizer of the function max (x1; x2; x3; x4; x5)
subject to the constraints A
 x� c = B 
 x� d; where

A =

0@ 49 31 82 38 35
44 51 79 81 94
45 51 64 53 88

1A ; B =

0@ 55 21 23 23 44
62 30 84 17 31
59 47 19 23 92

1A ;

c =

0@ 43
18
90

1A ; d =

0@ 98
44
11

1A :

[xmin = (19; 19; 16; 19;�2)T ]

Exercise 10.3.3 Find a maximizer of the function max (x1; x2; x3; x4; x5)
subject to the constraints A
 x� c = B 
 x� d; where

A =

0@ 95 49 46 44 92
23 89 2 62 74
61 76 82 79 18

1A ; B =

0@ 41 41 35 14 60
94 89 81 20 27
92 6 1 20 20

1A ;

c =

0@ 2
75
45

1A ; d =

0@ 93
47
42

1A :

[xmax = (�2; 14; 8; 11; 1)T ]
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11
Conclusions and open problems

The aim of this book is two-fold: to provide an introductory text to max-
algebra and to present results on advanced topics. Chapters 1-5 aim to
be a guide through basic max-algebra, and possibly to accompany an un-
dergraduate or postgraduate course. Chapters 6-10 are focused on more
advanced topics with emphasis on feasibility and reachability.
In the case of feasibility the most important results are: complete resolu-

tion of the eigenvalue-eigenvector problem using O
�
n3
�
algorithms; meth-

ods for solving two-sided systems of max-linear equations of pseudopoly-
nomial computational complexity; full characterization of strongly regular
matrices and the simple image sets of max-linear mappings; O

�
n3
�
algo-

rithms for three presented types of matrix regularity and a polynomial
algorithm for �nding all essential coe¢ cients of a characteristic maxpoly-
nomial.
Basic reachability problems are solvable in polynomial time. These in-

clude the question of reachability of eigenspaces by matrix orbits (for ir-
reducible matrices) and robustness (for irreducible and reducible matri-
ces). Max-linear programs with two-sided constraints can be solved in
pseudopolynomial time for problems with integer entries.
There are a number of problems that seem to be unresolved at the time

of printing this book. We list some of them:
OP1: Is it possible to multiply out two n�n matrices in max-algebra in

time better than O
�
n3
�
?

OP2: Although strong regularity and Gondran-Minoux regularity can
be checked in O

�
n3
�
time, it is still not clear whether it is possible to
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check the strong linear independence or Gondran-Minoux independence in
polynomial time.
OP3: Although the question of the existence of permutations of both

parities, optimal for the assignment problem for a matrix, is decidable in
O
�
n3
�
time, it is not clear whether the best optimal permutations of both

parities can be found in polynomial time.
OP4: Although the two-sided max-linear systems with integer entries are

solvable in pseudopolynomial time, it is still not clear whether this problem
is polynomially solvable or NP -complete.
OP5: Although all essential coe¢ cients of a characteristic maxpolynomial

can be found in polynomial time, it is still not clear whether the problem
of �nding all coe¢ cients is polynomially solvable or NP -complete.
OP6: Can the pseudopolynomial algorithms for solving max-linear pro-

grams with �nite entries be extended to problems with non-�nite entries?
OP7: Although it is clear that the greatest corner of a characteristic

maxpolynomial is equal to the principal eigenvalue, it is not clear how to
interpret the other corners.
OP8: One of the hardest problems in max-algebra seems to be the gen-

eralized eigenproblem. Although some progress is presented in Chapter 9,
probably no method is available of any kind, exact or approximate (in-
cluding heuristics), to �nd at least one generalized eigenvalue for general
matrices. In particular, we know that there is at most one generalized eigen-
value if the matrices are symmetric (Theorem 9.1.6), yet there is no clear
description of the unique (possible) eigenvalue.
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Appendix A
List of symbols

Symbol Page �rst used Description
R 1 The set of reals
" 2 �1 (scalar, vector or matrix)
ei 64 The vector whose ith component is 0 and all other are "

a�1 2 �a for a 2 R
R 1 R[f"g
R 1 R [ f+1g
Z 1 The set of integers
Z 1 Z[f"g
� 1, 2 Maximum (for scalars, vectors and matrices)

 1 Addition (for scalars)

 2 Max-algebraic product of matrices
Xm�n 4 The set of m� n matrices over X
Xm 4 Xm�1

jXj 6 Size of X
ak 6 a
 a
 :::
 a (a appears k-times), that is ka
Ak 6 A
A
 :::
A (A appears k-times)
I or A0 3, 6 Unit matrix (diagonal entries are 0, o¤-diagonal entries are ")
AT 2 Transpose of A
A�1 5 Matrix B such that A
B = I = B 
A
A� 30 Conjugate of A; that is�AT ; except Sec. 8.3
A� 197 In Sec. 8.3: �(A)
a
(k)
ij 6 The (i; j) entry of Ak

a
[k]
ij 6 The (i; j) entry of the kth matrix in a sequence A[1]; A[2]; :::
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Symbol Page �rst used Description
x[L] 6 Subvector of x with indices from L
A[K;L] 6 Submatrix of A with row indices from K and column indices from L
�0 30 Minimum (for scalars, vectors and matrices)

0 30 Addition (for scalars)

0 30 For matrices de�ned dually to 

l (�) 14 Length of a path �
w(�) 15 Weight of a path/permutation � in a weighted digraph
w(�;A) 15 Weight of a path/permutation � in DA

�(�;A) 17 Mean of a cycle � in DA

�(A) 17 Maximum cycle mean for a matrix A
A� 19 (�(A))

�1 
A
�(A) 22 Weak transitive closure of A (metric matrix)
�(A) 22 Strong transitive closure of A (Kleene star)
AD 15 Direct-distance matrix corresponding to the digraph D
DA 15 Weighted digraph associated with matrix A
FA 14 Finiteness digraph associated with matrix A
ZA 14 Zero digraph associated with matrix A
SA 137 The simple image set of the matrix A
CA 92 Condensation digraph of the matrix A
K (A) 168 maxi;j jaij j ; for the matrix A = (aij)
Col(A) 68 Column space of the matrix A
C(A) 19 Critical digraph of the matrix A
Nc(A) 19 The set of critical nodes (eigennodes) of A
Ec (A) 19 The set of arcs of all critical cycles of A
V (A; �) 76 The set containing " and eigenvectors of A with eigenvalue �
V +(A; �) 76 The set of �nite eigenvectors of A with eigenvalue �
V � (A; �) 22 The set of �nite subeigenvectors of A corresponding to value �
V �0 (A) 22 V � (A; 0)
V � (A) 22 V � (A; � (A))
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Symbol Page �rst used Description
V (A) 76 The set containing " and eigenvectors of A
V +(A) 76 The set of �nite eigenvectors of A
� (A) 76 The set of eigenvalues of A

V (A;B; �) 238
The set containing " and generalized eigenvectors of A
with eigenvalue �

V (A;B) 238 The set containing " and generalized eigenvectors of A
� (A;B) 9 The set of generalized eigenvalues of A
Im (A) 68 Image space of the matrix A
pd (A) 85 Principal dimension of A (dimension of the principal eigenspace)
maper (A) 31 Max-algebraic permanent of A
ap(A) 32 The set of optimal solutions to the linear assignment problem for A
� (A) 195 Cyclicity of the matrix A
� (D) 195 Cyclicity of the digraph D
A � B 16 Matrices A and B are equivalent
A � B 16 Matrices A and B are directly similar
A � B 16 Matrices A and B are similar
i s j 19 Eigennodes i and j are equivalent
s� 100 Eigennodes i and j are �-equivalent
kvk 64 Max-norm of the vector v
� (x; y) 71 Chebyshev distance of the vectors x and y; that is kx� yk
Supp (v) 65 Support of the vector v
S 171 Symmetrised semiring
� 171 Subtraction in a symmetrised semiring
(:)

� 171 Balance operator
5 172 Balance relation
[i] 202 Cyclic class determined by node i
G0 � G6 13 Linearly ordered commutative groups
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Index

A-test, 69
algorithm

ALTERNATINGMETHOD,
163

BMISDI, 46
ESSENTIAL TERMS, 123
EVOLUTION, 110
FLOYD-WARSHALL, 28
INTEGERMAXLINMAX, 265
INTEGERMAXLINMIN, 264
Karp�s, 20
MAXLINMAX, 262
MAXLINMIN, 261
NARROWING THE EIGEN-

VALUE SEARCH, 248
ONEMAXLINMIN, 254
RECTIFICATION, 114
RESOLUTION, 112

arc, 14
attraction space, 189
attraction system, 212

balance operator, 171
basis, 64

standard, 64

cancellation law, 168
Chebyshev distance, 71
class of a matrix, 92

�nal, 92
initial, 92
spectral, 95

component
critical , 19
strongly connected, 14

concavity condition, 112
conjugate

of a matrix, 30
constituent cycles, 31
corner, see product form
covering

nearly minimal, 161
critical subsystem, 205
cycle, 14

critical, 19
elementary, 14
even/odd, 37
positive, 15
zero, 15, 194

cycle mean, 17
maximum, 17
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minimum, 239
cyclic classes, 203

determinant, 172
digraph, 13

acyclic, 14
condensation, 92
critical, 19
cyclicity of, 194
primitive/imprimitive, 194
strongly connected, 14
weighted, 15
zero, 14

dimension
principal (of a matrix), 85

discrete-event dynamic system, 150
dual inequalities, 44
dual operations, 30

eigennode, 19
eigenproblem, 75
eigenspace, 77

principal, 81
reachable , 188

eigenvalue, 75
generalized, 237
principal, 81

eigenvector, 22, 75
�nite, 86
fundamental , 81
generalized, 237
principal, 81

element
minimal, 65

element of a symmetrized semi-
ring

balanced, 171
sign-negative, 171
sign-positive, 171
signed, 171
unbalanced, 171

equation
critical, 205
max-linear, 10
maxpolynomial, 115

evolution, 109
extremal (vector), 64
extreme value, 243

feasible interval, 238
Frobenius normal form, 92
function

max-linear, 11, 253
fundamental eigenvectors

equivalent, 83

generalized eigenproblem, 237
feasible interval for the, 238

group
linearly ordered, 13
dense, 13
sparse, 13

radicable, 13

image set, 137
interval

regular, 244

job rotation problem, 52

Kleene star, 23

Markov parameters, 151
matrices

directly similar, 16
equivalent, 16
similar, 16

matrix
0-irreducible, 195
active entry of, 121
blockdiagonal, 5
R-astic
column, 6

column space of, 68
cyclicity of, 194
R-astic
doubly, 6

de�nite, 18
strongly, 23

diagonal, 4
diagonally dominant, 34
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direct-distances, 16
doubly stochastic, 37
Gondran-Minoux regular, 145
Hankel, 151
idempotent, 158
increasing, 23
irreducible, 14
M -robust, 231
metric, 23
normal, 34
normal form of, 35
orbit of, 188
starting vector, 188

period of, 188
permutation, 5
generalized, 5

production, 10
R-astic
row, 6

reducible, 14
robust, 12, 189
sign-nonsingular, 174
strictly normal, 34
strongly regular, 136
type of, 134
ultimate column span of, 205
ultimately periodic, 201
unit, 3
visualized, 191
strictly, 191

matrix class
trivial, 225

matrix multiplication constant, 29
matrix scaling, 16, 190
max combination, 64
max-algebra, 2
max-linear program, 253
max-linear system

homogenous, 156
nonhomogenous, 156
one-sided, 10, 57
two-sided, 10, 155
regular, 243

with separated variables, 156
max-norm, 64

maximum cycle mean, see cycle
mean

maxpolynomial, 107
characteristic, 117
degree of, 107
length of, 107
standard, 107
term of, 107
inessential/essential, 108

method
Hungarian, 32

min-algebra, 2, 13
modulus, 171
multi-machine interactive produc-

tion process, 9

node, 14
critical, 19
reachable, 14
spectral, 95
starting, 14

nodes
equivalent, 19
�-equivalent, 100

nontrivial solutions, 156
number

regular, 244

observation vector, 150

path, 14
length of, 14
weight of, 15

permanent, 31, 173
strong, 34

permutation
cyclic, 31
length of, 36

even, 36
odd, 36
optimal, 32
sign of, 36
symmetrized sign of, 172
weight of, 32

principal interpretation, 13
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problem
EXACT CYCLE COVER, 128
independent ones, 246
linear assignment, 32
minimal-dimensional realiza-

tion, 151
PRINCIPAL SUBMATRIXWITH

POSITIVE PERMANENT,
128

shortest-distances, 50
synchronization, 10

product form, 109
corner of, 109
simple, 110
standard, 110

program
max-linear, 11

realization (of a DEDS), 151
resolution, 111

semimodule, 4
semiring

commutative idempotent, 4
sequence

convex, 151
set

dependent, 64
independent, 64
max-convex, 134
of generators, 64
regular, 231
scaled, 64
totally dependent, 64

set covering, 61
minimal, 61
nearly minimal, see covering

simple image set, 137
sleeper, 166
solution

principal, 59
stable, 164

span of a set, 64
steady regime, 12, 187
subdigraph, 14

induced, 16
subeigenvector, 22
submatrix

principal, 6
subspace, 64

dimension of, 70
superblock, 92
symmetrized semiring, 170

Theorem
Carathéodory�s, 65
Cayley-Hamilton, 129
Cuninghame-Green, 88, 89
Cyclicity, 200
General Cyclicity, 225
Gondran-Minoux, 145
Karp, 20
Schneider, 102

transient of matrix sequences/orbits,
188

transitive closure of a matrix
strong, 22
weak, 22

tropical algebra, 2, 13

vector
scaled, 64
sign-negative, 172
sign-positive, 172
signed, 172
support of, 65

vectors
Gondran-Minoux dependent/independent,

145
linearly dependent/independent,

133
strongly linearly independent/dependent,

135


